Variational Functionals for Excited States ## Naoum C. Bacalis Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, GR-11635 Athens, Greece Functionals Ω_n that have local minima at the excited states of a non degenerate Hamiltonian are presented. Then, improved mutually orthogonal approximants of the ground and the first excited state are reported. PACS: 31.15.xt, 31.15.-p, 31.10.+z, 02.70.?c In the following the Hamiltonian expectation value of a trial wave function, ϕ , is denoted by $E\phi$ and is called energy of ϕ . The Hamiltonian eigenfunctions (assumed non-degenerate) are denoted by using the symbol ψ . All functions are assumed real and normalized. According to the Hylleraas, Undheim, and McDonald [HUM] theorem¹ the higher roots of the secular equation tend to the excited state energies from *above*. But it should be observed that among all functions ϕ_1 , which are orthogonal to an available ground state approximant ϕ_0 , the Gram – Schmidt orthonormal to ϕ_0 $$\phi_{_{1}}^{^{+}} \equiv \frac{\psi_{_{1}} - \phi_{_{0}} \left\langle \psi_{_{1}} \middle| \phi_{_{0}} \right\rangle}{\sqrt{1 - \left\langle \psi_{_{1}} \middle| \phi_{_{0}} \right\rangle^{2}}}$$ which is the *closest*² to the exact ψ_1 (i.e. with the largest projection $\langle \psi_1 | \phi_1 \rangle^2$ - not decreased by the presence of any other components) lies energetically *below the exact E\psi_1*, only if $E\phi_0 < E\psi_1$: $$E\phi_{_{_{1}}}^{^{+}}=E\psi_{_{_{1}}}- rac{\left(E\psi_{_{_{1}}}-E\phi_{_{_{0}}} ight)\left\langle \psi_{_{_{1}}}\middle|\phi_{_{0}} ight angle ^{2}}{1-\left\langle \psi_{_{_{1}}}\middle|\phi_{_{_{0}}} ight angle ^{2}}< E\psi_{_{_{1}}}$$, Therefore, the 2^{nd} HUM root, $\phi_1^{\text{\tiny HUM}}$, lying higher than ψ_1 , $E\phi_1^{\text{\tiny HUM}} > E\psi_1$, is necessarily *not* the closest to ψ_1 (while orthogonal to ϕ_0). On the other hand, minimizing the energy orthogonally to the available $\phi_{_0}$, does not lead to the *closest* either: Passing through $E\phi_{_1}^{^+}$, it leads to an *even lower* energy: Because for any $\phi_{_1}^{^{1+}}$, chosen simultaneously orthogonal to both $\phi_{_0}$ and $\phi_{_1}^{^+}$, the Hamiltonian opens the energy gap between $E\phi_{_1}^{^{1+}}$ and $E\phi_{_1}^{^+}$, so that, the lowest of the Hamiltonian eigenfunctions Ψ^-, Ψ^+ , (both orthogonal to $\phi_{_0}$) on the subspace of { $\phi_{_1}^{^{1+}}$, $\phi_{_1}^{^+}$ }, lies lower than $E\phi_{_1}^{^+}$, i.e. $E\Psi^- < E\phi_{_1}^{^+} < E\psi_{_1}$, so that the lowest, $\phi_{_1}^{^{MIN}}$, of all such Ψ^- s, obtained by minimizing the energy orthogonally to $\phi_{_0}$, lies even lower than $E\phi_{_1}^{^+}$. Therefore, $\phi_{_1}^{^{MIN}}$ is *not* the closest to $$\psi_{_{1}}$$ either (while orthogonal to $\phi_{_{0}}$). (In fact, an appropriate sum $\Psi = \Psi^{-}\sqrt{\frac{E\Psi^{^{+}} - E\psi_{_{1}}}{E\Psi^{^{+}} - E\Psi^{^{-}}}} \pm \Psi^{^{+}}\sqrt{\frac{E\psi_{_{1}} - E\Psi^{^{-}}}{E\Psi^{^{+}} - E\Psi^{^{-}}}}$, orthogonal to $\phi_{_{0}}$, has energy $E\Psi = E\psi_{\perp}$, with $\langle \psi_{\perp} | \Psi \rangle^2$ not necessarily large.) Thus, seeking ϕ_1 , approximant to ψ_1 , orthogonal to an approximant ϕ_0 , either by the HUM theorem or by orthogonal optimization, does neither lead to ϕ_1^+ , the *closest* to ψ_1^- , nor does it raise the energy going from ϕ_1^+ to ψ_1^- (which is orthogonal to ψ_0^- , not to ϕ_0^-). As Shull and Löwdin³ have shown, the excited states can be calculated without knowledge of ψ_0^- . Therefore, a variational functional for ϕ_1^- would be desirable, that leads to ψ_1^- not necessarily orthogonally to the available ϕ_0^- , allowing subsequent improvement of ϕ_0^- orthogonally to ϕ_1^- : Construction: For a non-degenerate Hamiltonian of (unknown) bound eigenstates of a specific type of symmetry, $\psi_{_0}$, $\psi_{_1}$, and eigenenergies $E\psi_{_0} < E\psi_{_1} < ...$, a normalized approximant of $\psi_{_n}$ can be expanded as $$\phi_{n} = \sum_{i < n} \psi_{i} \left\langle \psi_{i} \middle| \phi_{n} \right\rangle + \psi_{n} \sqrt{1 - \sum_{i < n} \left\langle \psi_{i} \middle| \phi_{n} \right\rangle^{2} - \sum_{i > n} \left\langle \psi_{i} \middle| \phi_{n} \right\rangle^{2} + \sum_{i > n} \psi_{i} \left\langle \psi_{i} \middle| \phi_{n} \right\rangle}$$ $$(1.1)$$ where the overlap coefficients are small. The energy is $$E\phi_{n} = E\psi_{n} - \sum_{i \in n} \left(E\psi_{n} - E\psi_{i} \right) \left\langle \psi_{i} \middle| \phi_{n} \right\rangle^{2} + \sum_{i \in n} \left(E\psi_{i} - E\psi_{n} \right) \left\langle \psi_{i} \middle| \phi_{n} \right\rangle^{2} \equiv E\psi_{n} - P_{L} + P_{H}, \tag{1.2}$$ an *n*-order saddle point, where the lower and higher than-*n* parts, P_L and P_H , are positive (so that $E\psi_n - P_L \le E\phi_n \le E\psi_n + P_H$). The minimum of the following paraboloid, defined by $$E\psi_{_{n}} + P_{_{L}} + P_{_{H}} = E\phi_{_{n}} + 2P_{_{L}} \tag{1.3}$$ determines $\phi_n \to \psi_n$, in terms of the lower than-*n* information (P_L) . An expression for the behaviour of P_L can be found by first considering, to leading order in coefficients, the overlap and the Hamiltonian matrix elements in terms of the (similarly predetermined as described here) approximants ϕ_i , i < n: $$\langle \phi_{i} | \phi_{n} \rangle = \langle \psi_{i} | \phi_{n} \rangle + \langle \psi_{n} | \phi_{i} \rangle + \cdots$$ $$\langle \phi_{i} | H | \phi_{i} \rangle = E \psi_{i} \langle \psi_{i} | \phi_{i} \rangle + E \psi_{i} \langle \psi_{i} | \phi_{i} \rangle + \cdots .$$ $$(1.4)$$ Substituting $\langle \psi | \phi \rangle$ from Eqs. (1.4) to each term of P_L in Eq. (1.2) gives, to leading order, $\left(E \psi_{_n} \left\langle \phi_{_i} \middle| \phi_{_n} \right\rangle - \left\langle \phi_{_i} \middle| H \middle| \phi_{_n} \right\rangle \right)^2 \Big/ \left(E \psi_{_n} - E \psi_{_i} \right), \text{ which suggests an examination, in terms of known quantities, of the expression } \\ \sum_{i < n} \left[\left(E \phi_{_n} \left\langle \phi_{_i} \middle| \phi_{_n} \right\rangle - \left\langle \phi_{_i} \middle| H \middle| \phi_{_n} \right\rangle \right)^2 \Big/ \left(E \phi_{_n} - E \phi_{_i} \right) \right] . \text{ This, as directly verified, when both } \phi_{_i} = \psi_{_i} \text{ and [in Eq.(1.2)] } P_{_H} \to 0 ,$ reduces to $P_{L}\left(1-\sum_{i\leq n}\left\langle\phi_{i}\left|\phi_{n}\right\rangle^{2}\right)$. Therefore, for $P_{H}\neq0$ the behaviour of the paraboloid of Eq. (1.3) close to ψ_{n} is reasonably described by the functional Ω : $$E\psi_{n} + P_{L} + P_{H} = E\phi_{n} + 2P_{L} \rightarrow \Omega_{n} \equiv E\phi_{n} + 2\frac{\sum_{i < n} \frac{\left(E\phi_{n} \left\langle \phi_{i} \middle| \phi_{n} \right\rangle - \left\langle \phi_{i} \middle| H \middle| \phi_{n} \right\rangle\right)^{2}}{E\phi_{n} - E\phi_{i}}}{1 - \sum_{i < n} \left\langle \phi_{i} \middle| \phi_{n} \right\rangle^{2}}$$ $$(1.5)$$ with a local minimum at $\phi_{_n} = \psi_{_n}$, which is paraboloidal, by construction, when $\phi_{_i} = \psi_{_i}$. *Proof*: Ω_n has a true local minimum at $\phi_n = \psi_n$ when ϕ_i are *approximants* of ψ_i ($\phi_i \approx \psi_i$), while $E\phi_n$ has a saddle point there: By collecting the contribution of the higher than-n subspace for each ϕ_i wave function, $i \leq n$, to the contribution of a normalized function $\phi_i^{\perp (n)}$, $i \leq n$, orthogonal to all lower than-n ψ_i eigenfunctions, i.e. $$\phi_{i}^{\perp(n)} = \sum_{j>n} \psi_{j} \left\langle \psi_{j} \middle| \phi_{i} \right\rangle / \sqrt{\sum_{j>n} \left\langle \psi_{j} \middle| \phi_{i} \right\rangle^{2}}, i \leq n, \qquad (1.6)$$ where the overlap and Hamiltonian matrix elements are generally non-zero, $\left\langle \phi_{i}^{\perp_{\{n\}}} \middle| \phi_{j}^{\perp_{\{n\}}} \right\rangle \neq 0$, $\left\langle \phi_{i}^{\perp_{\{n\}}} \middle| H \middle| \phi_{j}^{\perp_{\{n\}}} \right\rangle \neq 0$, $i,j \leq n$, and whose energies, obviously, are $E\phi_{i}^{\perp_{\{n\}}} > E\psi_{n}$, $i \leq n$, it is directly verified that all the principal minors A_{n}^{i} , $i \leq n$, of the Hessian determinant A_{n}^{n} of Ω_{n} , along the main diagonal, i.e. those which are required by the second derivatives theorems of calculus (Sylvester's theorem), are, at the desired place $\phi_{n} = \psi_{n}$, $\phi_{i} \neq \psi_{i}$, i < n, positive, if ϕ_{i} are close to ψ_{i} : Each principal minor determinant (denoted by the main diagonal) $$A_{n}^{k < n} \equiv Det \left[\frac{\partial^{2} \Omega_{n}}{\partial \langle \psi_{0} | \phi_{n} \rangle \partial \langle \psi_{0} | \phi_{n} \rangle} \cdots \frac{\partial^{2} \Omega_{n}}{\partial \langle \psi_{i} | \phi_{n} \rangle \partial \langle \psi_{i} | \phi_{n} \rangle} \cdots \frac{\partial^{2} \Omega_{n}}{\partial \langle \psi_{k} | \phi_{n} \rangle \partial \langle \psi_{k} | \phi_{n} \rangle} \right]_{\phi_{n} = \psi_{n}, \phi_{i} \neq \psi_{i}, i < k}$$ equals $$A_{n}^{k \times n} = 2^{k} \prod_{i=0}^{k} \left(E \psi_{n} - E \psi_{i} \right) > 0 \left(+ O \left[\left\langle \psi_{q} \middle| \phi_{r} \right\rangle \left\langle \psi_{s} \middle| \phi_{i} \right\rangle \right] \right) . \tag{1.7}$$ where there are no coefficients (which depend on the quality of ϕ) of 1st power, while the Hessian itself $$A_{n}^{n} \equiv Det \left[\frac{\partial^{2} \Omega_{n}}{\partial \left\langle \psi_{0} \middle| \phi_{n} \right\rangle \partial \left\langle \psi_{0} \middle| \phi_{n} \right\rangle} \cdots \frac{\partial^{2} \Omega_{n}}{\partial \left\langle \psi_{1} \middle| \phi_{n} \right\rangle \partial \left\langle \psi_{1} \middle| \phi_{n} \right\rangle} \cdots \frac{\partial^{2} \Omega_{n}}{\partial \left\langle \phi_{n}^{\perp(n)} \middle| \phi_{n} \right\rangle \partial \left\langle \phi_{n}^{\perp(n)} \middle| \phi_{n} \right\rangle} \right]_{\phi_{n} \equiv \psi_{0} \quad \phi_{n} \neq \psi_{0}, i \leq n}$$ equals $$A_{n}^{n} = 2^{n} \left(E \phi_{n}^{\perp_{\{n\}}} - E \psi_{n} \right) \prod_{i=0}^{n-1} \left(E \psi_{n} - E \psi_{i} \right) > 0 \left(+ O \left[\left\langle \psi_{q} \middle| \phi_{r} \right\rangle \left\langle \psi_{s} \middle| \phi_{i} \right\rangle \right] \right) . \tag{1.8}$$ If ϕ_i are close to ψ_i , all these determinants of Eqs. (1.7 - 1.8) are positive, hence the Hessian matrix is positive definite, therefore, the functional Ω_n has a local minimum at $\phi_n = \psi_n$, which determines ψ_n if all ϕ_i approximants of ψ_i , $i \le n$, are known. Obviously, Ω_n reduces to the Eckart⁴ theorem for ψ_n . The functional $\Omega_{_{_{m}}}$ passes from all $\psi_{_{_{i}}}$. A way to identify the desired $\psi_{_{_{m}}}$ for atoms and for diatomic molecules, is to expand (for atoms) in a basis of Slater type exponentials whose prefactors are *not monomials*, but rather they are variationally optimized *polynomials*: initially starting from the *identifiable* associated Laguerre polynomials, because these are *not severely modified* during optimization; Also identifiable (for diatomic molecules) are the (separable into radial and angular parts) variationally optimized *one*-electron-diatomic-*molecule*-type orbitals. Both significantly reduce the size of a configuration interaction expansion. ⁵ Improving ϕ_0 orthogonally to ψ_1 : If ψ_1 were known it would be possible to improve ϕ_0 orthogonally to ψ_1 : On the subspace of $\{\phi_0, \psi_1\}$ the highest Hamiltonian eigenvector, Ψ^+ , is $$\Psi^{+} = \psi_{\cdot}$$ The lowest, Ψ^- , is orthogonal to ψ_+ , $$\Psi^{-} = \phi_{_{0}}^{^{+}} \equiv \frac{\phi_{_{0}} - \psi_{_{1}} \langle \psi_{_{1}} | \phi_{_{0}} \rangle}{\sqrt{1 - \langle \psi_{_{1}} | \phi_{_{0}} \rangle^{2}}}$$ with energy $$E\phi_{_{0}}^{^{+}} = E\phi_{_{0}} - \frac{\left(E\psi_{_{1}} - E\phi_{_{0}}\right)\left\langle\psi_{_{1}}\middle|\phi_{_{0}}\right\rangle^{2}}{1 - \left\langle\psi_{_{1}}\middle|\phi_{_{0}}\right\rangle^{2}} \le E\phi_{_{0}}$$ (1.9) (same or better than ϕ_0). Further, rotating ϕ_0^+ around ψ_1^- improves ϕ_0^+ as follows: After introducing (e.g. by one more configuration) a function $\phi_0^{(2+)}$ orthogonal to both $\{\phi_0^+, \psi_0^-\}$, then, in the subspace of $\{\phi_0^+, \phi_0^{(2+)}\}$ (both orthogonal to ψ_1^-), the lowest Hamiltonian eigenvector $\Psi^- \equiv \phi_0^-$ has energy $E\phi_0^- \leq E\phi_0^+$, closer to $E\psi_0^-$, because the Hamiltonian opens the energy gap between $\{E\phi_0^+, E\phi_0^{(2+)}\}$ (in a 3-dimensional function space $\{\psi_0^-, \psi_1^-, \psi_k^-\}$) this would be exactly $E\psi_0^-$ as it can be directly verified). $E\phi_0^-$ can be further improved by further rotating around ψ_1^- similarly, i.e. after introducing another function $\phi_0^{(3+)}$ orthogonal to both $\{\phi_0^-, \psi_1^-, \psi_1^-\}$ by calculating in the subspace of $\{\phi_0^-, \phi_0^{(3+)}\}$ (both orthogonal to ψ_1^-) the lowest eigenvector $\Psi^- \equiv \phi_0^{(2-)}$ which has energy $E\phi_0^{(2-)} \leq E\phi_0^-$ (even closer to $E\psi_0^-$); and so on. Improving $\phi_{_0}$ orthogonally to $\phi_{_1}$: Since $\psi_{_1}$ is never exactly known, then, it may still be possible to improve $\phi_{_0}$ orthogonally to $\phi_{_1}$, the best available approximant of $\psi_{_1}$, by first computing $\phi_{_0}^+$ orthogonal to $\phi_{_1}$, $$\phi_{_{0}}^{^{+}} \equiv \frac{\phi_{_{0}} - \phi_{_{1}} \langle \phi_{_{1}} | \phi_{_{0}} \rangle}{\sqrt{1 - \langle \phi_{_{1}} | \phi_{_{0}} \rangle^{2}}}$$ $$(1.10)$$ if the condition $$E\phi_{_{0}}^{^{+}} = \frac{E\phi_{_{0}} + E\phi_{_{1}}\langle\phi_{_{1}}|\phi_{_{0}}\rangle^{^{2}} - 2\langle\phi_{_{0}}|H|\phi_{_{1}}\rangle\langle\phi_{_{1}}|\phi_{_{0}}\rangle}{1 - \langle\phi_{_{1}}|\phi_{_{0}}\rangle^{^{2}}} \le E\phi_{_{0}}$$ $$(1.11)$$ is attainable. Indeed, by expanding about ψ_{\perp} , as directly verified, this condition, to leading order, reads $(E\psi_1 - E\psi_0)(1 - \langle \psi_1 | \phi_0 \rangle^2) \ge (E\phi_0^{\perp_{\{1\}}} - E\psi_0)\langle \phi_0^{\perp_{\{1\}}} | \phi_0 \rangle^2$, which is not impossible. Here [c.f. Eq. (1.6)] $\phi_0^{\perp_{\{1\}}}$ is the normalized function, orthogonal to both $\{\psi_{_0},\psi_{_1}\}$, collecting all higher than-1 terms of $\phi_{_0}$. For $\phi_{_0},\phi_{_1}$ very close to $\psi_{_0},\psi_{_1}$, as directly verified by expanding about $\psi_{_0},\psi_{_1}$ the condition is satisfied when $\langle\psi_{_0}|\phi_{_1}\rangle^2 \leq \langle\psi_{_1}|\phi_{_0}\rangle^2$ (indicative of the relative quality of the approximants). Incidentally, all other (small) components (out of the plane of $\psi_{_0},\psi_{_1}$) are less relevant, so that the opposite procedure of optimizing $\phi_{_1}$ orthogonally to $\phi_{_0}$ can lead to $\phi_{_1}^{_{MIN}}$ unpredictably far from $\psi_{_1}$ with $still\ E\phi_{_1}^{_{MIN}} \lesssim E\psi_{_1}$, as shown in the following example. Example: Even in the subspace { ψ_0 , ψ_1 , ψ_2 }, the orthonormal trial functions $\phi_0 = a\psi_0 + b\psi_2$, $\phi_1 = b\psi_0 - a\psi_2$ with $a = \sqrt{\left[\left(E\psi_1 - \varepsilon\right) - E\psi_0\right]/\left(E\psi_2 - E\psi_0\right)}$, $b = \sqrt{\left[E\psi_2 - \left(E\psi_1 - \varepsilon\right)\right]/\left(E\psi_2 - E\psi_0\right)}$, (small ε), have energies $E\phi_0 = E\psi_0 + E\psi_2 - \left(E\psi_1 - \varepsilon\right) \cong E\psi_0 + \varepsilon$ (if $E\psi_2 - E\psi_1$ is small), $E\phi_1 = E\psi_1 - \varepsilon$, while ϕ_0 reasonably, but not particularly accurately, approximates ψ_0 (for instance, for He 1 S, in a.u., $E\psi_0 = -2.903$, $E\psi_1 = -2.146$, $E\psi_2 = -2.06$, $\phi_0 = 0.9476$ $\psi_0 + 0.3194$ ψ_2 has $E\phi_0 = -2.817$ and $\phi_1 = 0.3194$ $\psi_0 - 0.9476$ ψ_2 has $E\phi_1 = -2.146 = E\psi_1$, while ϕ_1 is orthogonal to both ϕ_0 and ψ_1), so that, any function orthogonal to the same ϕ_0 could be a minimization "result", ϕ_1^{MIN} , with arbitrary $\langle \psi_1 | \phi_0^{\text{MIN}} \rangle$ and with $E\psi_1 - \varepsilon \leq E\phi_1^{\text{MIN}} \leq E\psi_1$. Demonstration of Ω_1 : Minimization of Ω_1 , for the same ϕ_0 of He, as above, by varying $\phi_1 = c \psi_0 + d \psi_2 + \psi_1 \sqrt{1 - c^2 - d^2}$, yields $c < tol = 10^{-8}$, d < tol, with $E\phi_1 = -2.146$ [so that $\phi_1 = \psi_1$ and, from Eq. (1.10), $\phi_0^+ = \phi_0^-$]. Further improvement of ϕ_0 : If $E\phi_0^+ \leq E\phi_0^-$ [Eq. (1.11)], then, by rotating around ϕ_1^- , as described above [after Eq. (1.9)], since the Hamiltonian always opens the energy gap between mutually orthogonal functions (all orthogonal to ϕ_1^-), ϕ_0^+ can be further improved (until $\langle \psi_0^- | \phi_1^- \rangle^2 > \langle \psi_1^- | \phi_0^- \rangle^2$), by always taking the lowest current eigenfunction $\phi_0^{(m-)} = \Psi^-$. At any step, $\phi_0^{(m-)}$ can be used as a new ϕ_0^- to improve ϕ_1^- via Ω_1^- of Eq. (1.5). In the above example of He, rotating ϕ_0^- around ϕ_1^- , gives $\phi_0^{(1-)} = \Psi^- = \psi_0^-$ (and $\Psi^+ = \psi_0^-$). Technicalities: If the higher eigenvalues approach each other, then the second derivatives diminish and the paraboloid Ω_n flattens within the tolerance criterion ε_n , used in the Ω_n minimization. Then it might be desirable to steepen it near the minimum. The simplest way would be to multiply Ω_n by a large number N, so as to distinguish the differences within the same ε_n . Also, it might be possible, by introducing one more variable, E_F , to minimize the functional $F[\Omega_n, E_F] \equiv \Omega_n + \left| \frac{\Omega_n - E_F}{E_F T} \right|$: if T is chosen in the order of Ω_n 's curvature radius at ψ_n , \sim (inverse of second derivatives, estimated by the Hessian minors, or by trial), then, as directly verified by expanding about ψ_n , F is a paraboloid with minimum at $\phi_n = \psi_n$ with $F[E\psi_n, E\psi_n] = E\psi_n$. Summary: $\Omega_{_n}$ [Eq. (1.5)] has a local minimum at the excited state $\psi_{_n}$, where $\Omega_{_n} = E\psi_{_n}$ and $\phi_{_n} = \psi_{_n}$. If $\phi_{_1}$ is a better approximant to $\psi_{_1}$ than $\phi_{_0}$ is to $\psi_{_0}$ [i.e. if, from Eq. (1.11), $E\phi_{_0}^+ \leq E\phi_{_0}^-$], then $\phi_{_0}$ can be improved orthogonally to $\phi_{_1}$. ¹ E. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930); J. K. L. McDonald, Phys. Rev. 43, 830 (1933). ² N. C. Bacalis, International Conference of Computational Methods in Sciences and Engineering 2007 (ICCMSE 2007), Agios Ioannis Peristeron, Corfu, Greece, 25-30 September 2007, Lecture Series, edited by T. Simos and G. Maroulis (in print). ³ H. Shull and P. -O. Löwdin, Phys. Rev. **110**, 1466 (1958). ⁴ C. Eckart, Phys. Rev. **36**, 878 (1930). ⁵ Z. Xiong and N. C. Bacalis, Commun. Math. Comput. Chem. **53**, 283 (2005); Z. Xiong, M. Velgakis, and N. C. Bacalis, Int. J. Q. Chem. **104**, 418 (2005); N. C. Bacalis, J. Phys. B **29**, 1587 (1996).