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The equilibrium statistical properties of DNA denaturation bubbles are examined in detail within
the framework of the Peyrard-Bishop-Dauxois model. Bubble formation in homogeneous DNA is
found to depend crucially on the presence of nonlinear base-stacking interactions. Small bubbles
extending over less than 10 base pairs are associated with much larger free energies of formation
per site than larger bubbles. As the critical temperature is approached, the free energy associated
with further bubble growth becomes vanishingly small. An analysis of average displacement profiles
of bubbles of varying sizes at different temperatures reveals almost identical scaled shapes in the
absence of nonlinear stacking; nonlinear stacking leads to distinct scaled shapes of large and small
bubbles.

PACS numbers: 87.10.-e, 87.14.gk, 87.15.Zg

I. INTRODUCTION

The nonlinear dynamics and statistical physics of DNA
denaturation have been widely investigated [1]. Recent
work has attempted to extend mesoscopic scale model-
ing in order to describe with sufficient accuracy how se-
quence details determine the statistical and dynamical
properties of local fluctuations. Such local fluctuations,
known as “denaturation bubbles” are believed to be in-
strumental in the initiation of the transcription process
at physiological temperatures. The possibility of sponta-
neous, sequence-specific formation of a mid-size bubble
has been the subject of considerable research interest -
and some debate - [2, 3, 4, 5, 6]. A related - but nonethe-
less distinct - question which might be relevant to the pro-

cess of transcription concerns the growth of a bubble to
much larger sizes. Since this is by definition - at least in
an asymptotic sense - a scale-free phenomenon, it is best
addressed at the level of the underlying phase transition;
moreover, at least its salient features should be evident
within the context of the homogeneous (polynucleotide)
chain.

It should be recalled that nonlinear lattice dynam-
ics based DNA modeling of the Peyrard-Bishop-Dauxois
(PBD [7]) type predicts either an (effectively) first-order
or a (strict) second-order phase transition, depending on
whether non-linear base-stacking effects are taken into
account or not [8]. In the case of second-order transition,
it has been determined that domain walls (DW) become
entropically stable at the critical temperature [9, 10]; re-
cent numerical evidence from Monte-Carlo simulations
[11] suggests that the average bubble size also becomes
critical. The first-order transition case is slightly more
complicated. Entropic effects are not sufficient to enable
spontaneous DW formation at the critical temperature.
This appears to rule out DWs as agents of thermal denat-

uration. Bubbles are natural - and in fact have always
been - prime suspects for this role. Very recent work
[12] has demonstrated that large bubbles may form in
this case as well, and that their probability distribution
cannot be described by a simple exponential. Detailed
data in the vicinity of the critical temperature are not
available[13]. It is however known from previous work
[8, 14] that most of the physics of nonlinear base-stacking
is generated by an effective thermal barrier which modi-
fies the on-site Morse-like potential. The point at which
the effects of the thermal barrier become important de-
fines a natural crossover between different types of be-
havior. As this note will show in some detail, such a
crossover is also present in bubble statistics. Bubbles
which extend over a few sites are entirely non-critical;
the onset of criticality is reflected only in the statistics of
large bubbles; the asymptotic properties of the latter are
such that the free-energy barrier toward bubble growth
is lowered - approaching zero at the transition temper-
ature, whereas the average bubble size always remains
finite. It will be further shown that this dichotomy be-
tween large and small bubbles is not restricted to the
statistics; reduced shapes of large and small-size bub-
bles - which scale uniformly in the absence of nonlinear
stacking interactions - reveal distinct differences when
nonlinear stacking is included.

The paper is organized as follows: Section II includes
model definitions, notation and general properties of bub-
bles. Section III presents numerical results on bubble
statistics based on direct matrix multiplication. Sec-
tion IV formulates an alternative procedure based on an
associated eigenvalue problem which provides emphasis
on asymptotic properties. Section V discusses bubbles
shapes. The final section includes a brief summary and
discussion of some key points.
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II. DEFINITIONS

A. Model

The PBD model assumes a potential energy of the form

HP =
N

∑

j=1

{W (yj−1, yj) + V (yj)} (1)

where yj is a transverse coordinate representing the sep-
aration of the two bases at the jth site,

W (y, y′) =
1

2R

[

1 + ρe−b(y+y′)
]

(y − y′)2 (2)

is an anharmonic elastic term which models the nonlin-
ear base-stacking interaction and V (y) = (1−e−y)2 is an
on-site Morse potential describing the combined effects
of hydrogen-bonding, stacking and solvent. I will use the
dimensionless parameter values R = 10.1, b = 0.08 and,
unless otherwise stated, ρ = 1. Furthermore, I will as-
sume that the system is subjected to periodic boundary
conditions. Thermodynamics is governed by the proper-
ties of the transfer integral (TI) equation

∫

∞

−∞

dy′K(y, y′)φν(y′) = Λνφν(y) (3)

with K(y, y′) = e−[W (y,y′)+V (y)/2+V (y′)/2]/T and T the
dimensionless temperature. In particular, details of a
possible phase transition depend on the type of singular-
ity (if any) which the spectral gap ∆ǫ = −T ln(Λ1/Λ0)
might exhibit near a critical temperature Tc. Since the
spectral gap is equal to the singular part of the ther-
modynamic free energy per site [9], a linearly vanishing
gap as T → T−

c corresponds to a first order transition, a
quadratically vanishing gap to a second order transition
etc.

B. Bubbles

The nth base pair is assumed to be unbound if yn > yc;
it is in a bound state if y ≤ yc; I choose yc = ln 2,
the inflexion point of the Morse potential. The choice
is of course somewhat arbitrary, but it should not influ-
ence fundamental asymptotic results. A bubble of length
n is a sequence of n successive unbound sites preceded
and followed, respectively, by a single bound site. It is
present in the infinite system (assumed subjected to pe-
riodic boundary conditions) with a probability

Pn = lim
N→∞

1

ZN

∫

∞

−∞

dy1 · · · dyr−1

∫ yc

−∞

dyr

∫

∞

yc

dyr+1

· · · dyr+n

∫ yc

−∞

dyr+n+1

∫

∞

−∞

dyr+n+2 · · · dyN

K(y1, y2) · · ·K(yN , y1) (4)

=

∫ yc

−∞

dyrφ
∗

0(yr)

∫

∞

yc

dyr+1 · · · dyr+n

∫ yc

−∞

dyr+n+1

φ0(yr+n+1)K̂(yr, yr+1) · · · K̂(yr+n, yr+n+1) (5)

where ZN is the full configurational partition function,
dominated by the highest eigenvalue Λ0, φ0 denotes the
TI eigenstate corresponding to Λ0, and K̂ = K/Λ0.

C. Sum rules

By definition, the sum of all Pn’s expresses the proba-
bility that the site which precedes the bubble has a bound
base pair, i.e.

∞
∑

n=0

Pn = p =

∫ yc

−∞

dy |φ0(y)|2 . (6)

Moreover, the sum

∞
∑

n=1

nPn = 1 − p (7)

expresses the fraction of sites with unbound base pairs.
As a consequence, the average bubble size (including the
correct weighting factor for bubbles of zero length) is

ξb =
1 − p

p
. (8)

Some general conclusions can already be drawn at this
level. For a second-order transition, where p ∝ Tc − T
near Tc [8], ξb ∝ (Tc − T )−1. For a first-order transition,
where p approaches a constant as T → T−

c , ξb remains
finite. Note that the average bubble length is in both
cases much smaller that the correlation length ξ = T/∆ǫ
which respectively diverges quadratically or linearly.

III. RESULTS

For bubbles of up to moderately large size, it is possible
to obtain results by direct matrix multiplication of (5).
I use a grid of 2989 points and perform the successive
integrations using a 10th order Bode[15] routine in the
interval (−5, 205).

A. Linear base-stacking (ρ = 0)

Fig. 1 shows the probability of bubble occurrence (left
panel) for a variety of temperatures. It is clear that that
the distribution is far from exponential [16]. For compar-
ison I show in the inset the probability of occurrence of
a bound cluster of n sites, which is described by a pure
exponential. Note that it is possible to fit the Pn data,
at least at the lowest temperatures, by stretched expo-
nentials, i.e. Pn = a exp[−(n/σ)b]. However, the fits are
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FIG. 1: (Color online) Bubble statistics in the case of vanish-
ing nonlinear base stacking, ρ = 0. Left panel: Probability of
a bubble extending to n sites, for a variety of temperatures.
Note that the decay becomes weaker as the critical tempera-
ture is approached. Also shown are, for the two lowest tem-
peratures, fits to a stretched exponential function. Inset: For
comparison, I show the probability of a cluster of n succsessive
sites with bound base pairs (pure exponential). Right panel:
Ratios of successive probabilities vs. inverse bubble size for a
range of temperatures.

neither perfect (they show systematic deviations at both
ends) nor very instructive (the σ obtained decreases as
the temperature increases, i.e. σ = 2.04 at T = 0.85,
σ = 1.07 at T = 0.95 the necessary compensation is
achieved by a substantial decrease in the stretching ex-
ponent from b = 0.70 to b = 0.52). A more promising
approach is to separate out any implicit exponential de-
pendence by looking at the ratios of successive probabil-
ities. Thus if one attempts to describe deviations from
exponential dependence by a power-law,

Pn ∝
1

nc
e−n/σ (9)

a plot of the ratios

Pn

Pn−1
= e−1/σ

{

1 −
c

n
+ · · ·

}

, n ≫ 1 (10)

vs 1/n should approach a definite limit as n → ∞, from
which it is in principle possible to read off both the ac-
tivation free energy ∆fb = T/σ associated with bubble
growth and - by estimating the asymptotic slope - the
exponent c [17]. The successive ratios shown in the right
panel of Fig. 1 confirm this picture; results of the ex-
trapolation are summarized in Fig. 2. They show that
it is indeed consistent to represent bubble statistics by
(9), that ∆fb ∝ (Tc −T )2 and that the exponent c varies
significantly with temperature, approaching a value close
to 3/2 near Tc.

An appropriate measure of the quality of the numeri-
cal data is given by the estimated critical temperatures
(cf. intersections of the dotted lines in Fig. 1 with the
horizontal axis). Estimates obtained, respectively, from
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FIG. 2: (Color online) Summary of critical results in the case
ρ = 0: as extracted from the numerical TI solution and the
asymptotic behavior of the curves shown in the right panel
of Fig. 1: (i) spectral gap ∆ǫ (open squares) vs. temper-
ature, (ii) activation free energy ∆fb associated with bubble

growth (open circles); (iii) the square root ∆ǫ1/2 (full squares)
is known to depend linearly on the temperature; rounding is

due to the finiteness of the matrix used; (iv) ∆f
1/2

b (full cir-
cles) is found to depend linearly on the temperature; remark-
ably, it exhibits no rounding; (v) the fraction of bound sites p

(diamonds), as obtained from (6). The dotted lines represent
linear fits to the data (cf. text for discussion). Inset: the
exponent c vs temperature.

the fraction of bound sites p and from ∆fb, are 1.227(6)
and 1.229(1). They should be compared with the value
1.2276(4) obtained via systematic finite-size scaling anal-
ysis [19].

B. Nonlinear base-stacking

I now proceed to the physically more relevant case of
nonlinear base-stacking, ρ = 1. Although this value un-
derestimates the importance of nonlinear stacking inter-
actions, it facilitates the present discussion because the
relevant crossover effects occur in numerically observable
regions. The important qualitative features remain un-
changed. In particular, the transition is for all practical
purposes a first-order one. The TI spectral gap vanishes
linearly near Tc = 0.801 and the fraction p of bound sites
has an apparent discontinuity at that temperature (cf.
Fig 3). In order to avoid data cluttering, the left panel of
Fig. 4 shows the function Pn for two temperatures only,
T = 0.76 and T = 0.79; note that the higher temperature
is quite close to the critical temperature.
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It is possible to obtain rough fits to the full sets of data
with the functional form (9) (dotted lines); the parame-
ter values obtained are σ = 8.4, 12.4 and c = 1.42, 1.49
- where the second value refers to the higher tempera-
ture. Such fits over the entire data range are of course
of questionable value if one tries to extract asymptotic
information. I have included them because the extracted
parameter values provide a hint of the underlying prob-
lem: the σ’s, although much larger than unity are sig-
nificantly smaller than the correlation length extracted
from the spectral gap (ξ = 19.6, 56.5 for the tempera-
tures under consideration); more importantly, values of
c < 2 in conjunction with large σ values (indicating the
onset of criticality) imply - from the known properties of
the polylogarithm function - a divergent average bubble
length, which directly contradicts the exact sum rule (cf.
above).
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FIG. 3: (Color online) Summary of critical results in the
case ρ = 1: (i) spectral gap ∆ǫ (diamonds) and (ii) fraction of
bound sites p (stars) vs. temperature, as obtained from the TI
numerical solution; (iii) activation free energy ∆fb associated
with bubble growth (filled squares) and (iv) exponent c of the
asymptotic form (10) (triangles, inset), as extracted from the
n → ∞ asymptotics of Fig. 4. The dotted lines represent
linear fits to the data (i) and (ii), both yielding, respectively,
Tc = 0.80 within numerical accuracy.

The reason behind these difficulties becomes obvious
if one looks at the ratios Pn/Pn−1, shown in the right
panel of Fig.4. It then becomes clear that small bubbles
have an entirely different behavior than larger bubbles. If
one restricts attention to smaller bubbles, e.g. n < 8 for
T = 0.76 (a temperature quite close to Tc), the apparent

asymptotic value of the ratio (cf. dotted line) appears
much smaller; the physics behind this is that it takes a
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FIG. 4: (Color online) Bubble statistics in the case of nonvan-
ishing nonlinear base stacking, ρ = 1. Left panel: Probability
of a bubble extending to n sites at T = 0.76 and T = 0.79;
also shown (continuous lines) are fits to the function (9), cf.
text for a discussion of the fitting parameters. Inset: For com-
parison I show the probability of a cluster of n bound sites
(pure exponential). Right panel: Ratios of successive proba-
bilities vs. inverse bubble size for a range of temperatures.
Inset: a zoom of the asymptotic region for the two highest
temperatures; dotted lines represent quadratic extrapolations
from the last 3 points.

free energy which is typically higher than T in order to
generate such a bubble. Note that the low apparent val-
ues of the exponent c derived from small bubbles (e.g.
c = 0.75 at T = 0.76) are irrelevant in this context, be-
cause they are not accompanied by a sequence of appar-
ent ∆fb’s approaching zero at the critical temperature -
hence no divergences in the either one of the series (6) or
(7) are generated.

A proper analysis of the asymptotics of large bubbles
(cf. inset of Fig.4) shows that the ratios Pn/Pn−1 lead
to ∆fb’s with the correct limiting behavior, i.e. linearly
vanishing at Tc (filled squares in Fig. 3). Moreover, the
values of c associated with the true asymptotics are also
much larger (cf. inset in Fig. 3). At a temperature
very near Tc, an estimate c = 2.9 is obtained, clearly
consistent with the finite average bubble size demanded
by a first-order transition (cf. above).

IV. AN ALTERNATIVE PROCEDURE

It is possible to use simple linear algebra in order to
extract some formal properties of the limit of very large
bubbles n → ∞. Using the overlap matrix elements

Bνν′ =

∫ yc

−∞

dy φν(y)φν′(y) (11)

it is possible to rewrite (5) in the form

Pn =< A|C · · ·C|A >
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where the matrix product contains n factors, Cνν′ =
(ΛνΛ′

ν/Λ2
0)

1/2(δνν′ − Bνν′) and Aν = (Λν/Λ0)
1/2B0ν . It

then follows that

Pn =
∑

α

µn
α|aα|

2 (12)

where {µα} are the eigenvalues of the real symmetric
matrix C and aα = (SA)α, where S is the orthogonal
matrix which diagonalizes C.

If the spectrum of C is continuous - as the numerical
computations suggest - then it is possible to rewrite the
bubble probability in a continuum form

Pn = µn
0

∫

∞

0

dx R(x)β(x)e−xn/T (13)

where the eigenvalues are now labeled as µα → µ0e
−x/T

with a density R(x), and |aα|
2 → β(x). In the limit

of very large n only a very narrow range x < T/n con-
tributes to the integral. Therefore, if R(x) ∝ x−ζ and
β(x) ∝ xη in the neighborhood of zero, it follows that

Pn ∝

(

T

n

)η−ζ+1

µn
0

and, by comparison with (9), we conclude that in the
PBD model the exponent c = η − ζ + 1 reflects the
behavior of the density of eigenvalues of C and the β
function near the high end of the spectrum. Further-
more, the highest eigenvalue µ0 can be used to extract
∆fb/T = 1/σ = − lnµ0.

Fig. 5 illustrates the behavior of the functions R(x)
and β(x) in the cases of both linear and nonlinear stack-
ing. In the first case (left panel), the asymptotics lead
to a value c = 1.33 for T = 1.20, which is close, but not
identical with the 1.47 obtained by the extrapolation pro-
cedure in the previous section. In the nonlinear stacking
case (right panel), it is seen that the crossover from small
to larger bubbles has its origins in a strong anomaly of
the β(x) function near x = 0.1. Using an effective ex-
ponent η = 2.5, and ζ = 0.4 would imply c = 3.1, in
reasonable agreement with the extrapolation estimates
of the previous section.

V. BUBBLE SHAPES

The alternative method described in the previous sec-
tion, owing to its superior computational efficiency, is
uniquely suited to deal with the repeated calculations in-
volved in obtaining full (average) displacement profiles of
bubbles. A straightforward generalization of the above
scheme allows the calculation of the conditional average
displacement of the sth site in a bubble of size n,

ȳ(s|n) =
1

Pn

∑

α,α′

aαµs−1
α D̃α,α′µn−s

α′ aα′ (14)
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FIG. 5: (Color online) The functions R(x) (open symbols,
left y-axis) and β(x) (filled symbols, right y-axis). Left panel,
ρ = 0: T = 0.85 (squares), T = 1.20 (circles). The density of
eigenvalues can be fitted with a power law ζ = 0.51, regardless
of temperature; the function β(x) also exhibits a power-law
behavior as x → 0; at the highest temperature a value η =
0.81 is obtained. Right panel: ρ = 1: T = 0.63 (squares),
T = 0.79 (circles). The density of eigenvalues exhibits a slight
anomaly around x = .1; in the region x → 0 it follows a
power law ζ = 0.41 (slope of dotted line, guide to the eye).
The function β(x) exhibits a strong anomaly around x = 0.1
and does not seem to settle to a pure power law behavior;
however, the effective slope is quite high (dashed line, guide
to the eye has a slope of 2.5).

where D̃ = SDS−1 and

Dνν′ =

∫

∞

yc

dy φν(y) y φν′ (y) . (15)

Note that the double sum in (14) is - apart from a factor
ys in the integrand - essentially the statistical weight (5).

Fig. 6 summarizes the results obtained via this ap-
proach for bubble shapes in the case of vanishing non-
linear stacking. The left panel shows that if the reduced
average displacements (i.e. divided by the maximal dis-
placement found for each bubble) are plotted against the
relative site coordinate s/n, the shapes obtained are in-
dependent of bubble size and/or temperature. Results
are well fitted by the shape

ȳ(s|n) = y0
n(T )[4x(1 − x)]τ , (16)

where y0
n(T ) can be understood as an average amplitude

of an n−site bubble and τ = 1/2. The dependence of
bubble amplitudes on size and temperature is shown in
the right panel. The amplitudes vary with size according
to a power law with an exponent close to 1/2. The overall
temperature dependence appears to be roughly linear.

A note of caution is due at this point. The results de-
scribed in this paper do not demonstrate the existence
of a bubble as a well-defined long-lived entity of a given
fixed size. The interpretation of the shape reported here
is somewhat more indirect, since it concerns statistical
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FIG. 6: (Color online) Bubble shapes and sizes in the case
ρ = 0. Left panel: Relative average displacements of sites in
a bubble vs. relative site coordinate. Results from a variety
of sizes and temperatures collapse on a single curve. Right

panel: The maximal displacement of an n−site bubble for
various temperatures.

average profiles of fluctuating objects. On the other hand
if a time-dependent solution of a finite extent exists then
its time-averaged spatial profile, after allowing for correc-
tions due to interactions with phonons, should look like
the left panel of Fig. 6.

Long-lived entities with an internal oscillation (discrete
breathers (DB)), have been reported [20] in the class of
models under consideration here. Unfortunately, most of
the work done on DBs concerns objects which are very
localized in space. It would be interesting to examine
whether approximate breather-like excitations, perhaps
with shorter lifetimes and extending over many lattice
sites, could produce average displacement profiles com-
patible with (16).

In the case of nonlinear stacking, the results of the
previous section indicate that small and large bubbles
behave differently. The derived shapes (Fig. 7, right
panel) confirm this dichotomy. Small-size bubbles tend
to have a slightly different shape from large-size bubbles.
The difference can be expressed in terms of the exponent
τ of the size function (16), with τ = 0.55 for small-size
and τ = 0.82 for large-size bubbles. A similar dichotomy
occurs when we look at the dependence of bubble am-
plitude vs. size. There is a crossover behavior from a
low-exponent to a high-exponent region (cf. the dotted
and dashed lines with slopes 1/2 and 1 respectively serv-
ing as guides to the eye). This type of behavior comple-
ments the findings on the incremental free energy needed
for bubble growth. Amplitude grows weakly with size
for small bubbles. After a bubble size threshold (10− 20
sites) has been crossed growth becomes a lot easier.
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FIG. 7: (Color online) Bubble shapes and sizes in the case
ρ = 1. Left panel: Relative average displacements of sites in
a bubble vs. relative site coordinate. Results from different
temperatures and sizes collapse on different curves for large
(open symbols) and small (filled symbols) bubbles. Right

panel: The maximal displacement of an n−site bubble for var-
ious temperatures. Note the crossover which occurs around
n = 10 − 20 at temperatures both near and far from Tc.

VI. SUMMARY AND DISCUSSION

The detailed properties of locally denatured regions
(bubbles) of homogeneous DNA have been discussed in
the framework of the PBD model. It has been shown
that bubble statistics is very sensitive to the presence of
nonlinear stacking interactions. In summary:

In the limit of linear base stacking (ρ = 0) the distri-
bution of bubble sizes can be described by the product of
an exponential and a power law (cf. Eq. 9). The latter
is characterized by an exponent c which is weakly de-
pendent on temperature. The exponent’s value near the
critical temperature, close to 3/2, suggests a formal anal-
ogy with the Poland-Scheraga description of 3-d polymer
loops in the random walk limit. However, the analogy
does not rest on microscopic footing; the logarithmic cor-
rection to the bubble entropy is not related to looping
and, more importantly, it is not even approximately con-
stant in temperature; on the other hand, the value of c
must approach 3/2 at the critical temperature since the
transition is known to be exactly second order in the case
ρ = 0.

In the presence of nonlinear base stacking (ρ = 1) the
analysis of successive probability ratios Pn/Pn−1 reveals
a more complex behavior of the exponent c. Depending
on the range of bubble sizes analyzed, different apparent

values of c are estimated. Small bubbles lead to small
values of c, larger bubbles suggest larger c values; the lat-
ter are of course consistent with the apparent first-order
transition. The threshold seems also to control average
bubble shapes. Note that it is possible to relate the value
of the threshold to the parameters of the thermal barrier
U(y) = (T/2) ln(1 + ρe−2by) [8, 14] induced by the non-
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FIG. 8: (Color online) Comparison of ∆fb = −T ln µ0 ob-
tained in the context of the associated eigenvalue problem
with the TI spectral gap ∆ǫ in the cases ρ = 1 (open sym-
bols) ρ = 0 (filled symbols); in the latter case the square root
is plotted.

linear base stacking interaction. For ρ = 1 the barrier
becomes effective at displacements of order 1/(2b) ∼ 7.
This corresponds to the region where the crossover in
slope occurs in the right panel of Fig. 7 and explains
the relative insensitivity of the bubble size threshold to
temperature.

A formal point deserves to be mentioned. The values
of ∆fb obtained in the framework of the associated eigen-
value problem (Section IV), appear to be identical with
those of the spectral gap ∆ǫ (cf. Fig. 8). Differences, in
the case of ρ = 0, are of the order of the inverse matrix
size used in the TI calculation and are more pronounced
where the expected critical rounding of eigenvalues oc-
curs; for ρ = 1 - where there is no observable critical
rounding of eigenvalues - the difference vanishes. The
property ∆fb = ∆ǫ should hold in the limit of infinite
matrix size; this can be further confirmed by perturba-
tional estimates of the spectrum of the C matrix. Bub-
ble statistics thus offers a physical interpretation of the
TI spectral gap as the limiting (n → ∞) free energy
which must be provided in order to achieve an incremen-
tal growth of a bubble by a single site.
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