From: ORGANIC AND INORGANIC LOW-DIMENSIONAL CRYSTALLINE MATERIALS
Edited by Pierre Delhaes and Marc Drillon (Plenum Publishing Corporation, 1987)

PYRIDINO-TETRAHETEROFULVALENES AND A FEW OF THEIR SALTS

G.C. Papavassiliou, S.Y. Yiannopoulos and J.S. Zambounis

Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48, Vass. Constantinou Ave., Athens 116/35, Greece

INTRODUCTION

Recently, the unsymmetrical π -donor DMET (dimethylethylenedithio-dithiadiselenafulvalene) has attracted much interest since the discovery of superconductivity in the cation radical salt (DMET) $_2$ Au(CN) $_2$ [1]. In this paper we report the preparation of some new unsymmetrical tetraheterofulvalenes having a pyridino-ring and a few of their salts.

EXPERIMENTAL

The new π -donors (9) and (11) were prepared by cross coupling of 1,3-pyridino 4,5-b]-dithiole-2-one [2]-[4]* and 4,5-dimethyl-1,3-dithiole-2-thione [5], 1,3-benzodithiole-2thione [6], 4,5-bis(alkylthio)-1,3-dithiole-2-thiones [7] and 4,5-dimethyl-1,3-diselenole-2-selone [8], via triethyl phosphite, (EtO)₃P, according to the Scheme 1.* 3-amino-2-chloropyridine (1)[3]*** was used as starting material. The preparation of (9) and (11) by using 4-amino-3-bromopyridine [4],[9] as starting material was unsuccessful because of the low yield of the intermediate products [4]. The preparation of these donors by an alternative method starting from 4-nitro-3-bromopyridine is in progress [4] . Some charge transfer complexes and some cation radical salts were prepared by direct reaction (DR) of the π -donors (9) and (11) with TCNQ, Br₂ and Bu₄NI₃ in CH₂Cl₂. Also some cation radical salts were prepared by electrocrystallization (EL) of some π -donors in presence of Bu₄NX (where X=I₃, IBr₂ etc) in CH₂Cl₂. Preparative data are given in Table 1. Electrical conductivity measurements were performed with a four-probe method. Samples were mounted with four fine gold wires and electrical conductivity measurements were supplied by a Keithley Model 220 programmable current source; voltage was measured on a Keithley Model 602 electrometer.

^{*}Compound (6) is a white solid, mp= 110° C [4]. **Compound (7) was obtained as a yellow solid, mp> 300° C [4]. ***Commercial (1) was used without further purification.

$$(6) \xrightarrow{CH_3} (5) \xrightarrow{S_e} = S_e \xrightarrow{(EtO)_3 P} (20 \circ C) \xrightarrow{Y_2 Y_1} S = S_e \xrightarrow{CH_3} (10)$$

$$(11), (11)$$

Scheme 1

RESULTS AND DISCUSSION

Conductivity measurements on polycrystalline compactions of (9b)TCNQ, $\beta\text{--}(9e)$ Br $_3$ and (11)TCNQ showed that the compounds are neutral complexes similar to (DBTTF)TCNQ [10]. All the rest salts of the Table 1 were found to be conductive. Conductivity measurements on single crystals of $\alpha\text{--}(9e)_2\text{IBr}_2$ along the needle axis (which is the a-axis [11])showed a semiconducting behaviour [12] with activation energy 230meV and $\sigma_{\text{RT}}=3-7\text{x}10^{-3}~\Omega^{-1}\text{cm}^{-1}$. Conductivity measurements on single crystals of the new salts are now underway.

ACKNOWLEDGEMENT

We would like to thank Dr.D.Rigas and Prof.N.Alexandrou for recording mass spectra and Dr.E.I.Kamitsos and M.A.Karakassides for optical and electrical measurements.

Table 1. Preparative data

Compound	Method	Yield(%)	Appearance	mp/ ^O C	UV(λ/nm) ⁺	
(9a)		9	yellow	199	390	
(9b)		4	yellow	248	350	
(9c)		7	orange-yellow	117	358	
(9d)		6	yellow	206	450	
(9e)		10	orange-yellow	238	358	
(9f)		3	yellow	208	354	
(11)		15	orange	217	360	
(9a) TCNΩ*	DR		black powder			
β -(9a) $_{x}^{I}_{3}$	DR		small black needles			
(9b) TCNQ	* DR		small brown needles			
β-(9d) _x I ₃	DR	R small black-golden needles				
(9e) TCN	Q DR	small black needles				
α-(9e) _x Br ₃	EL					
β-(9e) _x Br ₃	DR	crystals brown needles				
α -(9e) $_{x}^{I}_{3}$	EL	bronze needles or				
β-(9e) _x I ₃	DR		plates brown-bronze powder			
α-(9e) ₂ IBr	** 2 EL	black needles				
(11) TCNO	Q DR	small orange-				
$\alpha - (11)_{x}^{1}_{3}^{+}$	+ EL	-brown plates bronze needles				
$\alpha' - (11)_{x_{3}}^{1}$	++ _{EL}	bronze-golden spears				
$\beta - (11)_{x}^{3}$	DR	small black-				
α -(11) _x IBr	₂ EL	-bronze needles small black needles				
β-(11) _x IBr	2 DR		or plates black powder			
α -(11) _x PF ₆	EL	black needles				
 • 		the long	est wavelength b	and (CH CN	1)	

⁺ Peak position of the longest wavelength band ($\mathrm{CH}_3\mathrm{CN}$)

^{*} From elemental analysis

^{**}From x-ray crystal structure solution

⁺⁺The resonance Raman spectra of both salts $(\alpha-,\alpha'-)$ showed bands at 107, 214, 320...cm⁻¹, which are characteristic of I₃ (linear, symmetric).

REFERENCES

- K.Kikuchi, M.Kikuchi, T.Namiki, K.Saito, I.Ikemoto, K.Mu-rata, I.Ishiguro, and K.Kobayashi, "Superconductivity in the Cation Radical Salt (DMET) 2 Au (CN) 2", Chem. Lett., in press.
- in press.

 2. K.Kowichi, "3-Mercaptothiopyridone-2", Pol., J.Chem., 52, 2039(1978)
- 3. G.C.Papavassiliou, "Bis[4,5-b]pyridino-1,1,3,3-tetrathi-afulvalene: Synthesis and Charge Transfer Complexes" Chim.Chron. (New Series), 15, 161(1986).
- 4. G.C.Papavassiliou and S.Y.Yiannopoulos, unpublished work.
- 5. J.P.Ferraris, T.O.Poehler, A.N.Bloch and D.O.Cowan "Synthesis of the Highly Conducting Organic Salts: Tetramethyltetrathiofulvalenium-tetracyano-p-qui nodimethanide", Tetrahedron Lett., 2553(1973).
- S.Hunig and E.Fleckenstein, "Eine Einfache Synthese von o-Phenylendithiol" Leibigs Ann. Chem., 738, 192(1970).
 G.C.Papavassiliou, J.S.Zambounis, and S.Y.Yiannopoulos,
- G.C.Papavassiliou, J.S.Zambounis, and S.Y.Yiannopoulos,
 "Some New π-Donors: Bis(propylenedithio)-tetrathiaful valene, 4,5-Bis(alkylthio)-1,2-dithiolium Tetrafluoro borates and Similar Compounds" Chem.Scripta 27,...(1987).
- 8. A.Moradpour, Y.Peyrussan, I. Johansen and K.Bechgaard,
 "High-Yield Synthesis of Tetramethyltetraselenafulvalene Avoiding the Use of Gaseous H₂Se", J.Org.Chem. 48,
 388(1983); G.Bates, to be published.
- 9. O.S.Tee, and M.Paventi, "Kinetic and Mechanism of the Bromination of 4-Pyridone and Related Derivatives in Aqueous Solution", Can.J.Chem.61, 2256(1983).
- 10.A.Girlando, C.Pecile, A.Brillante, and K.Syassen, "High Pressure Optical Studies of Neutral-Ionic Phase Transitions in Organic C.T.Crystals", Synth.Metals, 19, 503 (1987), and refs cited therein.
- 11.A.Terzis, V.Psycharis, A.Hountas, and G.C.Papavassiliou, "Structures of the conducting Solids of Pyrazinoethyle-nedithiotetrathifulvalene (PEDTTTF) and [4,5-b]Pyridinoethylenedithiotetrathiafulvalene ([4,5-b]PEDTTTF): α -(PEDTTTF) 2 IBr 2 and α -[4,5-b] PEDTTTF) 2 IBr 2 Acta Cryst. 43...(1987).
- 12.A.E.Underhill, B.Kaye, and G.C.Papavassiliou, unpublished work.