
Implementation of workflows as Finite State Machines

in a national doctoral dissertations archive

�ikos Houssos, Dimitris Zavaliadis, Kostas Stamatis and Panagiotis Stathopoulos

†
 �ational Documentation Centre / �ational Hellenic Research Foundation, 11635, Athens, Greece.

{nhoussos,dimzava,kstamatis,pstath}@ekt.gr

Abstract:::: Workflows for submission and processing

of digital material is one of the important aspects of

open access repositories and the major concerns in

their implementation. The subject of the present paper is

the modelling of processing workflows in the Hellenic

�ational Archive of Doctoral Dissertations as Finite

State Machines and their implementation through an

original software library that enables client applica-

tions to create and utilise FSMs.

Keywords:::: repositories, workflows, finite state ma-

chines, electronic theses and dissertations, object-

oriented design.

I. I�TRODUCTIO�

In this article we present the implementation of work-

flows for cataloguing and processing doctoral theses in

the Greek National Archive of Doctoral Dissertations

(HEDI) based on an original software library for Finite

State Machines that has been developed by the Hellenic

National Documentation Centre (EKT).

EKT has been granted by law 1566/1985 the responsi-

bility of developing and maintaining the Greek National

Archive of doctoral theses. The archive contains the

doctoral dissertations produced in Higher Education

Institutions as well as a number of PhD theses awarded

to Greek scholars by universities outside Greece (USA,

UK, Canada, and Germany, among others), in total

about 24.500 theses as of February 2010, 2.75M pages

of digitised and born-digital dissertations, with 1200 -

1400 new dissertations arriving every year.

HEDI is supported by IT systems since 1986 when EKT

developed the bibliographic database ‘National Archive

of PhD Theses” employing for cataloguing the home-

grown library automation software, ABEKT Error!

Reference source not found.. Initially, EKT has been

collecting from individual universities and cataloguing

theses solely in print form. The database was made

available to the public via the mainframe host computer

‘Hermes’ for more than a decade from 1986 until 1999.

Thereafter, a new version of ABEKT has been used,

including support for metadata standards like UNI-

MARC, UNIMARC Authorities and ISO 2709 and the

Z39.50 protocol for search and retrieval of bibliographic

records. This system, later integrated into the ARGO

digital library portal (argo.ekt.gr) (Sfakakis, 2003) that

is still in operation, provides free web-based access to

metadata as well as advanced services to librarians,

through a library catalogue-like user interface. Mean-

while, EKT proceeded with executing a major digitisa-

tion project for the majority of the dissertations in the –

until then – print-only archive, which enabled open ac-

cess to theses full text for Web users – realised through

a specialised presentation application (Loverdos, 2001).

Furthermore, in later years universities have been sub-

mitting theses to the archive, in both print and electronic

form. As a result, today more than 75% of the theses in

HEDI are available online in full text.

In 2009, a decision was made to re-build and modernise

the information infrastructure supporting HEDI – a pro-

ject that was completed in 2010. The following main

choices were made:

• Create an e-theses repository on the DSpace plat-

form, mainly targeting end-users.

• Create a separate IT application for the administra-

tion and management of the EKT internal work-

flows that are necessary for the processing of the

material submitted to HEDI. The output of these

workflows for every thesis is a quality-controlled

metadata record and a searchable full-text file (or

set of files). An important aspect to consider is that

these workflows should be able to handle disserta-

tions in both print and electronic form – note that

the print archive is still maintained although a the-

sis is normally submitted in both print and elec-

tronic form. This application supports processing

workflows for theses, acting as a service consumer

for the workflow engine presented in this article.

• Maintain and constantly update the ARGO version

of HEDI as a bibliographic system of choice for li-

brarians offering to the latter additional important

services like record export and transformation

among various formats (e.g., MARC21 to UNI-

MARC). Ceasing to provide the HEDI database

through this portal was considered to be a non

sound option, given the popularity of ARGO

among the Greek library community as well as the

support of UNIMARC and related services.

• Select and reuse open source main software compo-

nents, from the operating system to the repository

and the middleware/database layer, while exploit-

ing EKT’s virtual infrastructure (Stathopoulos,

2009) in order to provide HEDI services with

higher availability, scalability and total cost of

ownership. The same software components and

technology have been previously used by EKT

while developing institutional and subject reposito-

ries.

II. PROCESSI�G WORKFLOW FOR THESES

The internal workflow followed for the processing of

the incoming dissertations material is depicted, at a high

level of abstraction, in Figure 1 and can be described as

follows:

Recording of incoming

material

Cataloguing – publication

of metadata record to

repository and

bibliographic database

Production of digital

material for publication

and preservation

Publication of digital

material to repository and

bibliographic database -

Preservation

Figure 1.High-level overview of workflow phases.

1. The first step is the recording of the incoming mate-

rial upon its receipt by EKT. This material includes

the full-text dissertation document in print and elec-

tronic form (only print is currently mandatory);

sometimes supplementary files (e.g., data sets) are

provided. Furthermore, a declaration sheet by the

doctoral degree holder about copyright issues is

normally received – authors are being given the op-

tion to either make their full-text thesis publicly

available immediately or after an embargo period (at

most three years), as is common in other e-thesis

systems. This sheet contains also basic descriptive

metadata, comprising also author-defined keywords

and abstract. Recording of physical (e.g., thesis hard

copies) and digital object (files) is performed, as

well as creating a very short metadata record includ-

ing fields like author, degree awarding institution,

date of degree award, date of submission to HEDI,

public availability/copyright status as specified by

the author, etc.

2. The second step in the workflow is the cataloguing

of the thesis, to produce a detailed metadata record

in the UNIMARC format; this is performed by

qualified EKT/NHRF library personnel, starting ei-

ther from scratch or from an ingested institutional

repository record through a user-friendly interface.

Furthermore, author-defined metadata is also taken

into account, when available, and could be utilised

after quality control. It is during the cataloguing

phase that a unique identifier (number) is assigned to

this particular thesis; this number is permanent and

is used to identify all material related to the thesis

within the archive. The assignment of the unique

identifier is also a strict pre-requisite for starting the

processing of the corresponding digital material (see

step 3). After cataloguing, the metadata record

(without the corresponding digital files – e.g. thesis

full text) is published online in the repository and the

bibliographic database.

Figure 2.The workflow modelled as a Finite State Machine.

3. The third phase is the processing of the material for

the generation of a high quality, fully searchable

digital file containing the dissertation full-text, as

well as image files for individual pages to allow

online page-by-page reading. This phase typically

includes one of the following alternatives:

• Digitisation, if the thesis document is available

only in print form, which includes Optical Char-

acter Recognition (OCR) processing for making

the resulting PDF file full-text searchable.

• Production, based on the initially submitted digi-

tal file(s), of a thesis full-text file (in PDF for-

mat) ready for publication and subsequent pres-

ervation. This could entail, among others, trans-

formation to PDF from other formats like .doc

and .odp and checks on whether the dissertation

text is fully searchable (otherwise, OCR is ap-

plied).

4. The last step in the workflow concerns the submis-

sion and storage of the digital material in a reposi-

tory and the corresponding detailed record at the

bibliographic database. Subsequent updates in the

metadata and/or digital files are performed through

the theses administration application and are propa-

gated to both the repository and the bibliographic

database. Future preservation actions are enacted on

the digital files in the repository.

Figure 2 depicts the processing workflow modelled as a

Finite State Machine (FSM) - a simplified version of the

workflow is depicted for economy of presentation.

III. A SOFTWARE E�GI�E FOR FI�ITE STATE

MACHI�ES

To address the implementation of the aforementioned

workflow in the system supporting HEDI, we have de-

veloped a software library, call FSM engine, for execut-

ing workflows modelled as Finite State Machines.

In particular, the FSM Engine is a Java API that allows

definition and execution of workflows represented as

state machines. It helps in cases where the behaviour of

an object needs to be changed at runtime depending on

its state, eliminating the need for extensive use of if/else

and switch statements which make code unreadable and

difficult to maintain. The FSM Engine is inspired by the

State Design Pattern (Gamma, 1995) and has been de-

veloped by EKT.

The FSM Engine provides a set of reusable Java classes

and interfaces that apply the abstract concepts of finite

state machines at the source code level. By extending

and implementing those classes and interfaces, a client

application can systematically define how a system

reacts to certain events avoiding at the same time clut-

tered case statements. This is achieved by specifying a

set of valid states for an object along with possible tran-

sitions between states which are triggered by events. In

addition, guard conditions can determine whether a

transition should be executed or not and a set of possible

actions can be associated with a given transition in order

to be fired as a side effect of executing the transition.

Branching is also supported, which enables multiple

discrete transitions for a given event and at a given state

– the evaluation of a boolean expression determines the

specific transition to be followed in such a case.

The FSM engine domain model is depicted in Figure 3.

The main classes comprising the engine are the follow-

ing:

StateContext

Maintains a reference to the current state. It should be

implemented by one or more client classes that can have

different internal states and whose behavior changes

depending on those states.

State

Represents the different states of the state machine.

Each possible state of a class implementing the State-

Context interface should correspond to a concrete im-

plementation of this interface.

State�ame

A Java enum acting as a bridge between StateContext

and States..

Figure 3.The FSM engine domain model.

Event

Represents an external or internal event such as a button

click or a date expiration that can change the State of an

object, thus leading to a state Transition in the system.

Typically, there is only one Transition corresponding to

a given Event but it is also possible to accommodate

more than one Transitions for an Event via Branches

and GuardConditions.

Transition

Defines the transition from one state to another as a

response of the state machine to an occurrence of a spe-

cific Event. A Transition can be guarded by a Gua-

rdCondition which determines whether the execution of

the Transition should proceed or not. In addition, a

Transition can be associated with one or more Actions

to be performed once the Transition has been executed.

GuardCondition

A GuardCondition is actually a Boolean expression that

affects the behavior of the state machine by enabling

Transitions only when it evaluates to true and disabling

them when it evaluates to false. A GuardCondition can

be associated with many Transitions but each Transition

can have only one GuardCondition.

Action

Defines an activity that is to be performed when execut-

ing a certain Transition. An Action can be associated

with more than one Transitions and a Transition can

have more than one Actions. Also note that an Action

can well trigger an Event having as a result another

Transition.

Branch

Acts as a container of Transitions. It is used in cases

where there is no one-to-one mapping between an Event

and a Transition but instead there are more than one

possible Transitions for a given Event. In principle, the

Transitions contained in a Branch are mutually exclu-

sive, meaning that only one Transition will be executed

each time and this will be determined once the Gua-

rdConditions of all Transitions have been evaluated.

FiniteStateMachine

An abstraction encapsulating the internal details of the

state machine, presenting a single interface to the out-

side world. Implementation classes should be used as

the main point where the lifecycle management of a

StateContext takes place, whenever a triggering Event

occurs.

In practice, to use the engine, the implementor of a

workflow has to create concrete classes implementing

interfaces like State, StateContext, Event, Transition,

Action or the corresponding default classes offered by

the library.

An important feature of the engine is that a specific

workflow based on the implemented classes is specified

outside the code in an XML configuration file – in par-

ticular an application context file of the Spring frame-

work. The Spring dependency injection mechanisms are

employed for an instantiation of a workflow/FSM en-

gine. Therefore, modifications in a workflow (additions

of states, transitions, events, actions, etc.) can be in-

jected into the system without modifying source code –

just by editing the configuration file.

III. SUMMARY A�D FUTURE WORK

The main subject of the present article is the modelling

of processing workflows in the Hellenic National Ar-

chive of Doctoral Dissertations as Finite State Machines

and their implementation through an original software

library that enables client applications to create and util-

ise FSMs. The adopted modelling and development

approach proved to be appropriate for this use case.

Plans for further work regarding HEDI include the sup-

port of online submission workflows by authorised par-

ties outside EKT (e.g. graduating doctoral students, uni-

versity personnel) and automated ingest of records from

external systems. These services require, among others,

more sophisticated workflows for quality control both at

the metadata and digital file level and further automa-

tion of digital file checking and processing.

Regarding the FSM engine, future plans include publis-

ing and maintaining it as an autonomous open source

project under a license that facilitates re-use in third-

party applications. In terms of features, a priority is to

make the engine even less intrusive for client applica-

tions, probably through mechanisms like Java annota-

tions, aspect-oriented programming, and potentially

metaprogramming in cases of integration with other

than Java languages running on the Java Virtual Ma-

chine such as Groovy. Furthermore, support of ad-

vanced workflow features that go beyond standard FSM

functionality will be investigated, such as clustering and

orthogonality as supported by schemes like statecharts

(Harel, 1987).

REFERE�CES

Gamma, E. et al., "Design Patterns: Elements of Reus-

able Object Oriented Software", Addison

Wesley Longman, Inc. (1995)

Harel D. Statecharts: a visual formalism for complex

systems. Science of Computer Programming, 8(3):231-

274 (1987).

Loverdos, C., Kapidakis, S. Flexible, service-based con-

tent presentation: The Hellenic Dissertations Presenta-

tion System. Demonstration in the 5th European Con-

ference on Research and Advanced Technology for

Digital Libraries, September 4-8 2001, Darmstadt,

Germany. (2001)

Sfakakis, M., Kapidakis, S.. An architecture for online

information integration on concurrent resource access

on a Z39.50 environment. In: Research and Advanced-

Technology for Digital Libraries. pp. 288-299. (2003)

Stathopoulos, P., Soumplis, A., Houssos, N. The case

study of an F/OSS virtualization platform deployment

and quantitative results, 5th International Conference

on Open Source Systems, Skövde, Sweden. (2009)

