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We propose simple analytic, non-orthogonal but selectively orthogonalizable, generalized Laguerre
type atomic orbitals, providing clear physical interpretation and near equivalent accuracy with nu-

merical multi-configuration self-consistent field, to atomic configuration interaction calculations. By
analyzing the general Eckart theorem we use their simple interpretation, via a thorough investiga-
tion in orbital space, to estimate, for the first time (the exact value being, or considered, unknown),
an ab-initio energy uncertainty, i.e. proximity to the exact energy, for several excited atomic states
known to have the danger to suffer from variational collapse.

PACS numbers: 31.15.Ar, 31.15.Pf, 31.25.Eb, 31.25.Jf

I. OUTLINE

The purpose of this paper is threefold. (i) First is to
show that, in variational ab-initio atomic configuration
interaction (CI) calculations (for the ground or excited
states), by varying the extent and the node positions of the
(analytic) orbital radial functions, it is possible to achieve
nearly numerical multi-configuration self-consistent field
(NMCSCF) accuracy. (This means that the resulting
analytic orbitals, similar to NMCSCF orbitals, are few,
concise, clearly interpretable and with rich physical con-
tent). (ii) The second purpose is to analyze and clarify
an extension of the Eckart theorem for excited states (c.f.
Appendix). (iii) The third is to demonstrate that, (with
the help of these, at least, orbitals), within the general
Eckart theorem, it is possible to obtain an ab-initio esti-
mate of the proximity to the (supposedly unknown) exact
energy, at least in some special cases of CI expansions.
Consequently it is possible, in these cases, that other
outcomes (outside of the uncertainty error) be ab initio
rejected without the need of external information.

II. INTRODUCTION

(i) Among various configuration interaction (CI) meth-
ods for the calculation of the electronic structure of
atoms, based on the variational principle, the NMCSCF
is very efficient and accurate because it describes the
electronic state with few simple orbitals, rich in physical
meaning, whereas other methods are based on large basis
sets which complicate the description. It would be in-
teresting to invent analytic orbitals similar to NMCSCF,
thus describing the state in an equally simple and concise
way, with comparable accuracy. We have invented such

∗Electronic address: nbacalis@eie.gr

analytic semiorthogonal basis functions, which very sat-
isfactorily approximate the NMCSCF orbitals: The cen-
tral idea is to adopt the usual Laguerre orbitals and start
moving variationally the nodes and the extent of their ra-
dial functions, until minimization of the energy. Eventu-
ally the resulting orbitals are similar and of comparable
accuracy with NMCSCF. Nevertheless, since NMCSCF is
numerical, it leads to an energy minimum, indifferently
global or local, usually the widest (which is sometimes
misinterpreted [1, 2]) and other energy minima cannot
be easily located, which may describe the state in a sim-
pler way, i.e., with a smaller contribution of the higher
order terms in the CI expansion. For this reason, by
looking at only the widest minimum, the quality of the
approximation to the exact eigenfunction cannot be ab-
initio estimated. However, since our orbitals are analytic,
all (finite in number) energy minima can be located, at
least in principle, and because of the simplicity, and of
the immediate recognizability of the physical content of
the orbitals, the most representative description of the
CI expansion can be chosen, therefore a measure of the
quality of our approximation to the exact solution can
be ab-initio estimated (without using other external in-
formation) via the correction introduced by the general
Eckart theorem (c.f. Appendix). The analyticity of the
orbitals allows also the flexibility to have orthogonal oc-
cupied orbitals and non-orthogonal some virtual correla-
tion orbitals, thus accelerating the convergence of the CI
expansion.

(ii) On the other hand, for some excited states, like He
1s2s 1S, Mg 3s4s 1S etc [3], the variational calculation
may collapse to a lower lying than the exact state, which
is wrong, but allowed by the general Eckart theorem for
excited states (c.f. Appendix). It would be interesting,
if possible, to invent an ab-intio (without other exter-
nal information) way to reject such wrong outcomes and
to variationally bracket the unknown exact energy level
within some known digits of certainty. To this end we
propose a method, feasible with the presented orbitals,
valid under certain conditions, and demonstrate it in sev-
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eral cases with two or three electrons. We also discuss
the extent of its feasibility.

III. PART I. ATOMIC CI VIA

GENERALIZATION OF LAGUERRE TYPE

ORBITALS

We propose a generalization of Laguerre type orbitals
to the form 〈r|n, l,m〉 = An,l,m Ln,l({g}, r, zn,l, bn,l, qn,l)

Yl,m(θ, φ), where An,l,m is a normalization constant and
Yl,m(θ, φ) are spherical harmonics. The generalized La-
guerre type functions (GLTOs) are (in a.u.)

Ln,l({g}, r, zn,l, bn,l, qn,l) =
n−l−1
∑

k=0

ck(n, l, zn,l)gk(n, l, {zi,l, bi,l, qi,l}
n
i=1)r

l+k exp(−zn,lr/n)

+bn,l exp(−qn,lzn,lr/n)δl,0 (1)

where gn−l−1(n, l, {zi,l, bi,l, qi,l}
n
i=1) = 1 (about the rest

of the gk factors we extensively discuss below) and ck
are the usual associated Laguerre polynomial coefficients.
The parameters zn,l, bn,l, qn,l are determined from the
(non-linear variational) minimization [4] of the desired
root of the secular equation (see below equation (3)).
The zn,l parameters are effective nuclear charges and de-
termine the radial extent of the orbitals. Since zn,l differ
from orbital to orbital, these orbitals are, in general, non-
orthogonal. The addition of the last term of equation (1)
just modifies the radial part of s-orbitals, since 1s cannot
be modified by any gk factor.

Then, a normalized CI wave function is formed out
of Slater determinants (composed of the proposed or-
bitals), whose node positions and radial extent are opti-
mized variationally through non-linear multidimensional
minimization of the total energy. We present a selective
intrinsic orthogonalization formalism to any lower n,l or-
bital of either the ground, or a desired excited state, thus
preserving the orbital characteristics. The rest of the or-
bitals remain non-orthogonal (e.g., see table I below). We
first find (and use) a main wave function in the dominant
part of the active space (called ‘main’), well representing
the state under consideration [e.g., for He, in the active
space of 2s, 2p, 3s, 3p, the four 1P o roots have the fol-
lowing ‘main’ wave functions: (2s2p), (2s3p± 3s2p) and
(3s3p)], and then we add angular and radial correlation
[5], simulating cusp conditions. The method is tested
against several known cases.

Thus, given the atom with nuclear charge Znuc, and N
electrons, with space and spin coordinates r1s1, ..., rNsN ,
as well as the symmetry and the electron occupancy, the
desired N−electron normalized wave function, consisting
of Nc (predetermined) configurations, out of Nd Slater

determinants, is

Ψ(r1s1, ..., rNsN ) =
Nc
∑

p=1

cpΓp(r1s1, ..., rNsN );

|Ψ|2 = 1; Γp =
Nd
∑

i=1

fipDi

(2)

where the linear parameters cp are determined from a
desired (usually the lowest) root of the secular equation

det









Nd
∑

a,b=1

fapfbq 〈Da|H − E |Db〉





p,q





Nc×Nc

= 0 (3)

which is solved by the strategy of p. 455 of “Numerical
Recipes” [6]. Here E is the total energy, the Hamiltonian
matrix elements are calculated by the method of p. 66
of McWeeny [7], where

H = −
1

2

N
∑

i=1

(∇2
i +

Znuc

|ri|
) +

N
∑

i>j

1

|ri − rj |

≡

N
∑

i=1

h(i) +

N
∑

i>j

g(i, j); (4)

theDa are all (Nd) (consistent with the desired electronic
state) Slater determinants, formed out of Norb (predeter-
mined), to be optimized, spinorbitals ai, and fap are all
(Nd × Nc) consistent corresponding coefficients, which
we determine by implementing the ideas of Schaefer and
Harris’s method [8]. The angular (and spin) part of the
matrix elements in equation (3) we treat according to the
method of chapter 6 of Tinkham [9].

The adaptability of our orbitals to almost NMCSCF
accuracy is due to the gk-factors, which move, during the
minimization process, the orbital nodes appropriately, by
intrinsic orthogonalization among desired orbitals of the
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same [10] or of a different [11] state (an advantage of
this method), by directly solving 〈ni, l,m|nj, l,m〉 = δi,j ,

(i, j = 1, ..., Norb). For example, for the 1s and 2s or-
bitals, equation 〈1s|2s〉 = 0 yields

g0(2, s, {z1s, z2s}) =

6 z2s

(2 z1s+z2s)4
+ 6 b1s z2s

(2 q1s z1s+z2s)4
− b2s

(2 z1s+q2s z2s)
3 − b1s b2s

(2 q1s z1s+q2s z2s)3

2
(2 z1s+z2s)3

+ 2 b1s

(2 q1s z1s+z2s)
3

(5)

and it is straightforward to derive the gk-factors for n =
2, 3, 4, ..., l = 0, 1, 2, ..., n − 1 and k = 1, ..., n − l − 2
[12, 13].

Thus these orbitals, after orthogonalization, are not
linear combinations of each other, as in orther orthogo-
nalization schemes, but maintain (c.f. equation (1) and
figure (1) below) a clear physical interpretation for all
l = s, p, d, ..., enabling one, to choose reasonable (and to
reject unreasonable) outcomes even by inspection.

Since the CI expansion may still contain non-
orthogonal orbitals, we use the general non-orthogonal
formalism of p. 66 of McWeeny [7],

〈Da|
N
∑

i=1

h(i)|Db〉 =

(DaaDbb)
−1/2

N
∑

i,j=1

〈ai|h|bj〉Dab(aibj) (6)

where Dab = det|〈a1|b1〉〈a2|b2〉...〈an|bn〉|, Dab(aibj) de-
notes the cofactor of the element 〈ai|bj〉 in the determi-
nant Dab, and Daa, Dbb are similar normalization factors;
ai, bj are the spinorbitals. Also,

〈Da|
N
∑

i>j

g(i, j)|Db〉 =

(DaaDbb)
−1/2

N
∑

i>t

N
∑

j>l

〈aiat|g|bjbl〉Dab(aiatbjbl) (7)

where Dab(aiatbjbl) is the cofactor of Dab defined by
deleting the rows and columns containing 〈ai|bj〉 and
〈ak|bl〉 and attaching a factor (−1)i+j+t+l to the resul-
tant minor. In principle, equations (6-7) can readily deal
with Slater determinants for any large atom without lead-
ing to extra complexity, so that one need not adopt “lim-
ited non-orthogonality” in order to avoid complications.

We improve the N-electron wave function by incorpo-
rating radial and angular correlation so as to simulate
the cusp conditions, either via orthogonalization to de-
sired lower-n orbitals, or via free non-orthogonality.

The contraction with the l = 0 Slater type orbital (the
last term of equation (1)), especially useful when there
are outer electrons repelling the inner toward the nucleus,
provides, in full CI, about 75% of the energy correction
obtained if we freely doubled the (uncontracted) orbitals,

while it substantially reduces the CI size; symbolically,
(Ec

N − Eu
N ) ∼ 75% (Eu

2N − Eu
N ). Thus, for Be 1s22s2

1S, with 2 orbitals 1s, 2s (1 configuration) we have (in
a.u.) Eu

2 = −14.5300, Ec
2 = −14.5723, while with 4 or-

bitals 1s, 1s′, 2s, 2s′ (20 configurations), Eu
4 = −14.5893;

i.e., the contraction provides 71% of the corresponding
(uncontracted) CI correction. Similarly, for the H− 1s2
1S, with 4 orbitals of 1s type with 10 configurations we
obtain Eu

4 = −0.51438, Ec
4 = −0.51445, while 8 uncon-

tracted 1s type orbitals with 36 configurations give Eu
8 =

−0.51448, i.e., the contraction provides 74% of the cor-
responding free CI correction.

In addition, we performed several further tests:
1. For the He ground state 1s2 1S, if we use the un-

contracted correlation orbitals of table (I) up to 4f ′, we
obtain (in a.u.) E = −2.903104, which is comparable
with the NMCSCF value (up to 4f) of −2.903117 [14],
the exact value being −2.903724 [15].

2. For the Li ground state 1s22s 2S, using uncon-
tracted correlation orbitals up to 4f ′, we obtain Eu

15 =
−7.4767 a.u. [13], which is comparable with the NMC-
SCF (up to 4f) value of −7.4762 a.u. [16], while the exact
value is −7.4780 a.u. [17].

3. For the Li excited state 1s22p 2P , an example of
straightforward slow CI convergence, using contracted
correlation orbitals up to 4f , we obtain Ec

13 = −7.4080
a.u. [13], comparable with the large CI (45 CI terms up
to 5g) value of −7.4084 a.u. [18], while the experimental
value is −7.4099 a.u. [19].

4. For the C ground state 1s22s22p2 3P , using un-
contracted correlation orbitals up to 4f , including 1s′,
2s′ and 2p′ (13 orbitals), by keeping 64 mostly signif-
icant configurations with 346 Slater determinants, we
obtain E = −37.78719 a.u., comparable with the value
E = −37.78695 a.u. obtained by large-scale NMCHF us-
ing up to 4f orbitals in active space [20], and also with the
value E = −37.78885 a.u. obtained by large-scale MRCI
using 145 Gaussion functions (17s11p6d5f4g2h) with ≈

1 500 000 configurations [21]. (With 90 orbitals and /
100 000 Slater determinants Sundholm and Olsen obtain
E = −37.79 a.u.[20], while Silverman [22] has obtained
E = −37.845 a.u. using 1/Z expansions).

5. Finally, for He 1s2s 1S, by implementing
the Hylleraas-Undheim-MacDonald (HUM) theorem [10]
with these orbitals, i.e. by optimizing the 2nd root of the
secular equation (the 1st would provide the ground state
within the same basis functions), we obtained for 1s2+2s:
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E2 = −2.14261 a.u.; 1s2+2s (+1s′): E2 = −2.14389 a.u.
and 1s2 + 2s (+1s′) + 2p: E2 = −2.14456 a.u.. The cor-
responding NMCSCF values are 1s2 +2s: E = −2.14347
a.u. and 1s2 + 2s+ 2p: E = −2.14380 a.u.[14].

We observe that our values are quite close to NMC-
SCF, so that our analytic orbitals and wavefunctions are
quite trustable with nearly as small CI expansions as NM-
CSCF. I.e. variationally moving the nodes and the extent
of the GLTOs they become quite similar to NMCSCF or-
bitals with the same rich and concise physical content.

IV. PART II. AN ANALYSIS OF THE

GENERAL ECKART THEOREM

The general Eckart [11] theorem (GET) for excited
states (c.f. Appendix), states that: The exact energy
eigenvalue En, is a lower bound not of the calculated en-

ergy E
(n)
e per se, but of the calculated augmented energy:

(E
(n)
e + δ

(n)
e ) ≡ [E

(n)
e +

n−1
∑

i=1

|〈ψi|Ψ
(n)
e 〉|2(En − Ei) ≥ En].

Here ψ1, ψ2, ..., ψn, ... are the exact eigenstates of the
Hamiltonian H with energies E1 < E2 < ... < En < ...,

and Ψ
(n)
e is the calculated normalized (n − 1)th excited

state of the desired symmetry, with energy expectation

value E
(n)
e .

Even if the exact ψi were used, the augmentation δ
(n)
e

would not be zero, for an approximate Ψ
(n)
e , so that, in

trying to estimate the unknown En via the minimization

principle, by varying Ψ
(n)
e , the augmentation δ

(n)
e should

be taken into account.

Since En = E
(n)
e + δ

(n)
e − ǫ

(n)
e [equation (A.3) in Ap-

pendix], estimating En requires minimization of both δ
(n)
e

and ǫ
(n)
e ≡

∞
∑

k=n+1

|〈ψk|Ψ
(n)
e 〉|2(Ek − En), since both are

unknown but positive. This can be achieved if Ψ
(n)
e ≈ ψn.

But then, since ǫ
(n)
e is positive and subtracted, we can

have a rather conservative estimate of the error (the en-

ergy uncertainty of En) by δ
(n)
e [which we approximate

by ∆
(n)
e ≡

n−1
∑

i=1

|〈Ψ
(i)
e |Ψ

(n)
e 〉|2(E

(n)
e − E

(i)
e )], provided that

this dominates over the CI expansion truncation (con-

vergence) error ε. Evidently, for a given Ψ
(n)
e , the closer

all Ψ
(i)
e are to the lower lying ψi, the better is the es-

timation of δ
(n)
e by ∆

(n)
e . [In practice the subtraction

of ǫ
(n)
e , which is dominated by a few closest to n lev-

els, and is, therefore, comparable to δ
(n)
e , reduces the

error, making E
(n)
e , if Ψ

(n)
e ≈ ψn, much closer to the ex-

act than the conservatively proposed uncertainty ∆
(n)
e ].

Since variational collapse, resulting to some large over-

lap |〈Ψ
(i)
e |Ψ

(n)
e 〉|2 for some i < n, also reduces ∆

(n)
e via

the (E
(n)
e − E

(i)
e ) term, minimization of E

(n)
e should be

performed under both restrictions that |〈Ψ
(i)
e |Ψ

(n)
e 〉|2 (for

all i < n) and ∆
(n)
e ≡

n−1
∑

i=1

|〈Ψ
(i)
e |Ψ

(n)
e 〉|2(E

(n)
e − E

(i)
e ) be

minimal.
In fact, since ǫ

(n)
e is never zero and always unknown,

an ab-initio estimation of the uncertainty to En should
always be attempted, even when minimizing by the HUM

theorem [10], which ensures En ≤ E
(n)
e , for two reasons:

(i) Because some specific CI expansion might lead to un-

acceptably large E
(n)
e . I.e. many trial functions must be

checked. (ii) Even if it happened that E
(n)
e = En, Ψ

(n)
e

would be orthogonal to the lower lying roots, the nth of
them having been optimized. Thus, the orthogonality to

the best Ψ
(i)
e , i < n, i.e. if the ith root had been optimized

for each i, is not evident. That is, δ
(n)
e would not vanish,

and it should always be estimated.

V. PART III. AB-INITIO ERROR ESTIMATION

FOR EXCITED STATES

In the following we describe a (previously unreported)
technique, showing that it is possible, utilizing the ability
for exact orthogonality between GLTOs, to minimize the

overlaps |〈Ψ
(i)
e |Ψ

(n)
e 〉|2 (and ∆

(n)
e ), and thus obtain an

ab-initio estimate of the energy uncertainty. Our tech-
nique is not a completely general method for any (doubly,
triply, etc) excited state, but at least it is valid for singly
excited states of (many electron) atoms; we discuss be-
low the limitations and disadvantages of our technique.
We demonstrate it in the simplest case of the 1st ex-
cited state with 2 electrons and show its extension with
some examples to higher excited states and with more
electrons.

First a remark: Generally, if the CI expansion, instead
of the exact ψn, approximates a higher lying state, or col-
lapses quite lower than the exact ψn, these cases should
be rejected. The rejection may not be feasible with any
variational method, however, at least with the present
GLTOs it is possible: The higher wave functions are
easily recognizable by the ‘main’ terms because GLTOs
maintain their physical meaning even after orthogonal-
ization [c.f. figure (1) below] so that they do not allow
confusion with any fictitious simulation of another (un-
desired) orbital [1, 2] [for example, whereas, with other
methods 2s may be incorrectly “approximated” by a 3s
orbital, having two nodes and a very shallow long tail,
with the present method (via the GLTOs) this cannot be
confused with a correct 2s]. On the other hand, the col-
lapsed wave functions have large overlap with some lower

Ψ
(i)
e ≈ ψi wave function.
In order to avoid variational collapse [23], various tech-

niques exist in the literature. These invariably involve ei-
ther the state averaged NMCSCF approximation [24], or
application of Hylleraas perturbation variation method
[25], or the orthogonality constrained variation method
[26]. We ab-initio reject collapsed (and higher) results by
checking the various energy multiminima: Multiminima
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of the energy surface can be visited by simulated anneal-
ing, which has been used to determine the global energy
minimum under orthogonality constraints, without any
effort to locate the various almost equivalent local en-
ergy minima [27]; in our approach this is necessary, and
is achieved by a thorough (or guided, as explained below)
search of the orbital parameter space.

So, let us consider first ψ1, ψ2, the exact eigenstates
of the ground and first excited states, with energies
E1 < E2, and Ψg, Ψe the corresponding calculated ap-
proximations. Then Ψg = Ψg0 + hgφg, Ψe = Ψe0 + heφe,
where Ψg0 and Ψe0 are ‘main’ wavefunctions, (without
correlation corrections) hg and he are the largest correla-
tion coefficients, φg and φe are corresponding calculated
correlation corrections.

Supposing that we have achieved both: Ψg be reliably
close to ψ1 (comparable to NMCSCF) and Seg ≡ 〈Ψe|Ψg〉
be small (as small as possible), then Ψe is almost orthog-
onal to the exact ψ1 with uncertainty O(Seg). But it is
not any state orthogonal to ψ1: Since E2 is discretely sep-
arated from E1, so there are no other energies in between,
and higher (and collapsed) functions are rejected, the (in
terms of GLTO’s described) approximation (almost or-
thogonal to ψ1) is close to the exact Ψe ≈ ψ2 with enough

accuracy, and E2−E1 ≈ E
(2)
e −E

(1)
g . Then our estimated

(presumably minimal) ∆
(2)
e ∼ O(S2

eg(E
(2)
e − E

(1)
g )).

Furthermore, if our convergence criterion ε ≪ ∆
(2)
e ,

then E2 ≈ E
(2)
e + O(∆

(2)
e ), and if ∆

(2)
e ≪ ε, then we have

an even better approximation of Ψe ≈ ψ2, and E2 ≈ E
(2)
e

+ O(ε).

As soon as we have determined E2 and ψ2 accurately

enough (by as small Seg and ∆
(2)
e as possible, i.e. by the

best possible Ψ
(2)
e , then we can consecutively proceed to

higher excited states (n), via all lower lying best mutu-

ally (almost) orthogonal calculated approximations {Ψ
(i)
e

(i < n)}, provided that each ψi is accurately enough re-

sembled by Ψ
(i)
e , determined as above, by choosing the

smallest overlaps Sei and ∆
(i)
e , consecutively for each i,

until, for some n, ∆
(n)
e becomes comparable to the last

energy separation En − En−1. Depending on the accu-

racy of each Ψ
(i)
e and on the quality of the orthogonality

of Ψ
(n)
e to each of them, due to error accumulation, at

about that n this process becomes further unreliable.

In conclusion, in order to use orthogonalization to ap-
proximate lower states, we need: (i) a trustable Ψg ≈ ψ1

(Ψi
e ≈ ψi), (ii) if possible, several well converged Ψe’s

(small ε’s) with: (iii) proper well recognizable ‘main’
terms Ψe0’s and (iv) minimal Seg. Finally, we need to

estimate not only the energy by E
(n)
e but also its aug-

mentation by ∆
(n)
e . Prerequisites (i) and (ii) are evident;

(iii) may not be possible with any method, but with the
present GLTOs it is automatically fulfilled, after rejection
of improper ‘main’ terms, because these are recognizable
and physically meaningful (as being close to NMCSCF
orbitals); (iv) is a problem:

We search for minimal Seg using our central idea
to obtain various good representations (close to NMC-
SCF) of the ground and the excited states and to choose
minimal overlap. Rejecting large overlaps Seg and im-
proper ‘main’ terms will exclude incorrect representa-
tions (higher or collapsed). Then from all the accepted

we should find the smallest ∆
(n)
e .

Ideally the search for minimal Seg (and ∆
(n)
e ) should

require an exhaustive search for all (but, anyway, finite
in number) possible Seg, which is out of our present com-
putational abilities. But since

Seg = 〈Ψe0|Ψg0〉 + he 〈Ψg0|φe〉 + hg 〈Ψe0|φg〉

+O(hehg), (8)

we prefer, if possible, to guide our search [and reduce it
to a linear process (than quadratic)] by observing that if
we can demand 〈Ψe0|Ψg0〉 = 0, then we need the small-
est possible he and hg. This, with GLTOs, can always
be achieved for singly excited states if both Ψg0 and Ψe0

can be described primarily by one or more configurations
from the same electron occupancy [or if it happens that
other contributing occupancies are already (angularly)
orthogonal]. Although this restricts the general appli-
cability of our (guided) method to such singly excited
states, it still covers many interesting cases, including
estimating uncertainties to typical occurrences of varia-
tional collapse for which we shall give some examples.

We present first a demonstration of our idea in the
1s2s 1S isoelectronic sequence from He to Ne and then
we extend it to some examples of higher singly excited
states and with more electrons.

Between 1936 and 1997, there have been many publi-
cations on 1s2s states, c.f. [3, 14, 15, 28, 29, 30]. The
most accurate variational calculations, using Hylleraas
[31] type trial functions, have been performed by the
Pekeris group [15]. However, their method is of a non-
central field type, which cannot be straightforwardly ex-
tended to larger atoms, and their wave functions, having
more than 220 terms, do not provide a simple under-
standing even for He. Fischer has performed NMCSCF
calculations of the 1s2s 1S isoelectronic sequence from
He to Ne [32], with which we make comparisons in table
III.

By implementing the above guided search for 1s2s
1S states, Ψg0 ≡ 1s2g and Ψe0 ≡ 1se2se, the demand
〈1sg|2se〉 = 0 makes 〈Ψe0|Ψg0〉 = 0. [In practice, we first
calculate Ψg0 and obtain the optima z1sg, b1sg, q1sg, to
replace the z1s, b1s, q1s of equation (5), for every var-
ied value of z2se, b2se, q2se]. If we use enough correla-
tion orbitals, then many slightly different Ψe (Ψg), hav-
ing 〈Ψe0|Ψg0〉 = 0, with almost the same energy Ee (Eg)
(up to the 3rd decimal place) appear as local energy min-
ima (not only the widest), in which the coefficients he

(hg) change slightly form minimum to minimum. We use
these minima to choose the smallest possible he and hg,
which makes Seg as close to zero as possible [e.g. 10−2

a.u., and ∆
(n)
e O(10−4)].
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Thus, for the ground state of He 1s2g
1S correlated

in full CI by 2sg, 3sg, 4sg, 2pg, 3pg, 4pg, 3dg, 4dg, 4fg

orbitals (with only one optimized 1s orbital in Ψg0 for
exact orthogonalization to Ψe), various significant can-
didate minima were found (c.f. table II) from which we
chose the smallest hg = 0.05, (z1sg = 1.6297, b1sg = 0.0,
q1sg = 1.0; z2sg = 4.6852, b2sg = 0.0, q2sg = 1.0) for
orthogonalization to Ψe. Then we calculated the excited
state 1se2se

1S (+3se, 4se, 2pe, 3pe, 4pe, 3de, 4de, 4fe),
and from the most significant candidate minima (table
II) we must choose (reported in figure (1)) the one with
the smallest he = 0.011 (details are given in the caption)

with Seg = 2.9× 10−2, so that our approximation to δ
(2)
e

is ∆
(2)
e = 6.5× 10−4 a.u.. We also need ε: The s, p, d, f

correlation for this Ψ
(2)
e (in a.u.) converges as −2.14516,

−2.14587, −2.14595, and −2.14596 respectively, (a faster
converge than by using HUM theorem); hence, since our
Ee value is well converged by ε ∼ O(10−5), then the
unknown E2 ≈ Ee(= −2.14596 a.u.) with uncertainty
O(10−4). I.e. given the accurate Ψg ≈ ψ1 and all un-
reasonable representations to Ψe having been excluded
(large Seg if collapsed, incorrect ‘main’ terms - recog-
nizable due to the GLTOs - if higher), the remaining
being necessarily close to ψ2, due to the discreteness of
the energy spectrum, via the closest of them: 4 digits of
the (unknown quantity) E2 are guaranteed (without us-

ing external information!) because the correction δ
(2)
e ≈

∆
(2)
e [not regarding the subtraction of the positive quan-

tity ǫ
(2)
e (c.f. equation (A.3) in Appendix] starts after the

4th digit. In figure (1), the virtual orbitals 2p, 4p (and
all others not displayed), introduce by their lobes, an an-
gular separation between the electrons, in places where
the 1s, 2s orbitals appreciably overlap, and the 3s, 4s or-
bitals introduce nodes, i.e., a radial separation between
the 1s, 2s electrons, all simulating the cups conditions.
The good recognizability of the main wavefunction, from
the orbitals of figure (1) is evident.

Similarly, we calculated the whole 1s2s 1S isoelectronic
sequence from He to Ne (table III). We observe that our
values are quite comparable to NMCSCF (with seven
configurations) [32] and approximate the exact [15]. If
the exact were unknown, our ab-initio proximity esti-

mates δ
(2)
e (≈ ∆

(2)
e ) would guarantee at least 3-4 decimal

digits. The further “coincidences” with the exact ener-
gies, because of the nearly NMCSCF quality of GLTOs,

occur due to the subtraction of ǫ
(n)
e in (A.3) (c.f Ap-

pendix). We could not find a better rigorous way to
bracket (locate) the unknown En by taking more advan-
tage of the high quality of our orbitals other than min-

imizing first Seg and then ∆
(n)
e , because we could not

estimate ǫ
(n)
e ; however even with these uncertainty esti-

mates, bracketing the (unknown) exact En to 3-4 guar-
anteed decimal digits is enough to ab-initio certify that
the free 1se⊥2se values, shown in the last column of table
III, are collapsed.

We also show an example of a higher excited state: He

1s3s 1S. By demanding 〈1sg|3se〉 = 0 and 〈2sep|3se〉 = 0
(where 2sep is the previously determined 2se orbital from

the above 1s2s 1S calculation), we make Ψg0, Ψ
(2)
(1s2s)0

and Ψ
(3)
(1s3s)0 rigorously orthogonal to each other. Then,

with the same basis set as above, i.e., up to 4f orbitals,

we obtain E
(3)
e = −2.06129 a.u. with uncertainty ∆

(3)
e ≡

∆
(3,1)
e +∆

(3,2)
e = 1.45×10−4+2.85×10−7 = 1.45×10−4,

which embraces the (well known) exact value of -2.06127
a.u. [15]. We should mention that, although this value is
by O(10−5) below the exact, it does not violate the GET,
and the wave function might be closer to the exact than
another truncated approximation that would approach
the exact energy from above. However, if we free all
orbitals (without using the g-factors), we obtain -2.06859
a.u., which is out of our calculated uncertainty, therefore,
ab-initio rejected as collapsed.

Finally, we give an example for more (three) electrons:
Li 1s(2s2p 3P ) 2P [in the combination 1sα (2sα2pβ +
2sβ2pα) - 2 (1sβ2sα2pα) which is orthogonal to 1s(2s2p
1P ) 2P : 1sα (2sα2pβ - 2sβ2pα) (α, β mean spin-up, spin-
down)]. By demanding 〈2se|1sg〉 = 0, where 1sg is the
previously (test 3 of part I) determined 1s orbital from
the lowest state of this symmetry 1s22p 2P , then, with
the same basis set as above, i.e., up to 4f orbitals, we

obtain E
(2)
e = −5.31998 a.u. with uncertainty ∆

(2)
e =

7.54 × 10−3, which embraces the experimental value of -
5.312 a.u. [33], while Weiss’es value in [35] is -5.3111 a.u..
The theoretical value of -5.331 a.u. (58.38 eV assigned
(we think incorrectly) to Goldsmith [34] in [33]) is out of
our uncertainty estimate. If we free all orbitals (without
using the g-factors), we obtain -5.34139 a.u., which is out
of our calculated uncertainty, therefore, is also ab-initio
rejected as collapsed.

VI. CONCLUSION

In summary: (1) We presented previously unreported
analytic GLTOs which accurately and concisely describe
(comparably with NMCSCF) the correct atomic wave
function. (2) We clarified the general Eckart theorem
for excited states concentrating on the importance of the
necessary augmentation δn

e to the calculated energy. (3)
Using this, we proposed a method to ab-initio bracket
the (unknown) energy of singly excited states to some
significant digits. This gives some confidence as to where
the exact energy is located, and excludes collapsed out-
comes, without using external information. Due to the
accurate description of the correct wave function of both
the excited and (even more important) the ground state,
our method needs (i) the good convergence of large CI
expansions (ii) the potentiality (feasible with analytic or-
bitals) for an exhaustive search in the orbital parameter
space, which is unavoidable in order to determine min-

imal Seg and ∆
(n)
e , and (iii) the exact mutual orthogo-

nality of the excited Ψe and ‘main’ lower energy terms,
leading directly to maximal orthogonality of the total
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wave functions.
The present method, if guided by exact orthogonality

of the ‘main’ terms, is valid at least for singly excited
states in which all terms of Ψ0 consist of Slater deter-
minants of the same occupancy. The less significant the
‘main’ terms, the less useful (the “guided” version of)
the method.

For an ab-initio estimate of the energy uncertainty

∆
(n)
e , an exhaustive search in orbital space seems un-

avoidable for any variational method able to provide a
clear orbital interpretation, like NMCSCF, by changing,
e.g., starting values. We think that this should be tried
by the specialists: Since their wave functions are very ac-

curate (Ψ
(i)
e ≈ ψi), keep some small Seg’s, out of which

the smallest ∆
(n)
e (some must be below En), and estimate

the unknown En by E
(n)
e + ∆

(n)
e ± ε (!)

Our orbitals are being used in studying the radiative
decay of doubly excited states to singly excited states
of He, where a (previously unreported) good qualitative
agreement for both the metastable atom and the V UV
photon spectra experiments [36, 37] is obtained [13, 38].
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APPENDIX: THE GENERAL ECKART

THEOREM

Let ψ1, ψ2, ..., ψn, ... be the exact eigenstates of the
Hamiltonian H (a complete orthonormal set) with ener-
gies E1 < E2 < ... < En < ..., and let

Ψ(n)
e =

∞
∑

i=1

〈ψi|Ψ
(n)
e 〉ψi,

with

1 =

∞
∑

i=1

|〈ψi|Ψ
(n)
e 〉|2, (A.1)

be the calculated normalized (n− 1)th excited state ap-
proximation. Then

E(n)
e = 〈Ψ(n)

e |H |Ψ(n)
e 〉

=

n−1
∑

i=1

|〈ψi|Ψ
(n)
e 〉|2Ei +

∞
∑

k=n

|〈ψk|Ψ
(n)
e 〉|2Ek.(A.2)

Multiplying (A.1) by En and subtracting form (A.2) we
obtain for (the unknown) En:

En = E(n)
e + δ(n)

e − ǫ(n)
e (A.3)

where both δ
(n)
e and ǫ

(n)
e are positive (or zero if Ψ

(n)
e =

ψn):

δ(n)
e ≡

n−1
∑

i=1

|〈ψi|Ψ
(n)
e 〉|2(En − Ei) ≥ 0, (A.4)

ǫ(n)
e ≡

∞
∑

k=n+1

|〈ψk|Ψ
(n)
e 〉|2(Ek − En) ≥ 0. (A.5)

Since it is impossible to calculate ǫ
(n)
e , equations (A.3)

and (A.5) imply that

ǫ(n)
e = (E(n)

e + δ(n)
e ) − En ≥ 0, (A.6)

that is: The exact energy eigenvalue En, is a lower bound

of the calculated augmented energy: (E
(n)
e + δ

(n)
e ) =

[E
(n)
e +

n−1
∑

i=1

|〈ψi|Ψ
(n)
e 〉|2(En − Ei)] - not of just the calcu-

lated expectation value E
(n)
e . This is the general Eckart

theorem. For excited states the two terms δ
(n)
e and ǫ

(n)
e

in (A.3) are competing and En may be either below or

above E
(n)
e , unless Ψ

(n)
e = ψn (which never happens).

Therefore, any accidental equality, E
(n)
e = En, does not

imply that Ψ
(n)
e = ψn, if δ

(n)
e 6= 0(!) This should be kept

in mind in any variational calculation of excited states.

For the ground state, [(n = 1), i.e. e = g], (A.6) re-
duces to the usual Eckart upper bound theorem, since

δ
(1)
g ≡ 0.

TABLE I:
An example of CI convergence using the proposed GLTOs:
The CI convergence of He 1s2, compared with NMCSCF, and
characteristics of our converged orbitals. The RMS extent is
analytically related to znl. The nl′ orbitals are non-orthogonal

to the others (nl). Atomic units are used.

nl nl′ znl znl′ RMS RMS′ E NMCSCF
1s 1s’ 1.4193 2.5517 1.2204 0.6788 -2.87689 -2.86168
2s 7.7657 0.4648
2p 2p’ 8.9698 8.4431 0.6106 0.6487 -2.89978 -2.89767
3s 12.1491 0.5218
3p 9.2664 1.4450
3d 3d’ 13.3661 11.9619 0.8398 0.9384 -2.90242 -2.90184
4s 18.5495 0.5114
4p 19.5524 0.6490
4d 21.2589 0.8563
4f 4f’ 18.3067 26.0011 1.0364 0.7297 -2.90310 -2.90291

TABLE II:
The entries of this table are used as a tool to finally estimate
an uncertainty to the exact energy for the excited states: Var-
ious significant candidates for the He ground state Ψg = 1s2

g
1S and for the first excited state Ψe = 1se2se

1S, correlated
in full CI up to 4fg and 4fe respectively. We report in figure
(1) the Ψe with the smallest he = 0.011, orthogonalized to the
Ψg with the lowest hg = 0.05, corresponding to the smallest
〈Ψe|Ψg〉 = 2.9 × 10−2.

Main configurations of Ψg z1sg Eg = E
(1)
e

0.98[1s2
g ] − 0.17[1sg2sg] + ... 1.4080 -2.9028

0.98[1s2
g ] − 0.16[1sg2sg] + ... 1.4057 -2.9014

0.99[1s2
g ] − 0.05[1sg2sg] + ... 1.6297 -2.9015

Main configurations of Ψe E
(2)
e

0.999[1se2se] + 0.017[2pe3pe] + ... -2.14604
0.999[1se2se] + 0.011[3s2

e ] + ... -2.14596
0.936[1se2se] + 0.350[1se3se] + ... -2.14583

For excited states it means that between two approxi-
mate wave functions lying slightly above and slightly be-

low the exact energy, the lower lying (with E
(n)
e . En) is

more trustable if it has less augmented energy than the
higher lying(!). All lower lying approximations should
not be generically rejected; the one with the least aug-
mented energy is the best approximation to ψn (better
than any higher lying). (This seems not to have been
adequately realized in the literature).



9

TABLE III:
Our full CI up to 4f energies for the 1s2s 1S isoelectronic sequence from He to Ne, and of other excited states, compared with

other calculations (in a.u.). We used 10 uncontracted orbitals. In the ab-initio proximity estimation to E2, we approximate δ
(2)
e

by ∆
(2)
e . 6.5−4 means 6.5 × 10−4. The free one-configuration 1s2s values (i.e. 1se⊥2se), in the last column should be ab-initio

rejected by our method, as collapsed.

E
(2)
e Exact[15] MCSCFa z1sg ∆

(2)
e 1s⊥2s

He I -2.14596b -2.14597 -2.14595c 1.6297 6.5−4 -2.156
Li II -5.04093 -5.04087 -5.04028 2.4353 1.7−3 -5.058
Be III -9.18469 -9.18487 -9.18413 3.6849 2.0−4 -9.206
B IV -14.57834 -14.57853 -14.57769 4.4797 3.7−3 -14.603
C V -21.22258 -21.22202 -21.22111 5.5464 1.2−3 -21.248
N VI -29.11382 -29.11542 -29.11445 6.4736 1.7−3 -29.143
O VII -38.25841 -38.25876 -38.25775 7.4671 1.9−3 -38.288
F VII -48.65206 -48.65206 -48.65102 8.4689 1.9−3 -48.682
Ne IX -60.29534 -60.29534 -60.29428 9.4527 2.7−3 -60.327

He 1s3s 1S -2.06129 -2.06127 -2.06127 [39] 1.1090d 1.5−4(e) -2.069f

Li 1s(2s2p 3P ) 2P -5.31998 -5.312 [33] -5.3111g 2.9670 7.54−3 -5.341f

aFroese Fischer C., Reference [32] (with seven configurations).
bc.f. The caption of figure (1).
cFroese Fischer C. et. al, Reference [14], p. 67, (up to 6h).
dThe z of 2sep; that of 1sg is shown in the first line of He I.
eThe uncertainty ∆

(3)
e ≡ ∆

(3,1)
e + ∆

(3,2)
e .

fFree variation (without gk-factors).
gWeiss in [35]
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FIG. 1: Our full CI (up to 4f) He 1s2s 1S orbitals. The inset displays the ‘main’ orbitals, both contracted (lines), Ec
10 =

−2.1459628, z1s = 1.992, b1s = 0.001, q1s = 3.195, z2s = 1.109, b2s = 0.373, q2s = 1.683, and uncontracted (symbols),
Eu

10 = −2.1459604, z1s = 1.992, z2s = 1.122. We used the same virtual orbitals for both cases; the most significantly
contributing have z3s = 4.372, z4s = 8.257, z2p = 9.775, z4p = 24.483. All quantities are in a.u..


