Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/19348
Export to:   BibTeX  | EndNote  | RIS
Εξειδίκευση τύπου : Άρθρο σε επιστημονικό περιοδικό
Τίτλος: Agent-based modelling: A stochastic approach to assessing personal exposure to environmental pollutants - Insights from the URBANOME project
Δημιουργός/Συγγραφέας: Karakoltzidis, Achilleas
Agalliadou, Anna
Kermenidou, Marianthi
Nikiforou, Fotini
Chatzimpaloglou, Anthoula
Feleki, Eleni
Karakitsios, Spyros
Gotti, Alberto
[EL] Σαρηγιάννης, Δημοσθένης[EN] Sarigiannis, Dimosthenissemantics logo
Χορηγός : European Union
Ημερομηνία: 2025-02-13
Γλώσσα: Αγγλικά
ISSN: 00489697
DOI: 10.1016/j.scitotenv.2025.178804
Άλλο: 39952215
Περίληψη: In the context of the URBANOME project, aiming to assess European citizens' exposure to air pollutants (PM10, PM2.5, NO2) and noise, an extensive data collection process was undertaken. This involved the distribution of stationary home sensors, portable sensors, and smartphone applications, alongside participants logging their activities while using these devices. By leveraging socioeconomic and socio-demographic statistical data for the residents of Thessaloniki, we developed an agent-based model to estimate exposure levels based on the movement patterns, locations, and data collected from the URBANOME campaign. The model highlights that an individual's exposure is closely linked to the type of activities they perform, their location, age, and gender. Whether exposure occurs indoors, or outdoors is important for determining intake levels. Activity selections were found to be strongly influenced by income, age, and social connections, indicating that socio-economic factors significantly shape exposure patterns. The analysis also revealed considerable differences between PM measurements taken from fixed monitoring stations and the sensors used in the campaign. Notably, even agents residing in the same household displayed distinct exposure levels, underscoring the variability within localized environments. Preliminary results from the URBANOME campaign were compared with the ABM outputs, showing differences in median values of up to 20 % of both noise and inhalation intakes. This research emphasizes the importance of using such models for developing future scenarios in large cities aimed at fostering green transitions and enhancing citizens' quality of life. These models provide valuable insights for designing strategies to reduce exposure and improve urban living conditions.
Τίτλος πηγής δημοσίευσης: The Science of the total environment
Τόμος/Κεφάλαιο: 967
Θεματική Κατηγορία: [EL] Δημόσια υγεία. Υγιεινή. Προληπτική ιατρική[EN] Public health. Hygiene. Preventive medicinesemantics logo
[EL] Επιστήμες περιβάλλοντος[EN] Environmental sciencessemantics logo
Λέξεις-Κλειδιά: agent-based modelling
air pollution
exposure
green cities
noise
EU Grant: URBANOME
Horizon 2020 - Research and Innovation Framework Programme
EU Grant identifier: no. 945391
Κάτοχος πνευματικών δικαιωμάτων: © 2025 The Authors. Published by Elsevier B.V.
Όροι και προϋποθέσεις δικαιωμάτων: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Ηλεκτρονική διεύθυνση στον εκδότη (link): https://doi.org/10.1016/j.scitotenv.2025.178804
Εμφανίζεται στις συλλογές:Άλλες δράσεις

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΣελίδεςΜέγεθοςΜορφότυποςΈκδοσηΆδεια
Karakoltzidis et al_2025_j.scitotenv.2025.178804.pdfopen access15.67 MBAdobe PDFΔημοσιευμένη/του ΕκδότηccbyΔείτε/ανοίξτε