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ABSTRACT 

The symmetry groups of non-rigid molecules are employed in obtaining rovi-
bronic correlation rules for general and simple reactions. The reaction system 
is considered as a supermolecule and the reaction itself is treated as a "tran­
sition" from reactants to products. The theory is applied to the general reac­
tions: (AC)2 —> AC+AC, A2tA —> A2+A and A3(C2v)+A —? A2+A2· The possibility of 
distinguishing between reaction paths is explored. 

INTRODUCTION 

Recent experimental advances in rovibronic state to state collisional cross 

section determinations (ref.l) have made desirable an extension of the electron­

ic correlation schemes (ref.2) to include vibrational and rotational states. In 

doing the rovibronic correlations one tries to determine the symmetry allowed 

rovibronic states of the products given the rovibronic states of the reactants. 

The general approach in such correlations is to consider the collision system 

as a supermolecule and the reaction itself as the transition from the initial 

state of the supermolecule (reactants) to its final state (products). The opera­

tor responsible for such a transition consists of one or more of the neglected 

terms of the exact hamiltonian of the collision system and therefore it must be­

long to the totally symmetric irreducible representation. In addition, the total 

angular momentum must be conserved and the nuclear spin statistics must be 

obeyed. Thus a correlation between the wavefunctions of the initial and final 

states may be achieved. This correlation becomes more or less unique when con­

servation of energy is also taken into consideration. 

APPLICABLE GROUPS 

The assumed transitions of the supermolecule may bring the system into two 

wildly different configurations, and this certainly qualifies it for a non-rigid 

molecule. The symmetry groups of such molecules are the well known permutation 

Inversion (PI) groups (ref.3, ref.4). The order of such groups depends on the 

feasibility or not of certain permutations. If all permutations are feasible 

the group is the so called Complete Nuclear Permutation Inversion (CNPI) group 
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(réf.4) and it has the highest possible order. Otherwise, its order is smaller 

and it is a subgroup of the CNPI group. 

It is evident that the initial and final states of the supermolecule are 

essentially separate systems and may belong to different PI groups. If this is 

so, both groups must be subgroups of the PI group of the supermolecule. The PI 

group of the supermolecule is usually constructed by putting together in a set 

all feasible operations of the PI groups of both reactants and products and 

then checking to see if this set forms a group. This may lead to a group with 

order higher than the sum of the orders of the component groups since additional 

permutations may have to be included in the set to ensure closure. If the re­

action may proceed through more than one paths a different PI group of the 

supermolecule may be involved in each path. This is so because each reaction 

path may be associated with different feasible permutations in the reactant and 

product groups. 

METHOD OF CORRELATION 

Once the appropriate PI group of the supermolecule has been determined, each 

of the irreducible representations (ir) of the reactant subgroup is correlated 

to an ir of the supermolecule group by comparing the characters of the common 

operations. Then each of the correlated ir of the supermolecule group is further 

correlated to an ir of the product subgroup in the same way. Next, the rovi-

bronic wavefunctions of the reactants and products are classified according to 

the ir of their respective PI groups. Finally, the rovibronic wavefunctions of 

the reactants and products thusly classified are correlated to each other via 

the correlation of their respective ir. 

The above correlation according to PI symmetry, eliminates many final states 

but many more are left which render such correlations far from unique. Thus, 

further narrowing down of possibilities may be persued by requiring conservation 

of total angular momentum, conservation of total energy as well as taking advan­

tage of nuclear spin statistics. Here, however, we will consider correlations 

related only to PI symmetry conservation. 

APPLICATIONS 

First, let us examine the rovibronic correlations in complex formation and 

dissociation reactions of the type C —> A+B, where C is stable for a period of 

at least a few revolutions. In cases like this and if C is considered rigid, the 

PI group of the supermolecule is the same as the PI group of the separated A+B 

fragments and both are isomorphic to the point group corresponding to the as­

sumed configuration of C. The assumption of rigidity is not essential as long as 

the PI group of a non-rigid C is the same (not just isomorphic) as that of the 
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A+B fragments. Of course, different wavefunctions (see below) will have to be 

used if the complex C is non-rigid. 

Consider the dissociation of a stable and rigid (AC) complex in a C con­

figuration, into its AC fragments: (AC)„ —> AC+AC. The atoms of one AC fragment 

are numbered 1 and 2 while the atoms of the other AC fragment are numbered 3 and 

M- ( 1 3 for A and 2,4 for C). The numbering of the atoms is arbitrary but it must 

be consistent throughout the reaction. We assume separability of the rotational-

vibrational-electronic degrees of freedom as well as conservation of the elec­

tronic symmetry and we concentrate on the rotational-vibrational (rovibrational) 

correlations. The rovibrational wavefunction of (AC) is given by: 

^ η , Κ , Μ ^ ν ^ ^ ν ^ + η , Κ , Μ ^ <*> 

χ is the vibrational wavefunction of Γ symmetry; A is the asymmetric top rota­

tional wavefunction of Γ symmetry, which depends on whether J+n and Κ are even 

or odd (ref.5); χ is given in terms of Hermite polynomials in the normal modes 

and A is in terms of the symmetric top wavefunctions as follows (ref.5): 

A
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The prime in the summation sign indicates that only even or only odd Κ values 

are to be included. The classification of the wavefunctions χ, A and their com­

bination shown in eq. (la) are done easily in a previously shown way (ref.6, 

ref.7) although if there are degeneracies the task becomes more complicated 

(ref.8). The Γ 's are shown in table 1 in terms of the Γ 's, J+n's and K's. 
rv ν 

After dissociation a part of the vibrational and rotational energy of (AC) 

is transferred into the relative motion of the two AC fragments. This energy is 

associated with a translational (orbital) wavefunction which here is approximat­

ed by φ (kR)-Yl (Θ,Φ) where R is the distance between the centers of mass (cm.) 

of the two fragments and θ, Φ are the Euler angles that define the direction of 

R in a space fixed coordinate system with origin at the cm. of the two frag­

ments, φ (kR) approaches a spherical Bessel function as the interfragment poten­

tial tends to zero, and Yl is a spherical harmonic. The rovibrational-transla -

L· 

tional (transrovibrational) wavefunctions of the two fragments are obtained in 

the zeroth order approximation by assuming a zero interfragment potential: 
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where ν are the vibrational wavefunctions of the AC diatoms while Ϋ are their 

rotational wavefunctions; r, θ, φ, are the usual spherical coordinates of each 

diatomic fragment. The appropriate PI group of the fragments is the four element 

group PI(<4) = IE, (13)(24-), E", (13)(24)"j which is isomorphic to the C^ point 

group. The classification of the transrovibrational wavefunctions according to 

the ir of the PI(M-) group are easily done as it has been shown previously (ref. 

6). The Γ 's are shown in table 1 in terms of the 1+1'+m 's and L+m 's. This 
rv 

table is the correlation table of the wavefunctions of the (AC)_ complex to 

those of the two AC fragments. It is the main result of conservation of the 

permutation-inversion symmetry in the dissociation reaction we have studied. 

TABLE 1 

Correlation table for the reaction (AC) —> AC+AC (eqs. 1 and 2). e/o denote 

even/odd values of the indicated quantities. 
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PI(4) 

Fragments AC+AC 

1+1'+m L+m 

e e 

0 e 

e 0 

0 0 

Now let us examine the rovibronic correlations in a reaction of the type 

A+B —} rcj ·—> D+E where C represents an intermediate species not necessarily 

stable or rigid. The PI group of the supermolecule may either be the same as 
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that of the fragments on either side of C or it may contain the PI groups of 

these fragments as its subgroups depending on the path of the reaction. 

Consider as the simplest meaningful reaction exhibiting this behavior the re­

action A +A —> ΓΑ | —> A tA where the atoms of the diatom are numbered 1 and 2 
2 L 3J r ~i 

while the lone atom is numbered 3. Taking the reaction path A -A +A —> ΙΑ,-Α^Α J 

^ A -A +A results simply in an energy transfer collision. The PI group of both 

the "reactants" and the "products" is PI(4)
a
 = [E, (12), E*, (12)*} which there­

fore is also the PI group of the supermolecule. Taking the reaction path A -At 

A —> (A -A -A I > A -A
Q
tA results in an exchange reaction. The group of the 

3 l _ 1 3 2 J 1 3 2 ς 
reactants is the PI(4) while the group of the products is PI(ij) = |E, (13), 

E* ' "' ", ( 13 )"f. Clearly, the PI group of the supermolecule should contain PI(4) and 

PI(4) as subgroups and, as it turns out, it is the CNPI group of the(A -A -AJ 

species. This group has 12 elements and it is a cross product of S and the in­

version group: PI(12) = Sg ® £ with <£ = ^E, E*~j . 

Because the groups of the two "products" contain different permutations -(12) 

for the energy transfer and (13) for the exchange reaction - one may pose the 

question of whether this fact could be used to distinguish between the two re­

action paths. However, since the groups of the reactants and products in either 

path are PI(4) groups, the correlations of their ir are the same even though in 

the exchange reaction one has to correlate via the PI(12) group. Thus, in this 

case, no distinction is possible and the correlations are trivial since they in­

volve essentially the same group. The zeroth order transrovibrational wavefunc-

tions of the reactants and the products have the same form as follows: 
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Table 2 shows the symmetry of Ψ in terms of the 1 's and L's. This table 
1, L· 

serves also as a correlation table for this trivial case. 

TABLE 2 

Symmetries of the transrovibrational wavefunctions of the A tA system (eq. 3). 

e/o denote even/odd values of 1 and L. 

P I ( 4 )
a'

 P I ( 4 )
b h ~2 ~1 ~ 

Consider now the reaction A (C )+A —> ΓΑ~\ —Ρ A +A where the central atom 

l n
 ^3 ^

S num
t>

e:rei
i lj the two side atoms are numbered 2 and 3 and the lone atom 

is numbered 4. The above reaction can take place either by A attacking the cen­

ter atom of A or by A attacking one of its side atoms. In the first case the 
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products will be A -A +A -A„ while in the later case they will be A^A +A -A 

(or equivalently A -A +A -A ). The group of the reactants is PI(4) = { E , (23), 

E*, (23) *J. The group of the center attack products is PI(16) = S' φ ζ, where 

Ξ.' = Γ Ε , (14), (23), (14)(23), (12)(43), (13)(42), (1243), (1342)} while the 

group of the side attack products is PI(16) = S' Q £_ where S' = JE, (12), 

(34), (12)(34), (13)(24), (14)(23), (1324), (1423)J or the equivalent SJJ = f Ε, 

(13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)7 . The PI(4) group is a 

subgroup of the PI(16) , because of the common operations (23) and (23)", but it 

is not a subgroup of PI(16), . Therefore, the group of the supermolecule in the 

center attack mechanism is the PI(16) group while in the side attack mechanism 

a 

it must contain at least the PI(4) and the PI(16) groups. As it turns out, the 

supermolecule group in the side attack mechanism is the CNPI group of the lAl 

species, which is the group PI(48) = S Q £ . 

Because of the above differences there is the possibility that the center 

and side attack mechanisms may result in different correlations. This possibili­

ty is further explored below. The transrovibrational wavefunction of the reac­

tants is similar to eq. (la) with the addition of the orbital part: 
t 

^ η , Κ , ϋ ^ = ̂
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v

)
-
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(
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k R
'K'

( e
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with A given by eq. (lb). The transrovibrational wavefunction of the products is 

identical to that given by eqs. (2). The classification of these wavefunctions 

(eqs. 2 and 4) according to the ir of the respective groups are done as previous 

ly shown (ref. 7, ref. 9). However, the correlations of the ir for the side 

attack mechanism must be done via the PI(48) group while the correlations of the 

ir for the center attack mechanism must be done directly. The two correlations, 

shown in table 3, differ in that the side attack mechanism allows for fewer pro­

duct states than the center attack mechanism. This is because the PI(48) group 

has only four one dimensional ir while the PI(16) group has eight such ir (ref. 

TABLE 3 

Correlations of the ir of the PI(4) group to the ir of the PI(16) 

(via PI(48) ) and PI(16) groups. 

PK16), 
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H) The correlations of the wavefunctions for both mechanisms are shown in ta­

ble 4 Note that in both cases the same combination of even/odd values of the 

rotational quantum numbers is involved but in the center attack mechanism the 

additional + or - sign combinations in eqs. (2) is allowed. 

TABLE 4 

Correlation table for the reaction A (C )+A —>
 A

9
+

A

9
 for both center and side 

attack mechanisms (.eqs. 2 and 4). e/o indicate even/odd values of the shown 

quantities. 
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Side attack 

products PI(16) 

1 1' L m 

e e e e 

e e ο ο 

ο ο ο ο 
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DISCUSSION 

We have presented rovibronic correlation rules for certain types of reactions 

for cases where the electronic symmetry is conserved. The usefulness of such 

rules as shown in tables 1, 2 and 4 may be diminished by the entry into the pic­

ture of the orbital angular momenta. An exception to this are complex formation 

or dissociation reactions where there is only one orbital angular momentum, L, 

involved. Due to the conservation of the total angular momentum, L is related to 

the other angular momenta of the fragments via the addition theorem and the 

known rotational angular momentum of the complex. 

An intermediate product of the derivation of the correlation rules is the de­

termination of the symmetry of the transrovibrational wavefunctions. This could 

lead to the construction of accurate rovibrational wavefunctions for non-rigid 

molecules. They would consist of sums of the symmetry selected zeroth order 
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wavefunetions of the two fragments separated along the coordinate of non rigidi 

ty. It could also lead to block diagonalization of the secular equation matrix 

in rovibrational energy calculations of non-rigid molecules (ref.10). 
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