Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/10442/19532
| Εξειδίκευση τύπου : | Κεφάλαιο βιβλίου |
| Τίτλος: | Using Epigenetic Data to Deconvolute Immune Cells in Cancer from Blood Samples |
| Δημιουργός/Συγγραφέας: | Boughanem, Hatim Ouzounis, Sotiris Callari, Maurizio Sanz-Pamplona, Rebeca Macias-Gonzalez, Manuel [EL] Κατσίλα, Θεοδώρα[EN] Katsila, Theodora |
| Επιμελητής έκδοσης: | Rani, Sweta Skalniak, Lukasz |
| Ημερομηνία: | 2026 |
| Γλώσσα: | Αγγλικά |
| ISBN: | 978-1-0716-4733-2 978-1-0716-4734-9 |
| ISSN: | 1064-3745 1940-6029 |
| DOI: | 10.1007/978-1-0716-4734-9_15 |
| Άλλο: | 41028269 |
| Περίληψη: | DNA methylation plays a crucial role in regulating gene expression and is a hallmark of epigenetic dysregulation in human tumors. High-throughput DNA methylation profiling can unravel intricate patterns in cancer. Moreover, understanding immune cell dynamics is essential for comprehending cancer progression and treatment response. Using DNA methylation data in immune cells, we can apply deconvolution algorithms estimate proportions of major immune cell types, providing insights into immune status and its implications in cancer. Functional analysis can identify specific overrepresented or underrepresented immune cell subsets, potentially uncovering novel biomarkers or therapeutic targets. This pipeline presents a detailed workflow in RStudio for DNA methylation studies and immune cell deconvolution, enhancing reproducibility and efficiency. The workflow integrates preprocessing, analysis, and visualization steps, facilitating robust inference of cell-type proportions from DNA methylation data. |
| Τίτλος πηγής δημοσίευσης: | IMMUNO-model in Cancer. Methods in Molecular Biology |
| Τόμος/Κεφάλαιο: | 2959 |
| Σειρά δημοσίευσης: | Methods in Molecular Biology |
| Θεματική Κατηγορία: | [EL] Βιοπληροφορική[EN] Bioinformatics [EL] Ανοσολογία[EN] Immunology [EL] Μοριακή Βιολογία[EN] Molecular Biology [EL] Νεοπλάσματα. Όγκοι. Ογκολογία (περ. Καρκίνος, κακινογόνες ουσίες)[EN] Neoplasms. Tumors. Oncology (Incl.cancer, carcinogens) |
| Λέξεις-Κλειδιά: | 450K Blood Cancer EPIC Immune cells Epigenetics |
| Χρηματοδότης: | Instituto de Salud Carlos III European Commission Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición Breast Cancer Research Foundation European Regional Development Fund European Cooperation in Science and Technology Consejería de Universidad, Investigación e Innovación, Junta de Andalucía Financiado por la Unión Europea |
| Αναγνωριστικό χρηματοδοτικού προγράμματος: | BCRF 21-181 PI18/01399 CB06/03 PI21/00633 CA21135 CD22/00053 PY20-01270 PI24/00061 |
| Κάτοχος πνευματικών δικαιωμάτων: | © 2026 The Author(s) |
| Όροι και προϋποθέσεις δικαιωμάτων: | Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. |
| Ηλεκτρονική διεύθυνση στον εκδότη (link): | https://doi.org/10.1007/978-1-0716-4734-9_15 |
| Εμφανίζεται στις συλλογές: | Ινστιτούτο Χημικής Βιολογίας - Επιστημονικό έργο
|