Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/19531
Export to:   BibTeX  | EndNote  | RIS
Εξειδίκευση τύπου : Κεφάλαιο βιβλίου
Τίτλος: Deciphering the Tumor Microenvironment Composition Using Bulk Transcriptomics: A Guide to Recent Advances and Open Challenges
Δημιουργός/Συγγραφέας: Ouzounis, Sotirios
Zojaji, Donya
García-Mulero, Sandra
Barreca, Marco
Gandellini, Paolo
[EL] Κατσίλα, Θεοδώρα[EN] Katsila, Theodorasemantics logo
Sanz-Pamplona, Rebeca
Callari, Maurizio
Επιμελητής έκδοσης: Rani, Sweta
Skalniak, Lukasz
Ημερομηνία: 2026
Γλώσσα: Αγγλικά
ISBN: 978-1-0716-4733-2
978-1-0716-4734-9
ISSN: 1064-3745
1940-6029
DOI: 10.1007/978-1-0716-4734-9_16
Άλλο: 41028270
Περίληψη: Tumors are complex ecosystems comprising diverse cell types actively participating to carcinogenesis, tumor progression, and treatment response. Understanding the tumor microenvironment (TME) dynamics has become of primary importance, especially with the increasing clinical implementation of immunotherapy. Low and high-throughput single cell and spatial technologies are providing high-resolution strategies for the study of the tumor ecosystem. However, their cost and complexity limit widespread use. Bulk transcriptomics has become a widely used strategy to obtain the expression profile of large cohorts of tumors or preclinical models. Several methods implementing a deconvolution analysis have been developed to estimate from bulk transcriptomics the prevalence of multiple cell types to reconstruct the tumor ecosystem composition.In this chapter, we introduce deconvolution analysis, the main steps, the recent advancements, and open challenges. Our emphasis lies on robust benchmarking methodologies, highlighting the importance of clear parameter definition and appropriate metric selection for reliable results across different software tools.Using CIBERSORTx and BayesPrism, we conduct a practical analysis on triple-negative breast cancer (TNBC) datasets from The Cancer Genome Atlas (TCGA) dataset. We illustrate the impact of various factors such as preprocessing methods, reference datasets, and software choice on deconvolution outcomes.Integrating insights from benchmarking analyses and real-world applications, we provide guidance to optimize and control for the quality of deconvolution analysis, weighting both its potential and limitations. Deconvolution analysis can contribute to unravelling the complexities of the tumor microenvironment, but further research is needed to enhance accuracy and reproducibility.
Τίτλος πηγής δημοσίευσης: IMMUNO-model in Cancer. Methods in Molecular Biology
Τόμος/Κεφάλαιο: 2959
Σελίδες: 233 - 252
Σειρά δημοσίευσης: Methods in Molecular Biology
Θεματική Κατηγορία: [EL] Βιοπληροφορική[EN] Bioinformaticssemantics logo
[EL] Νεοπλάσματα. Όγκοι. Ογκολογία (περ. Καρκίνος, κακινογόνες ουσίες)[EN] Neoplasms. Tumors. Oncology (Incl.cancer, carcinogens)semantics logo
[EL] Ανοσολογία[EN] Immunologysemantics logo
[EL] Μοριακή Βιολογία[EN] Molecular Biologysemantics logo
Λέξεις-Κλειδιά: Bulk
Cancer
Cell type
Challenges
Deconvolution
Immune
Microenvironment
TME
Transcriptomics
Χρηματοδότης: Fondazione Michelangelo
Breast Cancer Research Foundation
ASPANOA Foundation
Instituto de Salud Carlos III
European Cooperation in Science and Technology
Αναγνωριστικό χρηματοδοτικού προγράμματος: BCRF 21-181
BCRF 21-181
MCIN/AEI/10.13039/501100011033
CNS2022-136176
PI22/01938
CA21135
Κάτοχος πνευματικών δικαιωμάτων: © The Author(s) 2026
Όροι και προϋποθέσεις δικαιωμάτων: Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Ηλεκτρονική διεύθυνση στον εκδότη (link): https://doi.org/10.1007/978-1-0716-4734-9_16
Εμφανίζεται στις συλλογές:Ινστιτούτο Χημικής Βιολογίας - Επιστημονικό έργο

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΣελίδεςΜέγεθοςΜορφότυποςΈκδοσηΆδεια
Deciphering the Tumor Microenvironment Composition Using Bulk Transcriptomics.pdfOpen access22.05 MBAdobe PDFΔημοσιευμένη/του ΕκδότηccbyΔείτε/ανοίξτε