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Preface

Immuno-model is a model invented to study the immune system. This book describes the
computational and experimental models that help researchers understand the responses of
the immune system in cancer and test experimental immuno-oncology approaches.

Macrophages can adapt to different phenotypes in response to signals from the micro-
environment. This book on immuno-model describes methods to profile polarization in
macrophages using ELISA. ELISA is widely used in immunology to detect proteins, anti-
bodies, antigens, or hormones in a sample, including immune checkpoint inhibitors.
Immune checkpoints are regulatory molecules that control the activation and intensity of
immune responses. Glycosylation is the addition of carbohydrate groups to the proteins.
Glycosylation of the immune checkpoint proteins not only promotes immune evasion in
tumor cells but also holds therapeutic implications. New immune checkpoint inhibitors are
warranted for better cancer treatment. One of the chapters evaluates immune checkpoint
inhibitors. One of the most studied immune checkpoints is PD-1/PD-L1. There is one
chapter detailing the interaction of PD-1/PD-L1 and T cells. Immune checkpoint inhibi-
tors have significantly improved survival rates in cancers but there are patients who do not
respond to these treatments. Induction of immunogenic cell death is another therapeutic
option for cancer patients.

A lot of research is underway to study tumor immune microenvironment. There are
several well-established in vitro models to study interaction between immune cells and
cancer cells and these in vitro models are still evolving. Cells can be co-cultured using cell
culture inserts or can be grown as 3D spheroids. 3D co-culture model can be used to study
the interaction of immune cells and cancer cells to mimic the in vitro microenvironment.
Cells can be grown in 3D using different techniques, and one of the techniques is using
scaffolds derived from cancer patients. One of the chapters explores immunocompetent
preclinical mouse models to study primary and metastatic brain cancer. CAR T-cell therapy is
still evolving, and one of the chapters describes the method to generate CAR T-cells.

Bioinformatics has vast applications and plays a central role in immunology by enabling
the analysis of large-scale datasets. Deconvolution analysis can be used to study the epige-
netic dysregulation in human tumors and the tumor ecosystem. Computational methods
can also be used to study the mutated peptides called neoantigens. Bioinformatics allows us
to identify therapeutic targets and develop precision immunotherapies.

Waterford, Cork, Iveland Sweta Rani
Krakow, Poland Lukasz Skalnink



Check for
updates

Using Epigenetic Data to Deconvolute Inmune Cells
in Gancer from Blood Samples

Hatim Boughanem, Sotiris Ouzounis, Maurizio Callari,
Rebeca Sanz-Pamplona, Manuel Macias-Gonzalez, and Theodora Katsila

Abstract

DNA methylation plays a crucial role in regulating gene expression and is a hallmark of epigenetic
dysregulation in human tumors. High-throughput DNA methylation profiling can unravel intricate pat-
terns in cancer. Moreover, understanding immune cell dynamics is essential for comprehending cancer
progression and treatment response. Using DNA methylation data in immune cells, we can apply decon-
volution algorithms estimate proportions of major immune cell types, providing insights into immune
status and its implications in cancer. Functional analysis can identify specific overrepresented or underrep-
resented immune cell subsets, potentially uncovering novel biomarkers or therapeutic targets. This pipeline
presents a detailed workflow in RStudio for DNA methylation studies and immune cell deconvolution,
enhancing reproducibility and efficiency. The workflow integrates preprocessing, analysis, and visualization
steps, facilitating robust inference of cell-type proportions from DNA methylation data.

Key words Immune cells, Blood, Cancer, Epigenetic, 450K, EPIC

1 Introduction

DNA methylation plays a crucial role in the regulation of gene
expression. Epigenetic dysregulation is considered the hallmark of
human tumors, offering valuable insights into disease mechanisms
and potential therapeutic targets [1]. Utilizing high-throughput
DNA methylation profiling platform holds promise for unraveling
the intricacies of DNA methylation patterns in cancer studies.
Moreover, understanding the composition and dynamics of
immune cells within the tumor microenvironment and peripheral
blood is essential for comprehending cancer progression and treat-
ment response [2].

Characterizing immune cell proportions within blood samples
is pivotal for understanding immune system dynamics in health and
disease. Utilizing DNA methylation data, immune cell deconvolu-
tion algorithms enable estimation of major immune cell types,

Sweta Rani and Lukasz Skalniak (eds.), IMMUNO-model in Cancer: Methods and Protocols, Methods in Molecular Biology,
vol. 2959, https://doi.org/10.1007/978-1-0716-4734-9_15, © The Author(s) 2026
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including T cells, B cells, natural killer cells, and myeloid cells.
Presentation of immune cell proportions provides valuable insights
into immune status and its potential implications in cancer progres-
sion and treatment response. Furthermore, functional analysis
offers a systematic approach to deciphering the biological signifi-
cance of immune cell profiles. By comparing observed immune cell
proportions with predefined immuno-profiling sets, enrichment
analysis identifies overrepresented or underrepresented immune
cell subsets within samples. Calculation of enrichment scores eluci-
dates the functional relevance of immune cell composition in the
context of cancer biology, potentially uncovering novel biomarkers
or therapeutic targets [3].

Leveraging DNA methylation analysis and immune cell estima-
tion in cancer studies holds immense potential for unraveling the
complex interplay between epigenetic regulation and immune
response. Through meticulous data preparation, utilization of rele-
vant software packages, and integration of RStudio pipelines, com-
prehensive insights into DNA methylation patterns and immune
cell dynamics can be attained. Here, we offer a detailed pipeline
analysis workflow in Rstudio to enhance reproducibility and effi-
ciency in the context of DNA methylation studies and immune cell
deconvolution. This includes facilitate seamless integration of pre-
processing, analysis, and visualization steps. This enhances robust
inference of sample-specific cell-type proportions from DNA meth-
ylation data (Fig. 1).

Therefore, the objectives of this chapter are:

— Understanding the considerations when designing DNA meth-
ylation experiments.
— Discussing the steps involved in taking idaz. files.

— Computing and assessing QC metrics at every step in the
workflow.

— Identifying differentially methylated positions and regions.

— Analyzing immune cells within your blood sample.

2 Materials and Methods

2.1 EPIC and 450K
Dataset

Our analysis will utilize the idatz. files, and its related data sheet.
This pipeline requires input data in the form of idat. files, which
represent two distinct color channels before normalization. idat.
files offer the most comprehensive dataset as they encompass mea-
surements on control probes. While Genome Studio files can be
utilized alongside this package, their functionality is limited due to
the absence of control probe information. Moreover, Genome
Studio output is typically normalized using methods within
Genome Studio itself, which are often deemed less effective.
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Data filtering: Normalization:
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performing probes
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Fig. 1 Workflow of the pipeline. Visualization of a generalized pipeline for the deconvolution of methylation
data to quantify immune cell proportions in cancer from blood samples. The pipeline consists of six major
steps: (1) Data handling, (2) preprocessing, (3) differential methylation analysis, (4) annotation of differential
methylation regions, (5) immune quantification, (6) visualization

For this purpose, we will use a public dataset containing as an
example of genome-wide DNA methylation profiling of peripheral
blood mononuclear cells (PBMCs) in both normal and breast
cancer samples, provided by Wang T. et al. (2023) [4]. Of course,
you can use your own dataset to run this example, with some
adjustment that are clearly indicated along the pipeline. The Illu-
mina Infinium 850k Human DNA Methylation BeadChip was
utilized to obtain DNA methylation profiles across approximately
820,000 CpGs in PBMC samples. The samples included five newly
diagnosed breast cancer (GSM7593324, GSM7593325,
GSM7593326, GSM7593327, GSM7593328) patients and five
normal controls (GSM7593399, GSM7593400, GSM7593401,
GSM7593402, GSM7593403) to simplify the model. The users
can access to this data by the following link: https: //www.ncbi.nlm.
nih.gov/geo/query/acc.cgiracc=GSE237036

Additionally, this chapter also covers the 450K platform in
detail. It is designed to facilitate switching between platforms,
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2.2 CGomputational
Resources

2.3 Main Packages
Needed

ensuring the use of both platforms depending on the samples
available for analysis.

RStudio can be installed from the RStudio website: http://www.
rstudio.com/, or can be downloaded for all platforms using
the link: https: //rstudio.com/products /rstudio/download /. The
whole analysis is conducted within the R/Bioconductor environ-
ment. R (version 4.0.0) should be downloaded and installed from
the CRAN website (https://cran.r-project.org/). Bioconductor
(version 3.11) can be installed from within the R console using
the following commands:

if (!requireNamespace ("BiocManager", quietly = TRUE)) {
install.packages ("BiocManager")
}

BiocManager: :install (version = "3.14")

You can install all necessary packages for the analysis from CRAN
and Bioconductor. To process zdat. files, you need to install specific
packages: “minfi” for raw data and metadata retrieval, and “Illumi-
naHumanMethylationEPICmanifest” for genomic annotation on
the EPIC platform. For the 450 K platform, use the “IlluminaHu-
manMethylation450kmanifest” package [5].

# You can use each package, you need depending on the platform

you have
BiocManager: :install (¢ ('minfi’, ‘limma’ ’'IlluminaHumanMethy-
lationEPICmanifest’, ’IlluminaHumanMethylation450kmanifest’))

BiocManager::install("IlluminaHumanMethylationEPICanno.
ilm10b4.hgl9")

BiocManager: :install ("DMRcate")
BiocManager::install ("FlowSorted.Blood.EPIC")
install.packages ("ggfortify")
BiocManager: :install ("ComplexHeatmap")

BiocManager::install ("clusterProfiler")

For the visualization of graphs and manipulation of data, it is
required to install the packages “ggplot2” and “dplyr,” among
others.

BiocManager: :install (c(’'ggplot2’, ‘dplyr’, 'tibble’, ’'ggre-
pel’))

For regulatory factors enrichment analysis, the package “org.
Hs.eg.db” is required for the conversion of the gene names from
Entrez ID to Gene Symbols.
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2.4 Creating
Annotation File and
Data Environment

2.5 Creating Data
Information Sheet

BiocManager: :install(’'org.Hs.eg.db’)

For extracting the data that we will use in this example, please
install GEOquery and Biobase packages following the next script:

BiocManager: :install (c (’'GEOquery’, ’'Biobase’))

For identifying and analyzing differentially methylated regions
(DMRs) from Whole Genome Bisulfite Sequencing (WGBS) and
Ilumina Infinium Array (450K and EPIC) data, we utilize the
DMRcate package:

BiocManager: :install ("DMRcate")

For deconvoluting the cell type composition in whole blood
samples analyzed with the Illumina HumanMethylationEPIC, we
will install the package FlowSorted.Blood.EPIC [6]:

BiocManager::install ("FlowSorted.Blood.EPIC")

Finally, please check that all the packages were installed success-
fully by loading them one at a time using the library() function.

Depending on the platform we are using, the following script is
specially designed for EPIC. In case you are using the 450 K
platform, you can replace “IlluminaHumanMethylationEPI-
Canno.ilm10b4.hgl9” with “annEPIC” and using “IlluminaHu-
manMethylation450kanno.ilmn12.hgl9,” with “ann450K.” This
modification ensures that the appropriate annotation files are used
for the different platforms, allowing the script to accurately process
the data. It is crucial to use the correct manifest and annotation files
to avoid any discrepancies in the genomic analysis and ensure that
the data interpretation is accurate and reliable for your specific
platform.

# load package
library (minfi)
annEPIC <- getAnnotation("IlluminaHumanMethylationEPICanno.
ilml0b4 .hglo")

We will use data from the paper published by Wang T. et al. (2023)
https: //www.ncbi.nlm.nih.gov/geo/query/acc.cgiracc=GSE23
7036. Specifically, we will use DNA methylation data from periph-
eral blood mononuclear cells, including samples from five patients
with breast cancer and five normal controls. The samples included
five newly diagnosed breast cancer patients (GSM7593324,
GSM7593325, GSM7593326, GSM7593327, GSM7593328)
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and five normal controls (GSM7593399, GSM7593400,
GSM7593401, GSM7593402, GSM7593403). To download
these samples, you can manually access the dataset using the
following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgiracc=GSE237036. Alternatively, you can use the GEOquery
package to access and download the data using the following script.
We will also download the supplementary data from GSE47915,
which contains all the raw data we need. This process may take
some time.

# Load packages
library (GEOquery)
library (Biobase)

library (minfi)

# We will create a file in the desktop named GSE237036, 1in
which we will download the idat files. We create a function
checking if the directory exist or if it should be created
check_dir<-function (dir_path) {

# Check if the directory exists

if (!dir.exists(dir_path)) {

# If the directory does not exist, create it

dir.create(dir_path)

cat ("Directory created:", dir_path, "\n")
} else {
cat ("Directory already exists:", dir_path, "\n")

}

# We initailize the working directory of our project

work_dir <- getwd()

# Utilizing the function created above to create the following
directories i1f they do not exist

dir_pathl <- pasteO(work_dir, "/GSE237036") # Directory regard-
ing the data required

dir_path2 <- pasteO (work_dir,"/GSE237036/Data") # for the idat
files

dir_path3 <- pasteO(work_dir,"/GSE237036/Info") # for the

dataset’s information

# Define the URL of the raw data file to be downloaded
raw_dat_url <- "https://ftp.ncbi.nlm.nih.gov/geo/series/
GSE237nnn/GSE237036/suppl//GSE237036_RAW. tar"

# Define the destination file path where the raw data file will
be saved

destfile <- pasteO (work_dir, "/GSE237036/GSE237036_RAW.tar")
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# Download the raw data file from the specified URL to the
destination file path
download.file(raw_dat_url, destfile, "curl", gquiet = FALSE,
mode = "w",

cacheOK = TRUE)

# Directory where the tar file will be extracted

out_dir <- pasteO (work_dir,"/GSE237036/Data/")

# Extract the contents of the tar file into the specified
directory

untar (destfile, files = NULL, list = FALSE, exdir = out_dir)

# We download the sample sheet with information about the
samples. getGEO function retrieves GEO data corresponding to
the specified GEO accession number (GSE237036). The sample
sheet will be saved in the specified directory

targets <- getGEO(GEO = ’'GSE237036’, destdir =pasteO (-
work_dir, "/GSE237036"))

# Define the URL of the processed matrix data file to be
downloaded
matrix_url <- "https://ftp.ncbi.nlm.nih.gov/geo/series/
GSE237nnn/GSE237036/suppl/GSE237036_matrix_processed.txt.gz"
# Destination file path where the processed matrix data file
will be saved

destfile <- pasteO(work_dir,"/GSE237036/GSE237036_matrix_pro-
cessed.txt.gz")

# Download the processed matrix data file from the specified
URL to the destination file path
download.file (matrix _url, destfile, "curl", quiet = FALSE,
mode = "w",

cacheOK = TRUE)

# File path where the uncompressed matrix data will be saved
out_dir2 <- pasteO(work_dir,"/GSE237036/GSE237036_matrix_pro-
cessed.txt")

# Uncompress the downloaded gzipped matrix data file to the
specified destination file path

gunzip (destfile, destname = out_dir2)

The getGEOSuppFiles function creates a folder named
GSE237036 in vyour working directory, containing the
GSE47915_RAW.tar file, which we will extract in the next step.
The getGEO function imports the metadata. We can extract the
metadata from the GSE237036 object using the following com-
mand. Additionally, we will select the 10 samples that we will use
tor the analysis, using the package dplyr. if you do not want to
preselect the files, just go to the next step.
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# Select the object
targets <- pData (phenoData(targets[[1]1]))

# We select the files that we will use
library(dplyr)

targets <- targets %>%

filter (geo_accession %in% c("GSM7593324", "GSM7593325",
"GSM7593326", "GSM7593327", "GSM7593328",

"GSM7593399", "GSM7593400", "GSM7593401", "GSM7593402",
"GSM7593403"))

(Optional) If you have your own data stored on your computer
or if you manually downloaded the data, please follow the next
script to import and process your data accordingly.

# Load idat files and sample sheet, previously stores in a file
named GSE237036, located in your favorite file. Just place the
url of the file into the read.metharray.sheet

baseDir <- system.file("Your location", package = "minfiData")
targets <- read.metharray.sheet("Your location") # if your
file named EPIC containing idat. and sample sheet is located
in the Desktop, put "“~/Desktop/EPIC”

# Preselect the samples we will use for the analysis

targets <- targets %>%

filter (geo_accession %in% c("GSM7593324", "GSM7593325",
"GSM7593326", "GSM7593327", "GSM7593328",

"GSM7593399", "GSM7593400", "GSM7593401", "GSM7593402",
"GSM7593403"))

In the case that you have your own data, just replace location of
your file by a directory or file that contain both #daz. files and
sample sheet. Now it is turn to load idat. From the file
GSE237036 and match with the sample sheet. The initial step in
minfi involves reading the idat. files using the built-in function
read.450 k.exp. for 450K and read.metharrayexp. for EPIC
(850 K). Users have various options available: you can specify the
sample file names along with the directory path to read them, or
you can specify the directory containing the files. In the latter
scenario, all files with the zdaz. Extension within the directory will
be imported into R. Additionally, users can import a sample sheet
and utilize it to load the data into a RGChannelSet object. For
more detailed guidance, please refer to the minfi vignette.

# Extract the supplementary file URLs from the targets object
tmp_targets <- targets$supplementary_ file

# Extract the relevant part of the file names from the URLs,
starting from the 68th character to the end of the string
my_targets <- substr(tmp_targets, 68,nchar (tmp_targets))
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2.6 Quality Control,
Normalization, and
Mapping

# Create a data frame with a single column named "Basename'"
containing the extracted file names

my_targets2 <- data.frame("Basename"=my_ targets)

# Read the methylation array data using the specified base
directory and targets data frame

RGset <- read.metharray.exp (

base = out_dir, # Base directory where the raw data files are

located. If your file names EPIC contains another file namer

idat, in which contains idat. files, put: "~/Desktop/EPIC/
idat"
targets = my_targets2, # Data frame containing the basenames

of the files to be read. Put only targets in you upload your
own data

extended = TRUE, # Read extended format of the array data
recursive = FALSE, # Do not search directories recursively
verbose = FALSE, # Suppress verbose output

force = TRUE # Force reading of the data even if some files
are missing

)

head (RGset)

Poor-performing probes can obscure biological signals in the data
and are typically filtered out before conducting differential methyl-
ation analysis. Since the signals from these probes are unreliable,
removing them reduces the number of statistical tests performed,
thereby lowering the multiple testing penalty. We filter out probes
that have failed in one or more samples based on their detection
pvalue. This ensures that only high-quality, reliable probes are used
in the analysis, improving the accuracy and robustness of the
results. After filtering, it is important to normalize the data to
correct for technical variations and ensure comparability across
samples. Various normalization methods, such as quantile normali-
zation or functional normalization, can be applied depending on
the specific characteristics of the dataset. Proper normalization is
crucial for minimizing batch effects and other technical artifacts
that could confound the biological interpretation of the data.
Finally, quality control checks should be performed to assess the
effectiveness of the filtering and normalization steps. Visualizations
such as density plots, boxplots, and multidimensional scaling
(MDS) plots can help to identify any remaining issues with the
data and ensure that it is ready for downstream analysis. By rigor-
ously preparing the data in this way, we can maximize the reliability
and interpretability of the differential methylation analysis results.

detP <- detectionP (RGset)
failed <- detP > 0.01
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keep <- colMeans (detP) < 0.05
RGset <- RGset|[, keep]
targets <- targetsl[keep, ]

rm(detP, failed, keep)

This function performs stratified quantile normalization pre-
processing. The normalization procedure is applied separately to
the methylated (Meth) and unmethylated (Unmeth) intensities.
The type I and type II probe signals are aligned by first quantile
normalizing the type II probes across samples, and then interpolat-
ing a reference distribution to normalize the type I probes. Because
probe types and regions are confounded and DNA methylation
(DNAm) distributions vary across regions, the probes are stratified
by region before applying this interpolation. It is important to note
that this algorithm relies on the assumptions necessary for quantile
normalization and is not recommended for cases where global
changes are expected, such as in cancer vs. normal comparisons.
This normalization procedure is similar to one previously presented
by Nizar Touleimat and Jorg Tost (2012). The different options for
this function include:

— If fixMethOutlier is TRUE, the function corrects outliers in
both the methylated and unmethylated channels when small
intensities are close to zero.

— IfremoveBadSamples is TRUE, it removes poor quality samples
using the previously discussed QC criteria.

— It performs stratified subset quantile normalization if quantile-
Normalize = TRUE and stratified = TRUE.

— It predicts the sex (if not provided in the sex argument) using
the getSex function and normalizes males and females separately
for the probes on the X and Y chromosomes.

GRset.quantile <- preprocessQuantile (RGset, fixOutliers =
TRUE,

removeBadSamples = TRUE, badSampleCutoff = 10.5,
quantileNormalize = TRUE, stratified = TRUE,

mergeManifest = FALSE, sex = NULL)

In addition to filtering based on detection p values, it is also
common to remove probes that map to multiple locations in the
genome or overlap with known single nucleotide polymorphisms
(SNPs) and sex chromosomes. These probes can introduce noise
and potential biases into the analysis. By applying these additional
filtering steps, we can further enhance the quality of the methyla-
tion data and increase the confidence in our findings.
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keep <- ! (featureNames (GRset.quantile) %in% annEPIC$Name[an-
nEPIC$chr %in%c ("chrX", "chryY")])

mSetSgFlt <- GRset.quantilelkeep, ]

mSetSgFlt <- dropLociwithSnps (mSetSqgFlt)

rm(keep, GRset.quantile)

Another common metric for describing methylation levels is
the M value, which is the log2 ratio of the intensities of the methy-
lated probe to the unmethylated probe. An M value close to 0 indi-
cates similar intensities between the methylated and unmethylated
probes, suggesting the CpG site is approximately half-methylated,
assuming the intensity data has been properly normalized. Positive
M values indicate that more molecules are methylated than
unmethylated, while negative M values indicate the opposite.
While Beta- and M values are related, beta values are generally
preferred for graphically representing methylation levels because
percentage methylation has a more intuitive biological interpreta-
tion. However, due to their distributional properties, M values are
more statistically valid for differential methylation analysis. A thor-
ough comparison of both metrics can be found here.

mVals <- getM(mSetSqFlt)
bvals <- getBeta (mSetSqgFlt)

3 Results

3.1 Differential
Methylation Positions

After all this preprocessing and filtering, we can finally address the
main biological question: which CpG sites are differentially methy-
lated between the different cell types? To answer this, we will design
a linear model using Lmma. We are interested in pairwise compar-
isons between the four cell types, accounting for variation between
individuals. This analysis is conducted on the matrix of M values
using limma, which provides t-statistics and associated p values for
each CpG site. A convenient way to manage multiple comparisons
is to use a contrasts matrix alongside the design matrix. The con-
trasts matrix allows for linear combinations of the design matrix
columns corresponding to the comparisons of interest, effectively
focusing the analysis on these comparisons. Next, these contrasts
are fitted to the model, and the function eBayes is used to calculate
the statistics and p values for differential expression. This function
ranks genes based on the evidence for differential methylation. We
would not go into detail about this statistical framework here, but
more information can be found in the /mma documentation.
Using the topTable function in Lmma, you can extract differen-
tially methylated genes for each comparison/contrast. To order
these by p value, set sort.by = “p.” The results for the first
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comparison can be saved as a data.frame by setting coef = 1. The
coef parameter explicitly refers to the column in the contrasts
matrix that corresponds to the comparison of interest. Additionally,
you can enhance the list of CpGs by including a genelist parameter
in the topTable function. This helps retrieve the location of the
CpG, the nearest gene or CpG island, and other relevant
information.

library(limma)

# Create a new variable with groups if needed
targets$Sample_group <- ifelse(targets$source_name_chl ==
"normal PBMCs sample", "0", ifelse(targets$source_name_chl
== "BC PBMCs sample", "1", NA))

table (targets$Sample_group)

# Here, you can add to the model such variables you consider to
adjust for

design <- model.matrix(~ targets$Sample_group, data=targets)

# Fit
fit <- 1lmFit (mvals, design)

# contrast.matrix <- makeContrasts (1-0,levels=design)
# fit2 <- contrasts.fit(fit, contrast.matrix)

fit2 <- eBayes(fit)

# Use a specific column for genome annotation
annEPICsub <- annEPIC[match(rownames (mVals),annEPIC$Name),
c(1l:4,12:19,22:31,35:39:ncol (annEPIC)) ]

# Obtain Differentially methylated positions (DMP)

DMP <- topTable(fit2, num=Inf, coef=2, confint = TRUE,
genelist=annEPICsub)

DMP$UCSC_RefGene_Name <- sub(";.*", "", DMP$UCSC_RefGene_Name)

# Select the significant DMP
DMP <- subset (DMP, adj.P.val < 0.05)

# Check the DMPs
sum (DMP$adj.P.vVal < 0.05, na.rm=TRUE)

summary (decideTests (fit2))

Write an Excel file with DMPs if needed
install.packages ("writexl")
library(writexl)

write xlsx(DMP, "DMP.xlsx")

H R W W
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3.2 Differential
Methylation Regions

3.3 Gene Ontology

Often, differential methylation at a single CpG site is not highly
informative or can be difficult to detect. Therefore, identifying
whether multiple nearby CpGs (or regions) are concordantly dif-
ferentially methylated is often more insightful. Several Bioconduc-
tor packages provide functions for identifying differentially
methylated regions (DMRs) from 450 k data. Some of the most
popular options include the dmrFind function in the charm pack-
age, which has been somewhat replaced for 450 k arrays by the
bumphunter function in minfi, and the dmrcate function in the
DMRcate package. Each is based on different statistical methods,
but we will use dmrcate here because it is based on limma, allowing
us to use the design and contrast matrix we defined earlier. We will
start again with our matrix of M values. For this type of analysis, the
matrix must be annotated with the chromosomal positions of the
CpGs and their gene annotations. Since the initial step involves
running the limma differential methylation analysis for single
CpGs, we need to specity the design matrix, contrast matrix, and
the contrast of interest.

library (DMRcate)

myannotation <- DMRcate::cpg.annotate(object = mvals,
datatype = "array",

what = "M",

analysis.type = "differential",

design = design,

coef = 2,

arraytype = "EPIC")

str (myannotation)

# Extract info

DMR <- dmrcate (myannotation, lambda=1000, C=2)
results.ranges <- extractRanges (DMR, genome = "hgl9")
head (results.ranges)

results.ranges <- data.frame(results.ranges)

# Write an Excel file with DMPs if needed
# write xlsx(x = results.rangesl, path = "DMRI.xlsx", col_-
names = TRUE)

An alternative method to detect DMRs involves predefining the
regions to be tested. Unlike the previous approach, which defines
regions based on heuristic distance rules, this method defines
regions based on shared functions. We will use the mCSEA pack-
age, which includes three types of regions for 450K and EPIC
arrays: promoter regions, gene bodies, and CpG Islands. mCSEA
is based on gene set enrichment analysis (GSEA), a popular meth-
odology for functional analysis designed to address certain
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limitations in the field of gene expression. In brief, CpG sites are
ranked according to a metric (such as logFC or t-statistic), and an
enrichment score (ES) is calculated for each region. This is done by
traversing the entire ranked list of CpG sites, increasing the score
when a CpG in the region is encountered and decreasing it when a
CpG outside the region is encountered. A high ES indicates that
the probes are found near the top of the ranked list, suggesting that
the CpG sites in this region, on average, exhibit a higher methyla-
tion level. This approach is particularly etfective for detecting smal-
ler but consistent methylation differences.

In this case, we will apply this method to the output of the
“naive-rTreg” comparison, ranking the CpGs by logFC differences.
We will specity “promoters” as the type of region to be considered,
although other options like CpG Islands or gene bodies can also be
used. After obtaining a potentially extensive list of significantly
differentially methylated CpG sites, one might question whether
specific biological pathways are overrepresented in this list. In some
cases, it is straightforward to link the top differentially methylated
CpGs to genes that are biologically relevant to the cell types or
samples being studied. However, with potentially thousands of
significantly differentially methylated CpGs, gene set analysis
(GSA) can be used to uncover meaningful biological patterns
from these high-throughput data. The objective is typically to
identify commonalities among the genes, using annotations from
sources such as the Gene Ontology (GO) or Kyoto Encyclopedia of
Genes and Genomes (KEGQG).

This type of analysis can be performed using the gometh func-
tion in the missMethyl package. This function requires a character
vector of the names (e.g., cg20832020) of the significant CpG sites
and optionally, a character vector of all CpGs tested. Including all
tested CpGs is recommended, especially if extensive filtering was
done before the analysis, as it serves as the “background” from
which any significant CpG could be chosen. For gene ontology
testing, the user can set collection = “GO” (the default option).
For testing KEGG pathways, collection = “KEGG” should be
specified. In this tutorial, we will proceed with the results from
the single-probe “naive vs rTreg” comparison and select all CpG
sites with an adjusted p value of less than 0.05.

library (missMethyl)
# Get the significant CpG sites at less than 5% FDR
s1gCpGs <- DMP$Name [DMP$P.Value<0.05]

# Get all the CpG sites used in the analysis to form the
background

all <- DMP$Name

# Run Gene Ontology Analysis, this may take a while
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GO <- gometh(sig.cpg=sigCpGs,
all.cpg=all,
collection = e¢("GO"),
array.type = c¢("EPIC"),
plot.bias = FALSE,
equiv.cpg = TRUE,
anno = annEPIC,

sig.genes = TRUE)

# Run Gene Set Enrichment Analysis
# Add ENTREZID reference
library (org.Hs.eg.db)

library(clusterProfiler)

DMP$entrez <- mapIds(org.Hs.eg.db,
keys=DMP$UCSC_RefGene_Name,
column="ENTREZID",
keytype="SYMBOL",

multivals="first")

# Select genes

original_gene_list <- DMP$logFC

names (original_gene_list) <- DMP$entrez
gene_list <- na.omit(original_gene_list)
gene_list <-sort(gene_list, decreasing = TRUE)

table (duplicated(gene_list))

# Run
organism = "org.Hs.eg.db"

gse <- gseGO (genelList=gene_list,

ont ="ALL",

keyType = "ENTREZID",
nPerm = 10000,
minGSSize = 3,

maxGSSize = 800,
pvalueCutoff = 0.05,
verbose = TRUE,
OrgDb = organism,

pAdjustMethod = "none")

# Run KEGG Analysis
KEGG <- gometh(sig.cpg=sigCpGs,
all.cpg=all,
collection = c("KEGG"),
array.type = c("EPIC"),
plot.bias = FALSE,
equiv.cpg = TRUE,
anno = annEPIC,

sig.genes = TRUE)
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3.4 Immune
Quantification

Peripheral blood is commonly used for DNA methylation analyses
due to its easy accessibility through minimally invasive procedures.
Emerging evidence suggests that specific DNA methylation
changes in blood may reflect pathological states in target organs
that are not easily accessible by biopsy. Blood DNA methylation
profiles can also capture information on systemic exposures or
diseases where single organ assessment is not feasible.
Epigenome-wide association studies (EWAS) have shown that
some DNA methylation changes reflect induced epigenetic altera-
tions within blood cells, while others indicate changes in leukocyte
subtype proportions related to pathophysiology. To address cell
heterogeneity and potential confounding, both reference-based
and non-reference-based techniques are employed, with applica-
tions detailed in previous studies. Deconvolution techniques, such
as constrained projection/quadratic programming (CP/QP), esti-
mate the relative proportions of blood cell types using DNA meth-
ylation signatures.

Initially pipelines for estimating leukocyte subtypes in adult
blood were based on six adult male samples purified by flow cyto-
metry and profiled using the Illumina HumanMethylation450K
array (450K array). With the advent of the Illumina HumanMethy-
lationEPIC array (EPIC array), which interrogates over 860,000
CpG sites, there is a need to assess the accuracy of cell deconvolu-
tion using existing 450 K reference signatures. The EPIC array
includes additional genomic content in enhancer regions and
DNase hypersensitive sites (DHS), crucial for hematopoietic devel-
opment and differentiation.

The FlowSorted.Blood.EPIC package extends the reference
library for blood cell proportion deconvolution using the EPIC
array, aiming to improve the accuracy of cell composition estimates
and address potential platform differences. DNA methylation was
measured using the EPIC array on neutrophils, B cells, monocytes,
NK cells, CD4+ T cells, and CD8+ T cells sorted with antibody
beads. An iterative algorithm for Identifying Optimal Libraries
(IDOL) from leukocyte differentially methylated regions
(L-DMR) was applied to enhance the accuracy and efficiency of
cell composition estimates obtained through cell mixture deconvo-
lution. The package contains [llumina HumanMethylationEPIC
(EPIC) DNA methylation microarray data from immunomagnetic
sorted adult blood cell populations. This dataset, includes 37 mag-
netically sorted blood cell references and 12 additional samples.
The data is formatted as an RGChannelSet object, which allows for
seamless integration and normalization using most existing Bio-
conductor packages.

The code provided below is designed to estimate the propor-
tions of various immune cell types in a given methylation dataset.
This process involves several steps. First, the reference data is
loaded, including the FlowSorted.Blood.EPIC dataset, which
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provides reference data for different blood cell types, and the
IDOLOptimizedCpGs dataset, which contains optimized CpG
probes for accurate cell type estimation. The target object, which
includes sample sheet information, is utilized to extract relevant file
names of the raw data files. A data frame named my_targets2 is
created to hold these file names. The read.metharray.exp. function
then reads the methylation data files specified in the my_targets2
data frame and stores the data in an object called RGset.

For estimating cell counts, the estimateCellCounts2 function is
used with RGset as the input. This function estimates the propor-
tions of different immune cell types by utilizing parameters such as
the Noob preprocessing method (preprocessNoob), the IDOL
optimization method for probe selection, and specitying cell types
including CD8+ T cells, CD4+ T cells, NK cells, B cells, monocytes,
and neutrophils. The FlowSorted.Blood. EPIC dataset is used as the
reference set, and IDOLOptimizedCpGs are used for probe selec-
tion. The cell proportions are converted to percentages, rounding
them to one decimal place for better readability. This framework
provides a robust method for estimating immune cell proportions
in blood samples using DNA methylation data.

library (FlowSorted.Blood.EPIC)

# Define the function below to retrieve the reference data from
ExperimentHub
libraryDataGet <- function(title) {
assign(title, ExperimentHub () [ [query (
ExperimentHub (),
title
)$ah_idl1)
}

# Load the FlowSorted.Blood.EPIC dataset, which provides
reference data for blood cell types

FlowSorted.Blood.EPIC <- 1libraryDataGet (’'FlowSorted.Blood.
EPIC’)

# Load the IDOLOptimizedCpGs data, which contains optimized
CpG probes for cell type estimation

data ("IDOLOptimizedCpGs")

# Estimate cell proportions in the given RGset using the
specified parameters
percEPIC <- estimateCellCounts2 (

RGset, # The methylation data set to be analyzed
compositeCellType = "Blood", # Specify the composite cell
type as blood

processMethod = "preprocessNoob", # Use the Noob preproces-

sing method
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probeSelect = "IDOL", # Select probes based on the IDOL
optimization method

cellTypes = c¢("CD8T", "CD4T", "NK", "Bcell", "Mono", "Neu"),
referencePlatform = "IlluminaHumanMethylationEPIC",
referenceset = "FlowSorted.Blood.EPIC", # Use as reference

the FlowSorted.Blood.EPIC

IDOLOptimizedCpGs = IDOLOptimizedCpGs # Provide the IDOL
optimized CpG probes
)

# Print the first few rows of the estimated cell proportions

print (head (percEPIC$counts))

# Convert the cell proportions to percentages and round to one
decimal place

percEPIC <- data.frame (round (percEPICS$prop * 100, 1))

4 \Visualization

4.1 PCA

Principal Component Analysis (PCA) is a valuable tool for analyz-
ing DNA methylation data from cancer and control patients, as it
reduces the dimensionality of the dataset while retaining the most
significant variation, thereby facilitating the identification of dis-
tinct methylation patterns that may differentiate cancerous tissues
from normal tissues. In this case, we create a PCA from beta values,
to use them as a valuable tool to separate two groups by DNA
methylation (Fig. 2).

targets$Group <- ifelse(targets$source_name_chl == "normal
PBMCs sample", "Control",

ifelse(targets$source_name_chl == "BC PBMCs sample", "Can-
cer", NA))

# Create a data.frame for beta values to represent PCA
bvals_t <- t(bvals)

bVals_t <- data.frame(bVals_t)

pca_res <- prcomp(bVals_t, scale. = TRUE)

library(ggfortify)
autoplot (pca_res,

data = targets,

colour = ’Group’,

size = 5,

addEllipses = TRUE,

frame = TRUE, frame.type = ’'t’)+

theme (title = element_text (size = 20))+
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4.2 Volecano Plot
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Fig. 2 PCA analysis using DNA methylation data. Tumor samples are in red
circles and normal samples are in green circles

theme (axis.text = element_text (size = 20))+

theme (legend.text = element_text(size = 20))+

geom_hline (yintercept=0, linetype="dashed", color = "black",
size = 0.8) +

geom_vline (xintercept=0, linetype="dashed", colour= "black",
size = 0.8)

A volcano plot is a powerful visualization tool in the analysis of
DNA methylation data from cancer and control patients. It allows
researchers to quickly identify statistically significant differences in
methylation levels between the two groups. By plotting the magni-
tude of change (e.g., fold change in methylation levels) on the X-
axis and the statistical significance (e.g., p value) on the Y-axis, the
volcano plot highlights individual CpG sites or regions that exhibit
both large changes in methylation and strong statistical signifi-
cance. This dual-axis approach helps in pinpointing potential epi-
genetic markers for cancer diagnosis or therapeutic targets, making
the volcano plot an invaluable tool in cancer epigenetics research

(Fig. 3).

library(tibble)

library (ggrepel)

DMP_adjusted <- subset (DMP, DMP$adj.P.val <= 0.1)
DMP_adjusted <- DMP_adjusted %>%

mutate (

Expression = case_when(logFC >= 0 & adj.P.Val <= 0.05 ~ "Up-
regulated",

logFC <= 0 & adj.P.vVal <= 0.05 ~ "Down-regulated",

TRUE ~ "Unchanged")
)
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Fig. 3 Volcano plot for breast cancer vs normal, where the adjusted p value is
less than 0.05

DMP_adjusted <- rownames_to_column (DMP_adjusted, var = "Head-

er")

# Add a column to the data frame to specify if they are UP- or
DOWN- regulated (log2fc respectively positive or negative)
DMP_adjusted$diffexpressed <- "NO"

# 1if log2Foldchange > 0.6 and pvalue < 0.05, set as "UP"
DMP_adjusted$diffexpressed[DMP_adjusted$logFC > 0 & DMP_ad-
justed$P.Value < 0.05] <- "UP"

# if log2Foldchange < -0.6 and pvalue < 0.05, set as "DOWN"
DMP_adjusted$diffexpressed[DMP_adjusted$logFC < 0 & DMP_ad-
justed$P.Value < 0.05] <- "DOWN"

# Explore a bit

head (DMP_adjusted[order (DMP_adjusted$P.Value) & DMP_adjusted
$diffexpressed == 'DOWN’, ])

# Create a new column "delabel" to de, that will contain the
name of the top 30 differentially expressed genes (NA in case
they are not)

DMP_adjusted$delabell <- ifelse (DMP_adjusted$UCSC_RefGen-
e_Name %in% head(DMP_adjusted[order (DMP_adjusted$P.Value),

"UCSC_RefGene_Name"], 30), DMP_adjusted$UCSC_RefGene_Name,
NA)

DMP_adjusted$delabel2 <- ifelse(DMP_adjusted$Name %in% head (-
DMP_adjusted[order (DMP_adjusted$P.Value), "Name"], 30),

DMP_adjusted$Name, NA)

ggplot (data = DMP_adjusted, aes(x = 1logFC, y = =-1loglO(P.

Value), col = Expression, label = delabell)) +
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4.3 Heatmap

theme_classic() +

# geom_vline(xintercept = c(-0.6, 0.6), col = "gray", linetype
= ’dashed’) +

# geom _hline(yintercept = -1logl0(0.05), col = "gray", linetype
= ’dashed’) +

geom_point (size = 3) +

scale_color_manual (values = c("green3", "grey", "red3"), # to

set the colours of our variable

labels = c¢("Down", "NS", "Up")) +

labs (color = 'DEGs’, #legend title,

X = expression("log"[2]*"FC"), y = expression("-log"[1l0]*"p-
value")) +

ggtitle(’'Volcano plot’) +

geom_text_repel (max.overlaps = Inf, size = 5, face= "bold") +
theme (axis.text = element_text (size = 15)) +

theme (legend.text = element_text (size = 15, face= "bold")) +
theme (axis.title.x = element_text (size = 17, face = "bold")) +
theme (axis.title.y = element_text(size = 17, face = "bold")) +
theme (plot.title = element_text (size = 15, face = "bold")) +
theme (legend.title = element_text(size = 15)) +

theme (panel.border = element_rect(colour = "black", fill =

NA, size= 0.5),
panel.grid.minor = element_blank(),

panel.grid.major = element_blank())

Heatmaps are a crucial tool for visualizing DNA methylation data,
as they provide an intuitive representation of methylation levels
across numerous genomic regions and samples. This visualization
technique can effectively highlight differences between cancer and
control patients, making it easier to identify regions of the genome
that are differentially methylated. By displaying complex data in a
color-coded format, heatmaps facilitate the recognition of patterns
and correlations that might be missed in traditional data tables.
This ability to visually compare the methylation status across sam-
ples enables researchers to pinpoint specific genes or regions that
could be involved in cancer development or progression, aiding in
the discovery of potential biomarkers and therapeutic targets.
Moreover, heatmaps can be customized with annotations and
clustering to further enhance data interpretation. For example,
adding sample annotations for clinical variables or treatment
groups can provide additional layers of insight, revealing how
methylation patterns are associated with different clinical out-
comes. The hierarchical clustering often applied in heatmap ana-
lyses groups similar samples and genomic regions together, which
can uncover previously unrecognized subgroups within the data.
This can lead to the identification of novel cancer subtypes or the
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Fig. 4 Heatmap of DNA methylation positions, previously selected by adjusted p value less than 0.05 and an
absolute log Fold Change greater than 1.5

elucidation of mechanisms underlying disease heterogeneity. In the
context of integrative analyses, heatmaps can be used alongside
other data types, such as gene expression or genetic mutations, to
provide a comprehensive view of the epigenetic landscape and its
interactions with other molecular alterations in cancer (Fig. 4).

library (ComplexHeatmap )
# Create data.frame for significant CpGs
DMP_subset <- subset (DMP,

1.5)

adj.P.vVal<0.05 & abs(DMP$logFC)

>
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4.4 GSEA and ORA

idx = rownames (DMP_subset)

# Crear matrix of beta values from significant DMPs
bvals_significant <- data.frame(bvals[idx,])

bvals_significant <- as.matrix(bvals_significant)

# Create color of subsetting

col = l1list(Group = c("Control" = "green", "Cancer" = "red"))

# Create the heatmap annotation
ha <- HeatmapAnnotation (Group = as.factor (targets$Group), col

= col)

# Combine the heatmap and the annotation

library (ComplexHeatmap)

Heatmap (bVals_significant, name = "p methylation",
top_annotation = ha,
row_names_gp = gpar (fontsize = 10),
column_names_gp = gpar (fontsize = 10))

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Gen-
omes (KEGGQG) analyses are indispensable tools in the realm of
bioinformatics, providing valuable insights into the functional sig-
nificance of genes and their involvement in various biological pro-
cesses. These analyses offer a structured framework for annotating
genes based on their molecular functions, biological processes, and
cellular components, thereby unraveling the intricate interplay of
genes within living organisms. The significance of results derived
from GO and KEGG analyses lies in their ability to elucidate the
underlying biological mechanisms driving complex biological phe-
nomena. By associating genes with specific biological functions and
pathways, these analyses facilitate the interpretation of high-
throughput genomic data and enable researchers to discern mean-
ingful patterns amidst vast datasets. This comprehension extends
beyond individual genes, offering a holistic understanding of
biological systems and their regulatory networks.

Furthermore, GO and KEGG analyses play a pivotal role in
hypothesis generation and validation, guiding experimental studies
aimed at deciphering the molecular basis of diseases, identifying
therapeutic targets, and unraveling the intricacies of physiological
processes. By pinpointing key pathways and biological functions
enriched with relevant genes, these analyses provide valuable leads
for further investigation, ultimately advancing our knowledge of
disease mechanisms and therapeutic interventions. Moreover, the
integration of GO and KEGG analyses with other omics data, such
as transcriptomics, proteomics, and metabolomics, enables
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Fig. 5 Gene set enrichment analysis showing pathways activated and suppressed in cancer, by using DNA

methylation analysis

comprehensive multi-omics investigations, facilitating a systems-
level understanding of biological phenomena. This integrative
approach fosters cross-disciplinary collaborations and accelerates
discoveries in fields ranging from basic research to clinical applica-
tions. In conclusion, the results obtained from GO and KEGG
analyses serve as a cornerstone in biological research, offering valu-
able insights into gene function, pathway regulation, and disease
mechanisms. Their significance extends beyond mere data annota-
tion, driving innovation and discovery in diverse areas of biomedi-
cal research.
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4.5 Immune
Representation

library (multienrichjam)

library (enrichplot)

# GO

enrl <- enrichDF2enrichResult (enrichDF = GO, keyColname =
"ONTOLOGY", geneColname = "SigGenesInSet", pvalueColname =
"P.DE", descriptionColname = "TERM", pvalueCutoff = 0.05)

edox]l <- pairwise_ termsim(enrl)

barplot (edoxl, showCategory=30)

# KEGG

enr2 <- enrichDF2enrichResult (enrichDF = KEGG, keyColname =
"N", geneColname = "SigGenesInSet", pvalueColname = "P.DE",
descriptionColname = "Description", pvalueCutoff = 0.05)

edox2 <- pairwise_termsim(enr2)

barplot (edox2, showCategory=30)

The provided code utilizes the dotplot function from the
enrichplot package to visualize the results of a gene enrichment
analysis. Here’s the detailed description of the code: dotplot(gse,
showCategory = 10, split = “.sign”): This line generates a dot plot
using the results of the gene enrichment analysis stored in the gse
object. The showCategory parameter is set to 10, indicating that
the top 10 categories will be displayed in the plot. The split param-
eter is set to “.sign”, which splits the results into two panels based
on the sign of the enrichment score. + facet_grid(. ~ .sign): This
part of the code adds the facet to the plot, splitting the dots into
two panels based on the sign of the enrichment score. In summary,
this code generates a dot plot that displays the top categories of a
gene enrichment analysis, with the results split into two panels
based on the sign of the enrichment score. This provides a useful
visualization of the gene enrichment analysis results, allowing for
comparison of categories based on their enrichment sign (Fig. 5).

dotplot (gse, showCategory=10, split=".sign") + facet_grid(.~.

sign)

For immune representation using estimateCellCounts function,
you typically would not generate a dot plot directly from that
function alone, as it returns estimated cell counts for various
immune cell types. Instead, you might visualize the results in a
bar plot or heatmap to represent the estimated counts of different
immune cell types across samples. Customize the plot appearance,
axis labels, titles, colors, and any other relevant aspects to make the
visualization informative and visually appealing. Finally, interpret
the generated plot to gain insights into the distribution of immune
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cell types across your samples, and how they may vary under differ-
ent conditions or experimental groups (Fig. 6).

library(tidyr)

library (ggpubr)

# Create a barplot

data_long <- percEPIC %>%

pivot_longer (cols = c¢(CD8T, CD4T, NK, Bcell, Mono, Neu),

names_to = "variable", values_to = "valor")

dodge <- position_dodge (width = 0.9)

limits <- aes(ymax = mean + SD, ymin = mean)

ggplot (data_long) +

geom_boxplot (aes (x = as.factor(Group), y = valor, fill = as.
factor (Group))) +
facet_wrap (~ variable, scales = "free_y") +
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Fig. 6 Boxplot of DNA methylation deconvolution of immune cells located in the blood, including T cells, B
cells, natural Killers (NK), monocytes (mono), and neutrophils (neu). Wilcoxon test was used to calculate
significant differences between groups
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theme (legend.position = "none", text = element_text (size =
12)) +

labs(x = NULL, y = "Percentage") +

theme (axis.title = element_text (size = 20, face = "bold")) +
theme (axis.text = element_text (size = 20)) +

theme (legend.text = element_text (size = 20)) +

labs (color = "Participants") +

theme (legend.title = element_text(size = 20))+

scale_fill manual (values = c("Cancer" = "#F8766D", "Control"
= "#00BFC4")) +

stat_compare_means (aes (x = as.factor (Group), y = valor, group

= as.factor (Group)))

5 Limitations

The RStudio workflow currently focuses on analyzing epigenetic
data and estimating cell-type proportions specifically in blood sam-
ples. The current implementation of the pipeline has not been
tested on tissue samples. However, as advancements in deconvolu-
tion methods continue and extended reference libraries are devel-
oped, the potential for its application broadens. Reference libraries
containing purified cell subtypes, such as epithelial, mesenchymal,
and progenitor cells, make deconvolution feasible also in solid
tissue samples (PMID: 28977446). Thus, our pipeline could
serve as a foundational framework, which with some fine-tuning,
could be adapted to facilitate tissue deconvolution. Such efforts
could integrate our workflow with tools like EpiSCORE (PMID:
32883324) to deconvolute bulk tissue samples of DNA methy-
lomes. The working example of the workflow utilizes IDOL opti-
mization algorithm (PMID: 26956433) and the FlowSorted.
Blood.EPIC package which contains Illumina HumanMethylatio-
nEPIC DNA methylation microarray data (PMID: 29843789).
This dataset includes information for the following six cell popula-
tions: T lymphocytes (CD4+ and CD8+), B lymphocytes (CD19+),
monocytes (CD14+), natural killer (NK) cells (CD56+) and Neu-
trophils (Neu). Consequently, our pipeline is limited by the avail-
able cell types. To extend the analysis to include additional cell
populations, users can utilize the extended version of the Flow-
Sorted.Blood.EPIC package (PMID: 35140201). The extended
version supports a total of 12 different cell types: neutrophils
(Neu), eosinophils (Eos), basophils (Bas), monocytes (Mono),B
lymphocytes naive (Bnv), B lymphocytes memory (Bmem), T
helper lymphocytes naive (CD4nv), T helper lymphocytes memory
(CD4mem), T regulatory cells (Treg), T cytotoxic lymphocytes
naive (CD8nv), T cytotoxic lymphocytes memory (CD8mem),
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and natural killer lymphocytes (NK). The usage of this package is
restricted to research purposes and requires an academic license.
Instructions for obtaining the license are provided in the readme
file on their Github repository (https://github.com/
immunomethylomics/FlowSorted.BloodExtended. EPIC).

The pipeline code has been tested for reproducibility on three
major platforms: Windows, macOS, and Linux. An issue was found
with the gene ontology analysis using KEGG, which produces an
error on Linux. The entire pipeline relies on Bioconductor version
3.14 and has been tested with R versions 4.0.0 and 4.1.0. Users
should be able to reproduce the pipeline using these versions.
Additionally, it is expected that the pipeline can be reproduced
with the latest version of R. Because the workflow depends on
multiple packages, it is advised to set up an R project in an isolated
environment using a package manager like “renv” to ensure repro-
ducibility and minimize compatibility issues with package
dependencies.

6 Notes

Code availability: https://github.com/SotirisOuzounis/
ImmunoMethylation
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