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Functionals Q that have local minima at the excited states of a non degenerate Hamiltonian are presented.
Then, improved mutually orthogonal approximants of the ground and the first excited state are reported.
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In the following the Hamiltonian expectation value of a trial wave function, ¢ , is denoted by E¢ and is called energy of ¢ .
The Hamiltonian eigenfunctions (assumed non-degenerate) are denoted by using the symbol y . All functions are assumed real

and normalized.
According to the Hylleraas, Undheim, and McDonald [HUM] theorem’ the higher roots of the secular equation tend to the

excited state energies from above. But it should be observed that among all functions ¢, , which are orthogonal to an available

ground state approximant ¢, , the Gram — Schmidt orthonormal to ¢,
¢+=%—%@d%>
1-{v,l4,)

which is the closest? to the exact w, (i.e. with the largest projection (y/1 |¢1>2 - not decreased by the presence of any other

components) lies energetically below the exact Ey , only if E¢ < Ey, :

Ey —E ‘
(Ey, ¢0)<‘//12|¢0> CE
1-(w.l4,)
, lying higher than y, E¢™" > Ey, is necessarily not the closest to , (while orthogonal to ¢, ).

E¢1+ = El//l
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Therefore, the 2" HUM root, ¢
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On the other hand, minimizing the energy orthogonally to the available ¢, , does not lead to the closest either: Passing through
Eg, it leads to an even lower energy: Because for any ¢f' , chosen simultaneously orthogonal to both ¢ and ¢ , the

Hamiltonian opens the energy gap between E¢l“ and Eg , so that, the lowest of the Hamiltonian eigenfunctions ¥, ¥" , (both

MIN

orthogonal to ¢, ) on the subspace of { 4, , 4, }, lies lower than Eg ,i.e. E¥ < Eg, < Ey, , so that the lowest, ™" , of all

such ‘¥ s, obtained by minimizing the energy orthogonally to ¢, , lies even lower than Eg~ . Therefore, ¢1M'N is not the closest to

. . . _ |E¥Y - Ey, . | Ey,—E¥Y
w, either (while orthogonal to ¢ ). (In fact, an appropriate sum ¥ =¥ ,| ——— + ¥, |—— , orthogonal to ¢,
EVY -EY EVY -EY

has energy E = Ey, , with (z//1|‘}’>Z not necessarily large.)

Thus, seeking ¢, , approximant to y, , orthogonal to an approximant ¢, , either by the HUM theorem or by orthogonal
optimization, does neither lead to ¢ , the closest to y/, , nor does it raise the energy going from ¢ to y, (which is orthogonal to
w, ,notto ¢ ). AsShull and Lowdin® have shown, the excited states can be calculated without knowledge of v, . Therefore, a
variational functional for ¢ would be desirable, that leads to y, not necessarily orthogonally to the available ¢ , allowing
subsequent improvement of ¢ orthogonally to ¢, :

Construction: For a non-degenerate Hamiltonian of (unknown) bound eigenstates of a specific type of symmetry, v, v, , and

eigenenergies Ey, < Ey, <...,anormalized approximant of v can be expanded as

4, = 2w v |¢n>+wn\/1—Z<w, TR NATNEDWATALY (L1)
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where the overlap coefficients are small. The energy is

E¢ =Ev - .(Ev. —Ev){(w|8) + D (Ew,~Ev )w |¢) =Ew -P +P,, L2

an n-order saddle point, where the lower and higher than-n parts, P, and Py, are positive (so that Eyy —P <E¢ < Ew +P, ).
The minimum of the following paraboloid, defined by
Ey +P +P, =E¢ +2P (1.3)

determines ¢ — v, in terms of the lower than-n information (P.). An expression for the behaviour of P can be found by first
considering, to leading order in coefficients, the overlap and the Hamiltonian matrix elements in terms of the (similarly
predetermined as described here) approximants ¢,i <n :

(210, =Cvld.)+w,1g)+

(2.1H16,)=Ev.{v.lg,)+Ev, (v ]g)+ .
Substituting {y |¢ ) from Egs. (1.4) to each term of P, in Eq. (1.2) gives, to leading order,
(Ey, (4 1g,)-(s[H
Y[ (Ee.(g]0,)-(s]H

reducesto P (1— Z(gﬁi |¢">Z) . Therefore, for P, # 0 the behaviour of the paraboloid of Eq. (1.3) close to y is reasonably

(1.4)

¢>)2/( Ey - Ey, ) , which suggests an examination, in terms of known quantities, of the expression

$)) /(E¢n ~E¢ )] . This, as directly verified, when both ¢ =y and [in Eq.(1.2)] P, >0 ,

described by the functional Q_ :
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with a local minimum at ¢ =y, which is paraboloidal, by construction, when ¢ =y, .

§:(E¢<¢

Ey +P +P =E¢ +2P > Q =E¢ +2—

(1.5)

Proof: Q hasatrue local minimumat ¢ =w_when ¢ are approximants of v, (4 =, ), while E¢ has a saddle point there:
By collecting the contribution of the higher than-n subspace for each ¢ wave function, i <n , to the contribution of a normalized

L{n}

function ¢, i < n, orthogonal to all lower than-n v, eigenfunctions, i.e.

5= S, (v, 1) / (S 14y isn, o)

6") %0 (g [H]p ") 20 ii<n and

> Ey , i <n ,itisdirectly verified that all the principal minors An‘ , I <n , of the Hessian

where the overlap and Hamiltonian matrix elements are generally non-zero, <¢‘“"}

whose energies, obviously, are E¢ "
determinant A: of Q , along the main diagonal, i.e. those which are required by the second derivatives theorems of calculus

(Sylvester’s theorem), are, at the desired place ¢ =w_, ¢ #y, ,i<n ,positive, if ¢ are closeto y, : Each principal minor
determinant (denoted by the main diagonal)

oD { Q. Q. e} }
= De
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o=V iy 1<k
equals

K" =2 T1(Ev, ~E0) >0 (+0[{w |4 ){w.|0)]) an

where there are no coefficients (which depend on the quality of ¢ ) of 1% power, while the Hessian itself
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A =2 (¢ —Ey ) [1(Ev, - Ev,) > 0 (+O[{y.

i=0

equals

IVATIE (1.8)

If ¢ are close to y, , all these determinants of Egs. (1.7 - 1.8) are positive, hence the Hessian matrix is positive definite, therefore,
the functional Q has a local minimumat ¢ =y, which determines _ifall ¢ approximants of w , i <n , are known.
Obviously, Q reduces to the Eckart* theorem for v, .

The functional Q_ passes from all . A way to identify the desired y_for atoms and for diatomic molecules, is to expand (for

atoms) in a basis of Slater type exponentials whose prefactors are not monomials, but rather they are variationally optimized
polynomials: initially starting from the identifiable associated Laguerre polynomials, because these are not severely modified during
optimization; Also identifiable (for diatomic molecules) are the (separable into radial and angular parts) variationally optimized one-
electron-diatomic-molecule-type orbitals. Both significantly reduce the size of a configuration interaction expansion. °

Improving ¢, orthogonally to w : If y were known it would be possible to improve ¢, orthogonally to > On the subspace
of { ¢, , v, } the highest Hamiltonian eigenvector, ¥ , is
Y=y, .

The lowest, ¥ , is orthogonal to v, ,

PR Sl AUA LY

1-{w,|4,)

with energy

(B -Eg){wla)
1-{y,1¢,)

(same or better than ¢, ). Further, rotating ¢~ around y, improves ¢0* as follows: After introducing (e.g. by one more

Eg, = E, < Eg, (1.9)

configuration) a function ¢,“" orthogonal to both {4, , w, }, then, in the subspace of { 4,",4,"" } (both orthogonal to ., ), the

0

lowest Hamiltonian eigenvector ¥~ = ¢~ has energy E¢ < E¢0* , Closer to Ey , because the Hamiltonian opens the energy gap

between {Eg, ", E¢0‘2"} (in a 3-dimensional function space { v, w,,w, } this would be exactly Ey, as it can be directly verified).

(3+)

Eg, can be further improved by further rotating around y, similarly, i.e. after introducing another function ¢~ orthogonal to

(3+) (2-)

both { ¢, w,_ } by calculating in the subspace of { ¢ ,¢,~ } (both orthogonal to i ) the lowest eigenvector ¥ = ¢~ which
has energy Eg,“’ < Eg, (even closer to Ey,); and so on.

Improving ¢, orthogonally to ¢, : Since y is never exactly known, then, it may still be possible to improve ¢, orthogonally to
¢, , the best available approximant of _, by first computing ¢0* orthogonal to ¢,

AT ACALY

s (1.10)
1-(4,]4,)

if the condition
- _Eg,+E4 (410.) ~2(4.[HI4)(414,)
1-{4|¢,)

is attainable. Indeed, by expanding about v , as directly verified, this condition, to leading order, reads

Eg, Eg, (1.11)

¢0>2 , which is not impossible. Here [c.f. Eq. (1.6)] ¢.* is the normalized

0

(Ey,—Ep)(1-(v[4)) = (B¢ —Ev, ) (4
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function, orthogonal to both {y, }, collecting all higher than-1 terms of ¢, . For ¢ ,¢, very close to v,y , as directly verified

by expanding about  , the condition is satisfied when (x//o |¢1>2 < (a//1 |¢0>2 (indicative of the relative quality of the

approximants). Incidentally, all other (small) components (out of the plane of w i, ) are less relevant, so that the opposite

MIN

procedure of optimizing ¢ orthogonally to ¢, can lead to ¢1M'" unpredictably far from _ with still E¢
following example.

< Ey, , as shown in the

Example: Even in the subspace { v, , v, ,, }, the orthonormal trial functions ¢ = ay, +by, , ¢ = by, —ay, with

(':1=\/[(Ex//1 ~¢)-Ep,]/(Ev, -Ep,) , b =\/[E(//Z ~(Ey, -¢)]/(Ew, —Ey,) , (small & ), have energies

E¢ =Ey, +Ey, —(Ey, —¢) = Ey, +¢ (if Ey, - Ey, issmall), Eg, = Ey, — ¢ , while ¢, reasonably, but not particularly

accurately, approximates y_ (for instance, for He IS ina.u., Ey, =-2903 , Ey, =-2.146 , Ey, = -2.06 ,
¢ =0.9476 y +0.3194 v, has Eg =-2.817 and ¢ =0.3194 y —0.9476 , has E¢ = -2.146 = Ey_, while ¢ is orthogonal

MIN

to both ¢ and ), so that, any function orthogonal to the same ¢, could be a minimization “result”, ¢,

.

, with arbitrary

MIN

g™ ) and with Ey, - & < Eg

<Ey.

Demonstration of Q : Minimization of Q , for the same ¢ of He, as above, by varying ¢ =cy_ +d y, + z//lxll— ¢ —-d°,
yields ¢ < tol =10" , d < tol , with Eg =-2.146 [sothat ¢ =y, and, fromEq. (1.10), 4 = ¢, 1.
Further improvement of ¢, : If E¢0* < E¢, [Eqg.(1.11)], then, by rotating around ¢, , as described above [after Eq. (1.9)], since

the Hamiltonian always opens the energy gap between mutually orthogonal functions (all orthogonal to ¢ ), ¢, can be further

(m-) (m-)

improved (until (z//0 |¢1>2 > <l//1|¢o>2 ), by always taking the lowest current eigenfunction ¢~ =¥ . Atany step, ¢, can be
used as a new ¢, to improve ¢ via Q of Eq. (1.5). In the above example of He, rotating ¢, around ¢, , gives ¢O“” =¥ =y,
(and ¥ =y,).

Technicalities: If the higher eigenvalues approach each other, then the second derivatives diminish and the paraboloid Q
flattens within the tolerance criterion ¢ , used inthe ©_ minimization. Then it might be desirable to steepen it near the minimum.

The simplest way would be to multiply Q_ by a large number N, so as to distinguish the differences within the same ¢ . Also, it

—_n F

ET

might be possible, by introducing one more variable, Er, to minimize the functional F[Q ,E 1=Q + : if T is chosen in

the order of Q_’s curvature radius at _, ~(inverse of second derivatives, estimated by the Hessian minors, or by trial) , then, as

directly verified by expanding about y_, F is a paraboloid with minimum at ¢ =y with F[Ey ,Ey ]=Ey .

Summary: Q [Eq. (1.5)] has a local minimum at the excited state w , where Q =Ew and ¢ = .If 4 isabetter

approximantto w than ¢ isto y_ [i.e.if, from Eq. (1.11), E¢O* < Eg, ] then ¢, can be improved orthogonally to ¢ .
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