$\begin{array}{c} \textbf{XIII I} \textbf{International } \textbf{C} \textbf{onference} \\ \textbf{on Organometallic Chemistry} \end{array}$

abstracts

Torino, September 4-9, 1988

METAL ALKOXIDE MODIFIED ORGANOMETALLIC REACTIONS. DIRECT SYNTHESIS OF LITHIOOXYALKYL- AND ARYLITHIUM COMPOUNDS

C.G.Screttas ,I.D.Kostas and C.S.Salteris, Institute of Organic

Chemistry The National Hellenic Research Foundation Athens 116 35

Greece

Attempts to synthesize $\mathrm{LiO(CH_2)}_6\mathrm{Li}$ according to the conventional method from $\mathrm{HO(CH_2)}_6\mathrm{Br}$ led to extensive Wurtz coupling. Similar results were obtained by employing lithium naphthalene radical anion in place of lithium metal.

6-Lithiooxyhexyllithium was prepared in fair yields according to eq. (1).

The organometallic product was characterized by carbonation and by conversion to $\mathrm{Hg}(\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OH})_2$. The function of the alkoxide is to stabilize the organometallic reagent with respect to THF-cleaving reaction, so that solutions of the reagent can be stored at room temperature for 48 hours or longer.

The method has been extended to the preparation of the lithio- oxy- organolithiums of the general types 1 and 2 .

Li(
$$CH_2$$
)_n-Y-(CH_2)_mOLi

Y=0,NR

1

METAL ALKONIDE MODIFIED OPGANOMETALLIC REACTIONS. DIRECT SYNTHESIS

OF LITHICONYAUKYD- AND ARYLITHIUM COMPOUNDS

C.G.Screttas ,I.D.Kostas and C.S.Salteris,Institute of Organic
Chemistry The N view 1 Willeric Research Foundation Athens 116 35
Greece

Attempts to synthesize $\mathrm{LiO(CH_2)}_6\mathrm{Li}$ according to the conventional method from $\mathrm{HO(CH_2)}_6\mathrm{Fr}$ led to extensive Wurtz coupling. Similar results were obtained by employing lithium naphthalene radical anion in place of lithium metal.

6-Lithiooxyhexyllithium was prepared in fair yields according to eq. (1).

The organometallic product was characterized by carbonation and by conversion to $\mathrm{Hg}(\mathrm{CH_2CH_2CH_2CH_2CH_2CH_2OH})_2$. The function of the alkoxide is to stabilize the organometallic reagent with respect to THF-cleaving reaction, so that solutions of the reagent can be stored at room temperature for 48 hours or longer.

The method has been extended to the preparation of the lithio- oxy- organolithiums of the general types ${\bf 1}$ and ${\bf 2}$.

Li(
$$CH_2$$
)_n-Y-(CH_2)_mOLi
Y=O,NR

1

O(CH_2)_nOLi

Li