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Preface

Immuno-model is a model invented to study the immune system. This book describes the
computational and experimental models that help researchers understand the responses of
the immune system in cancer and test experimental immuno-oncology approaches.

Macrophages can adapt to different phenotypes in response to signals from the micro-
environment. This book on immuno-model describes methods to profile polarization in
macrophages using ELISA. ELISA is widely used in immunology to detect proteins, anti-
bodies, antigens, or hormones in a sample, including immune checkpoint inhibitors.
Immune checkpoints are regulatory molecules that control the activation and intensity of
immune responses. Glycosylation is the addition of carbohydrate groups to the proteins.
Glycosylation of the immune checkpoint proteins not only promotes immune evasion in
tumor cells but also holds therapeutic implications. New immune checkpoint inhibitors are
warranted for better cancer treatment. One of the chapters evaluates immune checkpoint
inhibitors. One of the most studied immune checkpoints is PD-1/PD-L1. There is one
chapter detailing the interaction of PD-1/PD-L1 and T cells. Immune checkpoint inhibi-
tors have significantly improved survival rates in cancers but there are patients who do not
respond to these treatments. Induction of immunogenic cell death is another therapeutic
option for cancer patients.

A lot of research is underway to study tumor immune microenvironment. There are
several well-established in vitro models to study interaction between immune cells and
cancer cells and these in vitro models are still evolving. Cells can be co-cultured using cell
culture inserts or can be grown as 3D spheroids. 3D co-culture model can be used to study
the interaction of immune cells and cancer cells to mimic the in vitro microenvironment.
Cells can be grown in 3D using different techniques, and one of the techniques is using
scaffolds derived from cancer patients. One of the chapters explores immunocompetent
preclinical mouse models to study primary and metastatic brain cancer. CAR T-cell therapy is
still evolving, and one of the chapters describes the method to generate CAR T-cells.

Bioinformatics has vast applications and plays a central role in immunology by enabling
the analysis of large-scale datasets. Deconvolution analysis can be used to study the epige-
netic dysregulation in human tumors and the tumor ecosystem. Computational methods
can also be used to study the mutated peptides called neoantigens. Bioinformatics allows us
to identify therapeutic targets and develop precision immunotherapies.

Waterford, Cork, Iveland Sweta Rani
Krakow, Poland Lukasz Skalnink
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Deciphering the Tumor Microenvironment Composition
Using Bulk Transcriptomics: A Guide to Recent Advances
and Open Challenges

Sotiris Ouzounis, Donya Zojaji, Sandra Garcia-Mulero, Marco Barreca,
Paolo Gandellini, Theodora Katsila, Rebeca Sanz-Pamplona,
and Maurizio Callari

Abstract

Tumors are complex ecosystems comprising diverse cell types actively participating to carcinogenesis,
tumor progression, and treatment response. Understanding the tumor microenvironment (TME) dynam-
ics has become of primary importance, especially with the increasing clinical implementation of immuno-
therapy. Low and high-throughput single cell and spatial technologies are providing high-resolution
strategies for the study of the tumor ecosystem. However, their cost and complexity limit widespread
use. Bulk transcriptomics has become a widely used strategy to obtain the expression profile of large cohorts
of tumors or preclinical models. Several methods implementing a deconvolution analysis have been
developed to estimate from bulk transcriptomics the prevalence of multiple cell types to reconstruct the
tumor ecosystem composition.

In this chapter, we introduce deconvolution analysis, the main steps, the recent advancements, and open
challenges. Our emphasis lies on robust benchmarking methodologies, highlighting the importance of clear
parameter definition and appropriate metric selection for reliable results across different software tools.

Using CIBERSORTx and BayesPrism, we conduct a practical analysis on triple-negative breast cancer
(TNBC) datasets from The Cancer Genome Atlas (TCGA) dataset. We illustrate the impact of various
factors such as preprocessing methods, reference datasets, and software choice on deconvolution outcomes.

Integrating insights from benchmarking analyses and real-world applications, we provide guidance to
optimize and control for the quality of deconvolution analysis, weighting both its potential and limitations.
Deconvolution analysis can contribute to unravelling the complexities of the tumor microenvironment, but
further research is needed to enhance accuracy and reproducibility.

Key words Deconvolution, Cancer, Microenvironment, Bulk, Transcriptomics, TME, Immune, Cell
type, Challenges
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1

Introduction

Tumors are highly heterogeneous entities including cancer cells,
but also non-tumoral cells embedded in the tumor microenviron-
ment (TME) [1], a complex network of multiple molecules and cell
types [2].

A major role has emerged for the immune system infiltrating
neoplastic lesions. Active research is being carried on the role of
immune cells in carcinogenesis, cancer progression and response to
therapy. The immune system plays a key role in cancer prevention
and elimination, in a process known as immune surveillance. For
example, through the recognition of neoantigens, cancer cells
could be attacked and eliminated by effector T cells [3]. However,
the immune system has a dual role in cancer. Tumors can also
recruit immune cells that provide an immunosuppressive tumor
microenvironment. Moreover, the stromal cells resident in the
tissue can also have effects on tumor growth, like cancer associated
fibroblasts and endothelial cells. Understanding the cross talk
between cancer, stromal and immune cells is a hot spot in cancer
research [4]. Therefore, to study cancer, it is crucial to identify the
immune and stromal composition of a tumor.

A number of old and new techniques allows the study of the
TME. New sequencing approaches such as single cell RNA-seq and
spatial transcriptomics have been developed allowing direct high-
resolution measurements of distinct cell-type prevalence and phe-
notype [5]. However, these techniques are quite demanding in
terms of costs, computational power, and expertise. In addition,
sample preparation is quite cumbersome and time-consuming.

Deconvolution methods have emerged as indirect techniques
to quantify immune and other TME cell infiltration. While these
methods are not able to achieve the resolution of single-cell tech-
niques, they can be applied to widely available bulk transcriptomics
data estimating, for example, the TME composition in large cancer
sample cohorts. This process of cell type quantification is widely
used in immunogenomics, and many statistical methods have been
developed for quantification of immune and stromal cell types from
bulk expression data obtained by RNA-seq and microarrays [6]
(Fig. 1).

Scientific literature in cancer research has plenty of examples
demonstrating the utility of deconvolution methods applied to
transcriptomics data. Applications include generation of new
hypotheses and searching for new biomarkers, among others. For
example, in a meta-analysis by Kamal et al., four independent
transcriptomics datasets were interrogated using deconvolution
methods. About 22 immune cell types were inferred, and the
association between immune infiltration by each cell type and
relapse-free survival was assessed in colorectal cancer. As a result,
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Fig. 1 Concept of immune cell infiltration estimation. From the total bulk RNA expression, it is possible to
quantify the prevalence of distinct cell types infiltrating the tumor microenvironment

immune cell-type infiltration was found to be a better predictor of
disease relapse than other expression-based biomarkers [7]. Specifi-
cally, CD4 and CD8 T cells and NK cells were found to be asso-
ciated with better prognosis in this kind of tumor. Indeed, tumor
infiltrating lymphocytes (TILs) have been associated with good
prognosis in several cancer types [8]. On the contrary, infiltration
of regulatory T cells (Tregs) has been described as a bad prognosis
biomarker [9]. Immune cell infiltration could be also useful to
generate new hypotheses. In a work by Garcia-Mulero et al., meta-
static samples from different cohorts were scored based on immune
cell infiltration. Then, a cluster analysis was done, and three groups
of samples emerged that were associated with immunotherapy
response [10].

2 Available Methods and Key Steps of the Deconvolution Analysis

Systematic reviews summarising and benchmarking all the available
tools have been reported elsewhere [11-13], but a summary of the
most widely used open-source algorithms and their main features
are listed in Table 1.

Deconvolution algorithms can be classified in various ways.
Following the approach by Im and Kim [14], deconvolution algo-
rithms can be categorized based on their methodology, prior
knowledge of cell types, and methods of output. Based on the
methodology used for inferring cell types, deconvolution tools
can be divided into two categories: gene signature-based and
fraction-based. Gene signature-based methods rely on the enrich-
ment analysis of gene signatures. These methods are very useful for
comparisons between phenotypes but cannot quantify inter-sample
differences in cell-type abundance [15]. Fraction-based tools
require a predefined reference matrix, which consists of expected
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Fig. 2 Overview of deconvolution algorithms. Deconvolution from bulk transcriptomic data requires an
expression matrix (m) from the bulk tissue and the cell-type specific reference signature matrix (S). The
contribution of the different cell types can be inferred by regression models. The output of the deconvolution is
a matrix of proportion scores per cell type and sample

values of gene expression for each cell type. This matrix is used to
dissect the contribution of each signature profile to the aggregated
bulk level of signal [16]. Furthermore, supervised or semi-
supervised deconvolution methods can also be grouped based on
the type of prior knowledge required. These include methods that
rely on marker gene expression profiles, those that leverage single-
cell RNA sequencing data to derive cell-type signatures, and those
that account for gene expression variability within cell types.
Quantification methods can also be divided into two groups
based on the abundance level: relative fraction or absolute fraction
(Table 1). Relative methods estimate the relative abundance of each
cell-type relative to each other, but do not provide information
about the absolute quantification. The output of relative methods
usually consists of enrichment scores and are useful for comparison
across different samples or conditions (e.g., between different
tumor types or disease states). Absolute scores, which account for
the total proportions within a sample, provide more accurate and
precise estimates of cell abundances, and allow both intra- and
intercomparison of cell types [6].
Workflow in Fig. 2 explains fraction-based approaches that use
an a priori defined reference matrix of expected values (S) and a
gene expression matrix (m) from the interrogated sample. The bulk
tissue representation (m) would result as the product of multiplying
the reference signature (S) by the proportion contribution of each
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2.1 Input Data
Preparation:
Normalization and
Data Transformation

2.2 Selection of the
Most Appropriate
Method and Reference

cell type (f). To dissect the contribution of each cell type to the bulk
signal, different statistical approaches can be performed, from linear
regression models to more sophisticated deep learning
algorithms [16].

Below, we review the three main steps for performing compre-
hensive deconvolution pipelines.

Optimal data preprocessing and normalization are key aspects for
the correct performance of deconvolution analysis. In general, log
transformation is widely used in RNA-seq data analysis. However,
deconvolution algorithms can be affected by data transformations
[17]; Cobos et al. performed a benchmark where they evaluated
different transformation methods (linear, Log, Sqrt and VST) and
found that all deconvolution methods performed at best when
applied to linear data. Preprocessing steps like normalization are
potentially crucial when handling gene expression data. For this
reason, they tested 20 different normalization methods, and found
that the choice of normalization strategy has a minor impact in
certain deconvolution algorithms. Overall, linear TPM (transcripts
per million) is a suitable RNA-seq input data in many deconvolu-
tion methods. However, some deconvolution methods expect the
data to be normalized (or not) and with a specific strategy, thus it is
recommended to carefully read the instructions and recommenda-
tions given by the authors [18].

The choice of methodology depends on the research question and
the goals of the analysis. It is a crucial step in the deconvolution
process since different methods could show high disparities in their
performance and in the obtained results (see section. 4). Many
factors can contribute to this variability, such as the statistical
algorithm and the quality of the reference signatures, as discussed
below [18].

Often, the proposed algorithms come with one or multiple
reference matrices or signatures, which can differ considerably
from each other and represent the main source of variability.
These reference signatures can vary in the gene markers selected,
the number of cell types included (from six to dozens), the diversity
of cells included (only immune cells or accounting also for stromal
components and/or malignant cells), and the level of granularity
(ie., the specificity of cell-types; e.g., the different subtypes of T
cells) [16]. Reference signatures can be generated from bulk
RNA-seq (usually derived by flow cytometry sorted populations
or in vitro cultured cells) or from single-cell RNA-seq. Moreover,
cell-type-specific expression profiles could be generated starting
from different tissues (PBMCs, healthy organs, tumor tissues,
etc.), as well as different model organisms.

The choice of the most appropriate reference matrix or signa-
tures has a major impact on the quality of the deconvolution results,
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as shown in the following sections. Ideally, the reference cell types
should represent all cell types present in the bulk sample and their
expression profile should be generated from tissues as similar as
possible to the interrogated bulk sample. Deconvolution methods
can overestimate (spillover effect) or even give positive results for
absent cell types in the samples (background fraction prediction).
This can happen when working with tumors with low immune
infiltration and can lead to wrong conclusions. To deal with this
problem, some methods like EPIC have added an “Unknown”
category [13].

It is important to have the opportunity to use a custom refer-
ence matrix or signatures, possibly derived from the increasingly
available single-cell RNA-seq data matching the bulk transcrip-
tomics tissue. Moreover, it is common in the context of cancer
research to use model organisms and derive nonhuman molecular
data. The possibility of using custom references can consequently
enable the opportunity to apply data deconvolution in this setting.

The output of deconvolution algorithms consists of a matrix of
proportion scores (Fig. 2), which can be further used for statistical
comparisons among phenotypic groups, association studies and
clustering analysis, among others. It is important to consider that
the output can differ between different deconvolution methods
due to the lack of standardized formats, normalization procedures,
and scaling factors. Therefore, caution must be paid when attempt-
ing to integrate or compare outputs from different deconvolution
methods, and careful consideration of methodological differences
and validation against independent datasets may be necessary for
robust interpretation. Often, additional metrics (e.g., root mean
square error or RMSE and p values) providing some indication on
the quality of the deconvolution process are provided.

3 Challenges in the Development and Benchmarking of Deconvolution Methods

Several challenges arise during the analysis of bulk transcriptomics
from tumor samples using deconvolution methods. Over recent
years, various approaches have been proposed and multiple tools
have been developed to address these challenges [11, 19,
20]. Many tools aim to overcome known limitations of deconvolu-
tion, each offering unique features and benefits. However, despite
the development of more robust and efficient tools, a major chal-
lenge has yet to be addressed. The challenge is to establish agree-
ment among different tools, which is essentially affected by
multiple different parameters of the deconvolution approaches.
The agreement among computational tools can be generally
defined as the consistency of results obtained from different soft-
ware when applied to the same data. Therefore, the whole challenge
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is to design and perform valid benchmarking among existing meth-
ods. To achieve this, the parameters of the benchmarking must be
clearly defined, and appropriate metrics should be established to
measure the agreement among tools and to identify parameters that
may introduce bias into the consistency of results. Benchmarking is
also essential during the development of deconvolution tools and
the strategy used could impact the final performance and compara-
bility with other methods.

Benchmarking process typically involves evaluating the accu-
racy of tools and various other parameters, such as computational
resources required, processing time, scalability, and ease of use
[11]. Common methods for evaluating deconvolution algorithms
make use of (1) simulated bulk (or pseudo-bulk) data from single-
cell RNA-seq, (2) bulk expression profiles from both pure and
mixed cell lines, (3) data from the same tissue samples analyzed
with both bulk and single-cell RNA-seq, (4) bulk transcriptomics
and flow-cytometry data, and (5) bulk transcriptomics paired with
clinical data. In all five cases above, the input data are bulk tran-
scriptomics data, yet the ground truth data used for the evaluation
of each method differs [11].

In the first case, single-cell data is used as ground truth and a
dataset of bulk samples is simulated according to the cell type
composition of the ground truth. Deconvolution accuracy is then
established by quantitatively comparing the cell-type proportions
of each pseudo-bulk sample with the ground truth. This approach
is rather biased since simulated data are produced based on several
assumptions that are study specific. Currently, several computa-
tional tools exist for simulating scRNA-seq count matrices [21-
23], enabling the creation of “gold-standard” datasets. Neverthe-
less, it is important to recognize that artificially generated scRNA-
seq data for constructing bulk mixtures might not completely
capture the complexity of real biological data, potentially resulting
in biased and overestimated performance evaluation of deconvolu-
tion algorithms [12]. When an algorithm is designed using real
data, it usually exhibits better accuracy, as in the second case where
different cell lines are mixed in predefined rations, to generate bulk
samples. In such instances, the deconvolution accuracy is measured
by comparing the estimated cell-type proportions in bulk samples
with the expression profiles of pure cell lines. Even though these
methods offer a more realistic approach, in vitro datasets are low
throughput (small sample size, few cell types), which can make
them prone to lack of generalization. Consequently, this may
limit agreement with other tools. Similar limitations arise when
algorithms are designed based on both bulk and single-cell RNA--
seq data produced from the same tissue. In such cases, single-cell
data serve as the ground truth for cell proportions to evaluate the
algorithm’s accuracy. Simultaneously, a subset of the single-cell data
is used to construct the signature matrix. Thorough data handling
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is required in this scenario since using the same single-cell data as
both the ground truth and input for the signature matrix makes this
approach susceptible to data leakage and, consequently, to over-
fitting. Specifically, while bulk transcriptomics data are typically
gathered from intact tissue, the cell-type proportions are often
evaluated using cell suspensions and methods like single-cell RNA
sequencing or fluorescence-activated cell sorting. However, these
methods can alter cell proportions, not accurately reflecting the
original tissue composition. Consequently, comparing inferred
cell-type proportions from bulk data with those measured from
single-cell assays can lead to misinterpretations during the evalua-
tion of deconvolution methods. To address this issue one solution
would be to create consistent ground truth data for transcriptomics
by dissociating the tissue specimen into cell suspensions. Then, use
a portion of the suspension for bulk RNA sequencing and another
portion for single-cell-based assays. This approach ensures that
both bulk and single-cell data are obtained from the same starting
material. Additionally, other technical factors can influence the
creation of gold standard dataset such as the variations in cryopre-
served samples, stored under different conditions, may yield differ-
ent proportions of “live” cells compared to fresh samples [24]. In
the fourth approach, flow cytometry is used as the ground truth to
determine the number of each cell type in bulk samples. While this
provides a reliable reference for constructing the signature matrix in
reference-based algorithms, it is important to note that flow cyto-
metry is typically used for blood samples. Consequently, methods
validated solely with flow cytometry may overfit to blood samples
and perform poorly when applied to other tissue types. In the last
case, there is no ground truth data available—only clinical informa-
tion such as survival time, disease status, and treatment response.
Hence, only an indirect association between the estimated cell-type
proportions from bulk data deconvolution and those reported
either in literature or previous cases can be inferred. This approach
may not be considered as a valid method for evaluating an algo-
rithm since it lacks direct quantitative validation. However, it can be
employed when other quantitative data are lacking. Considering
the above, it is important to note that the method used to design
and evaluate a tool can significantly impact its reproducibility and
generalization ability.

To define a reference dataset either from in silico or in vitro
data, several quality control steps should be followed to ensure the
quality of the (raw) experimental data. Especially for sequencing
data, either bulk or single cell, a common quality control step is the
removal of genes full of zeroes or with zero variance read counts
across all samples within the dataset. Additionally, for single cell
sequencing, to assure high quality of raw data, cells with low quality
of'sequences, low numbers of unique molecular identifiers (UMIs),
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and high fractions of ribosomal or mitochondrial content should be
removed [25].

The generation of “gold-standard” datasets entails several chal-
lenges to be addressed, yet it is a crucial step for the quality control
of the results. Toward the standardization of gold standard datasets
and the benchmarking of the deconvolution algorithms, a recent
study provides three “gold standard datasets” that were produced
from imaging data with single-cell resolution [26]. This pipeline
provides a high standard framework for benchmarking existing or
new deconvolution algorithms while providing great
reproducibility.

As mentioned above, a common factor that can influence the
concordance of various tools analysing the same dataset is the
preprocessing method employed. Sometimes, different tools
require different preprocessing or normalization of the data and
this could contribute to achieving discrepant estimations of cell
type prevalences. Another parameter, often underestimated when
comparing different algorithms, is the theoretical background
according to which they are designed and the type of deconvolu-
tion algorithms used.

The evaluation of the agreement among different tools is also
directly related to the metrics employed to quantitate the perfor-
mance of the deconvolution method. The most common measure
used to assess the accuracy of deconvolution algorithms is the
correlation coefficient, which compares the computationally esti-
mated cell-type proportions with the known proportions from the
ground truth data. Pearson correlation is typically used, while
Spearman correlation can also be employed. Pearson correlation
indicates a linear relationship between estimated and ground truth
data, while the Spearman coefficient reflects a monotonic relation-
ship. Moreover, another proposed metric is correlation deviation
[27]. This measure requires the sample size and the computation of
the Pearson correlation between the estimated and the known
counts per cell type. The formula of correlation deviation is
provided below:

n

2
iy (L=79)

Correlation deviation = \/ % Z
where 7 denotes the amount of different immune cell types found
in the samples, 7; denotes the Pearson correlation coefficient for
each immune cell type 7. Additional robust metrics used for the
evaluation of deconvolution methods RMSE and mean absolute
error (MAE). These are two well-known measures for evaluating
the accuracy of a computational tool, yet their main difference from
a mathematical perspective is sensitivity to outliers. Outliers in the
estimated values can greatly impact RMSE, while MAE is less
sensitive to such data. However, the RMSE metric seems to lack
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robustness when the concentrations of the cell types have a large
variance in the bulk samples [28]. MAE is a robust measure in
various settings; however, it only informs us about the absolute
error of a method. Therefore, if used alone, it can be misleading for
the performance of a deconvolution method applied to cell types
with similar cell proportion [11]. Itis evident that the evaluation of
deconvolution methods relies on various metrics, each with distinct
implications for accuracy and robustness, and the choice of metric
can significantly influence the assessment of method performance.

4 Field Test of Deconvolution Methods

4.1 Example
Analysis Using
CIBERSORTx in TCGA

In this section, we aim at providing a practical example on how to
perform a deconvolution analysis and examples of the impact of the
software, processing and reference matrix on the final results. We
first describe all steps leading to CIBERSORTx [29] analysis and
then compare the results with those obtained using BayesPrism
[30]. In a recent meta-analysis by Garmire et al., where they review
on different benchmarking efforts, CIBERSORTx was one of the
methods recommended by independent studies [12]. This method
is widely used by the community thanks to its user-friendly web
tool, which allows researchers to run it without having a computa-
tional background. Tran et al. evaluated the performance of nine
different deconvolution methods and found that BayesPrism shows
the best overall performance and prediction accuracy for nine major
cell types in breast cancer samples, including normal epithelial,
cancer epithelial, T cells, B cells, myeloid, endothelial, cancer-
associated fibroblasts (CAFs), perivascular-like (PVL), and
plasmablasts [13].

Here, we describe the main steps leading from pre-processed tran-
scriptomic data to the deconvolution output. We will apply
CIBERSORTx [29] in the context of TNBC, using publicly avail-
able data from The Cancer Genome Atlas (TCGA) [31] as bulk
transcriptomics dataset to deconvolute and a single-cell RNA
sequencing (scRNAseq) dataset [32] to derive the reference signa-
ture matrix.

Wu dataset [32] contains a total of 26 breast cancer patients
belonging to all subtypes, for a total of over 100,000 cells, which
have been assigned to 9 major cell types. The raw scRNA-seq of this
dataset is available in the European Genome-Phenome Archive
(EGA) under the accession code EGAS00001005173. The pro-
cessed scRNA-seq data of this dataset is deposited in the Gene
Expression Omnibus (GEO) with the accession number
GSE176078. We manually downloaded the TAR format of pro-
cessed transcription profiles from the supplementary file table
(GSE176078_Wu_etal_2021_BRCA_scRNASeq.tar.gz). The
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CIBERSORTX deconvolution. Relative proportion for each cell type in each sample are shown. (d) Reciprocal
correlation among all cell types detected in the TNBC TCGA dataset

patients’ data was available in the supplementary file
(1793222_Sup_Tab_1-11, Supplementary_table_1) of the article
[32] or on the GEO page downloading it thought getGEO func-
tion (package GEOquery version 2.60.0).

The dataset was loaded and assembled in a Seurat object (ver-
sion 5.0) in R/Bioconductor using the following code:
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library (Seurat)

setwd (".../GSE176078_Wu_etal_2021_BRCA_scRNASeqg")
Wu_em <- ReadMtx(
mtx = "matrix.mtx.gz", features = "features.tsv.gz",

cells = "barcodes.tsv.gz", feature.column = 1)
Wu_seurat <- CreateSeuratObject (counts = Wu_em)

Next, we added the patient and annotation data and selected
TNBC tumors (7 = 9) using the proper functions to manage Seurat
object available on satijalab.org web site (https://satijalab.org/
seurat/articles /essential_commands.html). We performed the
standard workflow available on the same website to normalize,
scale, and run the PCA and UMAP on the cell transcriptional
profiles.

The TCGA dataset is accessible through the GDC Portal
(https: //portal.gdc.cancer.gov/) and/or by the R/Bioconductor
TCGABiolinks package [33]. We downloaded TPM transcriptomic
data related to breast cancer patients using the following
commands:

library (TCGAbiolinks)

query <- GDCquery (
project = "TCGA-BRCA",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",

workflow.type = "STAR - Counts)
GDCdownload (query = query)

transcriptome <- GDCprepare (query = query)

TPM <- assays(transcriptome)$tpm_unstrand

After installing the TCGABiolinks package, we can access the
data type and cancer type of interest by specifying them in the
GDCquery() function. The data can later be downloaded from
the GDC portal by using GDCdownload() function and stored
and accessed locally by using GDCprepare(). Further details could
be found at https: //doi.org,/10.18129 /B9 .bioc. TCGAbiolinks.

Sample filtering was required because the TCGA breast cancer
transcriptomics dataset contains not only the expression profile
from primary tumors but also from metastatic lesions and normal
tissues. We used the sample ID to select solid tumor samples. Each
sample in the TCGA repository has a unique barcode, which is the
primary identifier of the biospecimen data within the TCGA proj-
ect. For more information refer to https://docs.gdc.cancer.gov/
Encyclopedia/pages/TCGA_Barcode/.
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4.2 Gomparison of
the Outputs from
Different Tools

In TCGA-BRCA project, the solid tumor samples are identified
by -01A- in the fourth block of the sample ID. The breast cancer
project in TCGA contains 1231 samples and over 60,660 tran-
scripts quantified. In this analysis, we specifically focused on the
subset of TNBCc, identified by the lack of estrogen receptor
(ER) expression and lack of human epidermal growth factor recep-
tor 2 (HER2) amplification. Since immunohistochemistry (IHC)-
based classification was not available for all cases, we used ER and
HER2 metagene expression to identify the TNBC samples, as
previously reported [34]. Metagene values were obtained by aver-
aging the logl0 TPM values of the genes belonging to the meta-
gene. Based on the distribution of the metagenes, optimal
thresholds were defined, and 213 samples were identified as
TNBC (Fig. 3a).

To generate the input bulk transcriptomic matrix, a gene filter-
ing was introduced. This had the double aim of removing genes
with low/no expression and have unique gene symbols in the
dataset. For all transcripts, we calculated the mean and standard
deviation to characterize the overall data distribution (Fig. 3b).
Transcripts with mean loglO(TPM) lower than —5 were filtered
out. Some duplicated gene symbols were present after this filtering
and the one with highest IQR was selected. This way, 25,700
unique genes remained in the TNBC TCGA bulk transcriptomics.
Expression profiles were exported as unlogged TPM.

The CIBERSORTx analysis was run online, following the
extensive documentation present for details on data format and
structure. The primary output of CIBERSORTx deconvolution is
a file containing the prevalence of each cell type defined in the
reference matrix in each sample. Some additional information
(i.e., RMSE and correlation) is provided and can help with quality
control. Output can be represented as a heatmap, as shown in
Fig. 3c for the TNBC TCGA dataset. Such representation provides
a general overview of the results, relative abundance of the different
cell types and a qualitative indication on the presence of groups of
patients with similar patterns in terms of cell-type prevalence. Addi-
tionally, we performed a reciprocal correlation analysis among cell
types, which could inform us on the tendency to specific TME
populations to coexist or being mutually exclusive (Fig. 3d).

To compare the results of the deconvolution outputs using two
different software, we analyzed the TNBC TCGA dataset with
BayesPrism [30]. This software has been optimized to work with
raw read count data instead of TPM, although the authors suggest
the possibility to use the normalized data if the only available. To
extract the raw read counts in the object downloaded using TCGA-
Biolinks, we can use the function assays() and choose the data type
we need. For a fare comparison, the same samples and genes
included in the CIBERSORTx analysis were included here. We
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remand to the online documentation for details on data format and
structure and instructions on BayesPrism usage. For a thorough
comparison with TPM-based deconvolution performed with
CIBERSORTx, we additionally deconvoluted TNBC TCGA
TPM data with BayesPrism.

As reported in Fig. 4a, prevalence of each cell type varied
significantly depending on the software or data type used. For
both methods cancer epithelial cells have the highest prevalence
compared to other cell types; BayesPrism quantification of cancer
cells were similar either starting from TPM or raw counts, but
CIBERSORTX estimated lower prevalence. The same pattern can
be seen for CAFs. A very noticeable difference can be seen in the
T-cell prevalence estimation, where CIBERSORTx reported much
higher prevalences than BayesPrism. For some cell types, namely
endothelial, normal epithelial, and plasmablasts, prevalence esti-
mated by BayesPrism starting from either raw counts or TPM was
quite different. For the estimation of cancer epithelial cells, we
could compare the deconvolution estimates with the tumor purity
estimates obtained by the pathologists. Agreement between patho-
logical and molecular estimation of tumor content has always
shown low to moderate correlation [35]. Nevertheless, higher
correlation values could be an indirect indication of higher perfor-
mance of the deconvolution process. BayesPrism deconvolution
starting from raw counts showed the highest agreement in our
setting. This is in line with recent reports benchmarking multiple
tools including BayesPrism [13] (Fig. 4b).

To further compare the results, we performed a correlation
analysis between deconvolution results and for each cell type
(Fig. 4c—e). Figure 4c, illustrates the correlation between BayesPr-
ism results when using raw read counts or TPM as input. Overall,
we found a good agreement with correlation reaching 0.9 for
CAFs, but with the lowest correlation score being 0.7 for normal
epithelial cells. Similarly, we compared CIBERSORTX results with
BayesPrism results, for the latter starting either from TPM
(Fig. 4d) or read counts (Fig. 4e). When comparing CIBERSORTx
and BayesPrism outputs starting in both cases from TPM, cell-type
correlations were remarkably lower for some cell types, reaching
values around 0.25, except for plasmablasts, myeloids, and cancer
epithelial (Fig. 4d). Correlation values went further down when
CIBERSORT output was compared with BayesPrism output start-
ing from read counts (Fig. 4e).

-

Fig. 4 (continued) analyses in the TNBC TCGA dataset. (c) Prevalence correlation for each cell type between
BayesPrism results obtained starting from TPM or read counts. (d) Prevalence correlation for each cell type
between CIBERSORTx and BayesPrism results using TPM as input. (e) Prevalence correlation for each cell type
between CIBERSORTX results using TPM and BayesPrism results using read counts as input data



4.3 Effects of the
Reference Data on the
Output
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Deconvolution tools usually provide reference matrices or signa-
tures containing the expression profile of relevant genes driving the
cell-type quantification in bulk samples. However, such reference
data are often derived from quite different biological contexts. The
context can affect cell phenotypes and, eventually, deconvolution
performances when applied to bulk data from different biological
contexts. To provide an example of how the choice of the reference
matrix can affect the results, we repeated the CIBERSORTx analy-
sis on TNBC TCGA data using the provided melanoma signature
(https: //doi.org/10.1126/science.aad0501). We compared the
results in terms of RMSE and correlation values as provided by
CIBERSORTx. Median RMSE was similar in the outputs obtained
using the melanoma or the TNBC signature matrix, respectively.
However, a strong reduction in RMSE was observed for 61.03% of
the samples, while an increase was observed only in the 38.97%
(Fig. 4f). Importantly, correlation between the original and the
reconstructed bulk transcriptomic profile was significantly higher
when using the TNBC matrix, matching the bulk transcriptome
cancer type (median cor = 0.68 vs 0.84, p < 2¢-16) (Fig. 4g).

5 Conclusions

Conducting a robust deconvolution analysis requires careful con-
sideration of several factors. It is important to select the appropriate
preprocessing method and normalization strategies, tailored to the
specific dataset and software. Moreover, the choice of reference
datasets and software tools significantly impacts deconvolution
outcomes.

To ensure the quality of results, it is essential to validate find-
ings using complementary experimental techniques and indepen-
dent datasets whenever possible. Additionally, researchers should
remain mindful of the limitations inherent in bulk transcriptomics-
based deconvolution, including potential biases introduced by tis-
sue heterogeneity, batch effects, and the reliance on predefined
reference matrices. While deconvolution analysis offers valuable
insights into tumor microenvironment dynamics, it is important
to interpret results cautiously and consider the broader context of
tumor biology.

Looking ahead, ongoing research efforts should focus on refin-
ing benchmarking methodologies, improving software tools, and
addressing remaining limitations in deconvolution analysis. By
advancing our understanding of the tumor microenvironment
and enhancing the accuracy and reproducibility of deconvolution
methods, we can pave the way for more effective precision oncology
strategies and ultimately improve patient outcomes in cancer
treatment.
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