Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/10442/19348
Εξειδίκευση τύπου : | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | Agent-based modelling: A stochastic approach to assessing personal exposure to environmental pollutants - Insights from the URBANOME project |
Δημιουργός/Συγγραφέας: | Karakoltzidis, Achilleas Agalliadou, Anna Kermenidou, Marianthi Nikiforou, Fotini Chatzimpaloglou, Anthoula Feleki, Eleni Karakitsios, Spyros Gotti, Alberto [EL] Σαρηγιάννης, Δημοσθένης[EN] Sarigiannis, Dimosthenis |
Χορηγός : | European Union |
Ημερομηνία: | 2025-02-13 |
Γλώσσα: | Αγγλικά |
ISSN: | 00489697 |
DOI: | 10.1016/j.scitotenv.2025.178804 |
Άλλο: | 39952215 |
Περίληψη: | In the context of the URBANOME project, aiming to assess European citizens' exposure to air pollutants (PM10, PM2.5, NO2) and noise, an extensive data collection process was undertaken. This involved the distribution of stationary home sensors, portable sensors, and smartphone applications, alongside participants logging their activities while using these devices. By leveraging socioeconomic and socio-demographic statistical data for the residents of Thessaloniki, we developed an agent-based model to estimate exposure levels based on the movement patterns, locations, and data collected from the URBANOME campaign. The model highlights that an individual's exposure is closely linked to the type of activities they perform, their location, age, and gender. Whether exposure occurs indoors, or outdoors is important for determining intake levels. Activity selections were found to be strongly influenced by income, age, and social connections, indicating that socio-economic factors significantly shape exposure patterns. The analysis also revealed considerable differences between PM measurements taken from fixed monitoring stations and the sensors used in the campaign. Notably, even agents residing in the same household displayed distinct exposure levels, underscoring the variability within localized environments. Preliminary results from the URBANOME campaign were compared with the ABM outputs, showing differences in median values of up to 20 % of both noise and inhalation intakes. This research emphasizes the importance of using such models for developing future scenarios in large cities aimed at fostering green transitions and enhancing citizens' quality of life. These models provide valuable insights for designing strategies to reduce exposure and improve urban living conditions. |
Τίτλος πηγής δημοσίευσης: | The Science of the total environment |
Τόμος/Κεφάλαιο: | 967 |
Θεματική Κατηγορία: | [EL] Δημόσια υγεία. Υγιεινή. Προληπτική ιατρική[EN] Public health. Hygiene. Preventive medicine [EL] Επιστήμες περιβάλλοντος[EN] Environmental sciences |
Λέξεις-Κλειδιά: | agent-based modelling air pollution exposure green cities noise |
EU Grant: | URBANOME Horizon 2020 - Research and Innovation Framework Programme |
EU Grant identifier: | no. 945391 |
Κάτοχος πνευματικών δικαιωμάτων: | © 2025 The Authors. Published by Elsevier B.V. |
Όροι και προϋποθέσεις δικαιωμάτων: | This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Ηλεκτρονική διεύθυνση στον εκδότη (link): | https://doi.org/10.1016/j.scitotenv.2025.178804 |
Εμφανίζεται στις συλλογές: | Άλλες δράσεις
|