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Tunneling dissociation from a double well via path integrals
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It is shown how the semiclassical theory of path integrals can be implemented in a practical manner
for the analysis of a potential that combines the two-state system of a double well potential~DWP!
with decay into a continuous spectrum. This potential may correspond to a variety of physical
situations in physics and chemistry. The structure of the formalism and of the results is such that it
allows computation not only for analytic but also for numerically given potentials. The central
theme is the determination of the energy-dependent Green’s function, which is shown to consist of
a regular part and a part containing simple and double complex poles. These poles represent the
position of the energy levels, as well as the energy widths and shifts due to the interaction with the
continuous spectrum. When applied to the bound DWP without tunneling, the theory is shown to
reduce in certain limits to known results from the Jeffreys–Wentzel–Kiamers–Bhrillouin
approximation. If the system is taken to be prepared in the first well, the interactions with the
remaining of the potential lead to two types of transition rates. One represents the transient motion
toward a virtual equilibrium state of the DWP. It emerges as a positive imaginary part of the
self-energy. The other represents the decay into the continuum and emerges as a negative imaginary
part of the pole. Comparison of the two mechanisms of nonstationarity is made for different
magnitudes of the second barrier relative to the first one. Since the system decays to the continuum
while oscillating, the theory obtains a correction to the frequency of oscillation in the DWP due to
the interaction with the continuum. This phenomenon is observable in real two-state systems, if an
external perturbation which affects mainly one state converts it into a resonance state. ©2003
American Institute of Physics.@DOI: 10.1063/1.1612482#
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I. INTRODUCTION

Among the prototypical systems for the demonstrat
of the physics of the phenomenon of tunneling, are the sin
well potential ~SWP! with an unbound region and th
bounded double well potential~DWP!. Aspects of the phys-
ics of these two systems have been published in nume
publications, using analytic potentials and/or the stand
model of the semiclassical version of quantum mechan
namely the Jeffreys–Wentzel–Kramers–Brillouin~JWKB!
approximation.1,2

The work reported here has a dual purpose: First, to s
knowledge about the physics of a one-dimensional~1D! po-
tential whose generic form is as in Fig. 1, using semiclass
physics. Figure 1 constitutes the semiclassical representa
of the coupling of two discrete spectra, of which one
coupled to a continuous spectrum. The continuous spect
has a lower bound if it corresponds to a system without
external field. Second, to do so by applying the formalism
path integrals and Green’s functions, thereby providing ad
tional information as to the capacity of this type of metho
ology in the treatment of unstable systems of coupled sta

In the potential of interest, one expects oscillatory,

a!Electronic mail: dtheo@eie.gr
b!Electronic mail: can@eie.gr
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quential and dissipative tunneling, i.e., dynamics that m
characterize a number of situations in physics and chemis
regarding, e.g., atomic and molecular spectra, various
lecular rearrangements, and one-dimensional solid s
structures along a reaction coordinate leading to dissociat
quantum transport in the solid state and in optical lattic
nuclear and elementary particle resonances, and field the
For example, a specific model of this figure, using squ
wells, has been invoked by Faistet al.3 for the analysis of
control, by tunneling, of interference in optical absorption
quantum wells. A quantum mechanical version of the int
actions and processes described by Fig. 1 was examine
coupled states of a real two-electron system viaab initio
calculation in Ref. 4. Specifically, two neighboring doub
excited states in the continuous spectrum are coupled b
electric dipole field. One of them is discrete, of even par
(2p2 3P), and the other one is unstable, of odd pari
(2s2p 3P0), decaying into the 1sep 3P0 continuum of scat-
tering states. The lifetimes of the two states differ by ord
of magnitude, one of the discrete state being of the orde
1029 s ~radiative decay! and one of the resonance state bei
of the order of 10213 s. First principles theory and computa
tion demonstrated quantitatively that when the two states
coupled by the electric field the discrete state acquires a fi
width due to autoionization, and its lifetime is reduced4
5 © 2003 American Institute of Physics
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Similar situations are possible in molecular spectra that
hibit a variety of interactions and crossings or near-crossi
of levels.

As regards the dissipative tunneling through a single
nite barrier, its extensive analysis in the literature has emp
sized the derivation and calculation of time-independ
quantities, such as rates and transmission coefficients.
the SWP, an expression for the energy shift caused by
interaction with the continuum has also been derived.5

As regards the bound system of the DWP, the physic
tunneling that has attracted attention as well as applicatio
normally analyzed in terms of the energy separation of
doublets~for initially degenerate states of each well! and of
the related period of oscillation. For discussions and res
of semiclassical treatments of this problem, the reader is
ferred to the books of Landau and Lifshitz1 and of
Merzbacher,2 to the review on ‘‘Quantum Dynamics in Low
Temperature Chemistry’’ by Benderskii, Goldanskii, and
Makarov,6 and to the papers of Miller7 on symmetric and
asymmetric DWP and of Holstein8,9 on symmetric DWP.

The present work~see also Ref. 5! implements a semi-
classical path-integral approach and emphasizes the cal
tion of energy-dependent Green’s functions@rather than the
Hermitian g(E)[trace(E2H)21], and use of their trun-
cated Fourier transform~from E50 to E5` rather than
from E52` to E51`), for the calculation of the time-
dependent propagatorG.(t), t.0. Discussions on the foun
dations and methodology of the semiclassical approach
regards the calculation of propagation amplitudes and
phase changes at the turning points of allowed and forbid
regions, can be found in the book of Feynman and Hibb10

in the reviews of Benderskiiet al.6 and of Berry and
Mount,11 and in the papers of Gutzwiller,12 McLaughlin,13

Miller,7,14 Holstein and Swift,15 and of Holstein.8,9,16

It is worth pointing out that when the potential of Fig.
is inverted, as is done with simpler potentials in the ‘‘instan-
ton’’ model, e.g., Refs. 6, 9, 17–21, the topology of allow
and forbidden regions remains the same, contrary to the
of the DWP.

The main goal of the problem which is treated in th
paper is to derive and interpret expressions in terms o
semiclassical Green’s function,Gsc(E), corresponding to the
motion of a wave packet which is initially localized in th
left well of Fig. 1 and which propagates according to th

FIG. 1. The double-well potential plus tunneling into the continuum, exa
ined in this work.
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potential.Gsc(E) consists of two major terms. One is regul
and one has poles, the latter being associated with the in
esting features of the dynamics. The results are general
can be applied to any analytic or numerical potential hav
this form. In the course of the solution of this problem, t
DWP is also examined anew, and results beyond the JW
approximation are obtained.

II. THEORY AND CALCULATION OF THE
SEMICLASSICAL GREEN’S FUNCTION, Gsc „E…

The aim of the herein implemented path-integral form
ism is the calculation ofGsc(E) and its poles for the poten
tial of Fig. 1. In total there are six regions for motion. Th
classically allowed are denoted by I, III, and V. The clas
cally forbidden are the O, II, and IV. The DWP correspon
to the regions O, I, II, III, with the second barrier bein
replaced by an infinite wall. Because of the complexity of t
problem, it is necessary to define and utilize a number
quantities, and this makes the paper rather long. The solu
has employed a building-up methodology, starting from
simpler parts and adding possibilities until the comple
problem is solved.

The calculation could in principle be done by taking t
Fourier transform of the classical limit of Feynman’s tim
dependent propagator between pointsr 1 and r 2 , Gsc(t),
where, in general,

Gsc~ t ![Gsc~r 1 ,t;r 2,0!

5
1

A2p i\
(

paths j
AD expF i

\
Scl

j 2
i

2
mpG . ~1!

D is the Van Vleck determinant,Scl
j is the classical action

along the pathj, andm is the Maslov index. For the presen
problem pointsr 1 and r 2 belong to region I.

The acknowledged great difficulty in computingGsc(t),
is obviated~relatively speaking! by focusing on calculating
Gsc(E) directly. In this case, the existence of classically fo
bidden regions requires the possibility of some type of a
lytic continuation through such regions, which is formal
achieved by complexifying time or dynamica
variables.1,9,11–19Once the solution to this problem is unde
stood, the calculation ofGsc(E) requires a meticulous ac
counting of all possible paths and a good understanding
the related combinatorics. In so doing, the question of
proper Maslov indices, i.e., of the phase change at the t
ing points before a forbidden or an allowed region is enter
is of crucial importance. It is in this respect that the papers
Holstein8,9,15,16have been enlightening to us, since his ana
sis and the set of rules listed by him provide the framew
for the formulation of systematic procedures toward the c
culation ofGsc(E) in the case of tunneling,5 and this work.

Once Gsc(E) is known, one can obtain, via Fourie
transform, the time-dependent propagator,G.(t), for t.0,
and from there the survival probability of the initial stat
P(t).5

The path integral approach requires the determination
the amplitudes for motion for all possible paths fromr 1 to
r 2 , where bothr 1 and r 2 are in region I. In developing and

-
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8237J. Chem. Phys., Vol. 119, No. 16, 22 October 2003 Tunneling dissociation
applying the corresponding methodology, the resulting co
plexity requires extensive use of symbolism. We follow a
extend the one given in Ref. 5.

The strategy that we adopted for dealing with this pro
lem is to define the various regions~Fig. 1! and to account
progressively for their contribution. It has already be
shown that propagation in region O does not contribute
Gsc(E).5 Therefore, we considered four categories:~i!
Propagation in region I only;~ii ! Propagation in regions
and II only; ~iii ! Propagation in regions I, II, and III only
~iv! Propagation in regions I, II, III, and IV.

A considerable amount of ‘‘algebra’’ is needed for deri
ing the amplitudes. For reasons of economy, below we o
give the results for each category and the description of
symbolism.

~i! The amplitude is simply

J15Ar 1r 2

I . ~2!

The symbol Ar 1r 2

I is the amplitude for propagation from

point r 1 to point r 2 in all possible ways~paths!, with the
restriction that the particle remains in region I during t
propagation.

~ ii ! J25~ I-II * !r 1/bAbr 2

I . ~3!

The symbol in parenthesis means the following: The Rom
numerals represent the regions that are covered during
propagation, in all possible ways and at least once for e
propagation. The region with the asterisk is the last one
is met in the propagation. The two upper indices express
order of their appearance, the initial and the final point.

Expression~3! has the following meaning: Since the fi
nal point of the propagation is pointr 2 , if we want to inter-
change regions I and II during the propagation~in all pos-
sible ways!, we must finally come to pointb which is the
boundary between these two regions. The quantity (I-II* ) r 1/b

describes the above procedure. When pointb is reached, we
account for all possible paths which lead to pointr 2 while
remaining in region I. The last procedure is described by
quantity Abr 2

I . Region I cannot be entered during the la

part of the propagation, because this has already been t
in account through the quantity (I-II* ) r 1/b.

~iii !

J35~ I-II * !r 1/g~ III-II * !g/bX$I,II,III; b,g%@~ I* -II !b/r 2

1Abr 2

I # , ~4a!

where the quantityX$I,II,III; b,g% is defined as:

X$I,II,III; b,g%511~ I-II * !b/g~ III-II * !g/b

1~~ I-II * !b/g~ III-II * !g/b!21...

5
1

12~ I-II * !b/g~ III-I * !g/b . ~4b!

Here, things are more complicated. Given two points, Eq.~4!
describes propagation consisting of two parts. In the fi
part, we interchange three regions, I, II, and III, in all po
sible ways. Again, eventually we must arrive at pointb. The
first quantity, (I-II* ) r 1/g (III-II * )g/b, describes one suc
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
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propagation, starting from pointr 1 and not traversing region
I again, after region III is reached. But, it is possible
traverse region I again~while interchanging with region II!
and then interchange regions III and II, and so on. Hence
can be understood that we can construct a polynomial of
variable (I-II* )b/g (III-II * )g/b, which describes the inter
change of the three regions, starting and terminating at p
b, and which is of infinite order since there is an infinity
paths corresponding to this procedure. The amplitude
such propagation is represented by the quan
X$I,II,III; b,g%.

Finally, after reaching pointb for the last time during
this interchange, we must propagate to pointr 1 without pass-
ing through region III again. This last part of the propagati
is described by the quantity (I* -II) b/r 21Abr 2

I , which in-

cludes the case where the particle propagates only in reg
(Abr 2

I ).

~iv! The amplitude of the fourth category involves a
four regions in all possible ways. We realize that this impl
consideration of three regions at a time, without jumps. T
possible triplets are:~I-II-III ! and ~II-III-IV !, and we must
consider all possible interchanges. For example, the sym
(I-II-III * )b/d means all possible interchanges having as fi
the region I and last the region III, while propagating fro
point b to point d. We remind ourselves that every possib
path must engage all three regions. So we have:

J45~ I-II-III * !r 1/d~ IV-III-II * !d/bY$I,II,III,IV; b,d%

3Z$I,II,III; b,g,r 2%, ~5a!

where

Y$I,II,III,IV; b,d%511~ I-II-III * !b/d~ IV-III-II * !d/b

1~~ I-II-III * !b/d~ IV-III-II * !d/b!21...

5
1

12~ I-II-III * !b/d~ IV-III-II * !d/b . ~5b!

The quantityY$I,II,III,IV; b,d% is a polynomial of the vari-
able (I-II-III * )b/d (IV-III-II * )d/b of infinite order. This vari-
able describes the interchange of regions I, II, and III, sta
ing at point b and terminating at pointd, ~in all possible
ways! followed by the interchange of regions IV, III, and I
starting at pointd and terminating at pointb ~in all possible
ways!.

The quantityZ$I,II,III; b,g,r 2% consists of:~A! Direct
propagation to the pointr 2 through region I;~B! Exhaustion
of the pair~I-II ! and propagation tor 2 ; ~C! Exhaustion of the
triplet ~I-II-III ! and then, either use of the pair~I-II ! and
propagation, or direct propagation. Therefore, the final re
is:

Z$I,II,III; b,g,r 2%5~~ I-II * -III !b/b11!

3Abr 2

I ~11~ I-II * !b/b!. ~5c!

As explained in Refs. 8, 15, the semiclassical propaga
for motion from pointr 1 to point r 2 of region I is the sum of
the above four amplitudes, multiplied by the fact
1/@2pAk(r 1)k(r 2)#, wherek(r ) is the momentum, defined
by Eq. ~6! below.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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We now have to compute all the terms appearing in
above relations. These terms consist of triplets for propa
tion involving three regions, or of pairs for propagation i
volving two regions, or, in the simplest case, of single a
plitudes for propagation in only one region. In what follow
for reasons of economy we present only the main resu
without the intermediate steps of analytic computation.

We begin by defining certain quantities. These are
vided into two categories:~a! Well factors@Eqs.~6!–~10b!#,
and ~b! Barrier factors@Eqs.~11a!–~13!#:

WELL FACTORS :

k~r !5$2@E2V~r !#%1/2, ~6!

l~r !5E r

k~x!dx, ~7!

m~r !5l~r !2u, ~8a!

u5l~a!2
p

4
, ~8b!

j~r !5l~r !2w, ~9a!

w5l~g!2
p

4
, ~9b!

expi @2m~b!#[bx, ~10a!

expi @2j~d!#[dx. ~10b!
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
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BARRIER FACTORS :

k15&E
b

g

dxAV~x!2E, ~11a!

k25&E
d

«

dxAV~x!2E, ~11b!

exp@22k1#

11 1
4 exp@22k1#

5x, ~12!

exp@22k2#

11 1
4 exp@22k2#

5y. ~13!

We are now ready to obtainGsc(E).

~ i! J15Ar 1r 2

I ~14a!

and, after some algebra,:

J1522i sinm~r 1!exp@2 im~r 2!#

1
4 sinm~r 1!sinm~r 2!

12 ibx ; ~14b!

~ ii ! J25~ I-II * !r 1/bAbr 2

I , ~15a!

J252
4 sinm~r 1!sinm~r 2!

~12 ibx!
1

8 sinm~r 1!sinm~r 2!

2~12 ibx!1 ixbx ;

~15b!
clearly
~ iii ! J35~ I-II * !r 1/g~ III-II * !g/bX$I,II,III; b,g%~ I* -II !b/r 2, ~16a!

J352
8 sinm~r 1!sinm~r 2!

2~12 ibx!1 ixbx 1
8 sinm~r 1!sinm~r 2!@2~12 idx!1 ixdx#

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx ; ~16b!

~iv! J45~ I-II-III * !r 1/d~ IV-III-II * !d/bY$I,II,III,IV; b,d%Z$I,II,III; b,g,r 2%, ~17a!

J452
8 sinm~r 1!sinm~r 2!@2~12 idx!1 ixdx#

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx

1
8 sinm~r 1!sinm~r 2!@2~12 idx!1 ixdx#

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx1z
, ~17b!

where

z5
8x2 exp~2k1!ybxdx~12 idx!

@2~12 ibx!1 ixbx#@2~1idx!1 ixdx#2 ixydx . ~17c!

Summing the four amplitudes gives the sought after Green’s function in an elegant form of two parts, the latter
exhibiting poles:

Gsc~E!5
1

2pAk~r 1!k~r 2!
~J11J21J31J4!

5
1

2pAk~r 1!k~r 2!
H 22i sinm~r 1!exp@2 im~r 2!#1

8 sinm~r 1!sinm~r 2!@2~12 idx!1 ixdx#

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx1zJ .

~18!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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III. COMMENTS ON THE STRUCTURE OF Gsc „E…

If the potential of Fig. 1 is known numerically, eithe
from a quantum mechanical calculation or quasiempirica
then Gsc(E) can be computed from first principles. In an
case, we can extract the significant aspects of the phy
directly from the form of Eqs.~14b!, ~15b!, ~16b!, ~17b!,
~17c!, ~18!. These are connected to the fractional quantit
where poles appear. The following comments are pertine

~1! Considering the forms ofJ1 , J2 , J3 , and J4 , and the
way they were derived, we observe that each contri
tion has one pole term that cancels identically with
pole term of the previous contribution and one pole te
that cancels identically with one of the next contributio
For example, the first term of Eq.~16b! describingJ3 is
cancelled by the second term of Eq.~15b! describingJ2 ,
while the second term ofJ3 is canceled by the first term
of Eq. ~17b! describingJ4 . This symmetric relationship
is general and can be written as

Jn52Jn112Jn211Fn , n>2, ~19!

whereFn is a function. This expresses the fact that t
appearance of poles in the Green’s function must rep
sent the dependence of the propagation on the full
tential and not on groups of locally coupled regions.

~2! The bound state problem is expressed by the factor
2 ibx) of Eq. ~14b! ~see next section!. As soon as cou-
pling through the barriers is allowed, this term is ca
celled byJ2 . It appears only together with other term
representing the coupling of the bound problem to
tunneling process. For example, the termixbx represents
the coupling of the bound state (bx) with the first barrier
~x!.

~3! Due to the existence of the two wells, one must exp
the appearance of a product of two poles, provided
system is prepared in one well. Indeed, such a produ
present in Eqs. ~16b!, ~17b!, where the term
4x2 exp(2k1)b

xdx represents the coupling of the tw
resonance states (bxdx), which takes place again
through a tunneling process@x2exp(2k1)#.

~4! If the system is prepared in a stationary state of
bound DWP, a different type of pole must represent t
situation, namely a double pole. This is seen as the p
uct of the first two terms of the denominator of Eq. 18.
is clear that for such a pole to arise, we must have
versed at least the first three regions of interest. Inde
we will show that the contributions fromJ3 andJ4 pro-
duce such poles, and so connection to ammonia-t
systems, wherebx5dx, as well as to the asymmetri
DWP can be made.
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IV. POLES OF EACH CATEGORY J i

Apart from the derivation of the Green’s function@Eq.
~18!#, it is significant to know the its poles, or the poles
parts of it. Because the potential contains classically forb
den regions, the poles turn complex as soon as tunnelin
allowed. It is therefore expected that the presence of th
regions introduces certain time scales, via the real and
imaginary parts of the poles. For example, the energy sp
ting that emerges from the real part of the double pole
connected to the frequency of oscillation, whereas the ima
nary part of a pole is connected, in general, with a rate
time evolution. In other words, the nature of the poles de
mines the dynamics. In this section, the focus is on the po
of the Green’s function, as they emerge from each amplitu
This is done by expanding the corresponding fraction aro
the energies of the unperturbed bound state problem. In
way, the poles depend directly on the initial preparation
the system. In order to compare with known results at
JWKB level, we apply our results to the harmonic oscillat
well ~HOW!.

„J 1…

The pole is due to the denominator 12 ibx. Putting 1
2 ibx50, results in exp@2im(b)#52i, and so

2m~b!52np13p/2. ~20!

A. Application to the harmonic oscillator well

From Ref. 5 we know that if the well is that of th
harmonic oscillator thenm(b)5(E/v)p1(p/4). It follows
that Eq.~20! is equivalent to

En5~n1 1
2!v. ~21!

Therefore,J1 represents the exact bound state problem.

„J 2…

There is an additional pole, due to the denomina
$2(12 ibx)1 ixbx%. This term cannot become zero exact
However, we may assume that, for realistic problems,x!1
and therefore we can develop the denominator around
poles resulting from such an approximation:5

2~12 ibx!1 ixbx

.@2~12 ibx!1 ixbx#En
1S d

dE
@2~12 ibx!1 ixbx# D

En

3~E2En!. ~22!

Carrying out the algebra for the case of the HOW leads
1

2~12 ibx!1 ixbx .
v

2p~ f ~x!1 id~x!!

1

E2S En2
v

2p

x f~x!

f ~x!21d~x!22 i
v

2p

xd~x!

f ~x!21d~x!2D , ~23!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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where

f ~x!5
v

2p S dx

dED
En

and d~x!5~22x!En
.0. ~24!

Each complex pole in Eq.~23! is given by

Wn5En1Dn2~ i /2!Gn , ~25a!

where

Dn52
v

2p

x f~x!

f ~x!21d~x!2 ~energy shift!, ~25b!

Gn5
v

p

xd~x!

f ~x!21d~x!2.0 ~energy width!. ~25c!

Note that the result forGn shows that this quantity is pos
tive. This is in accordance with our previous result,5 where
the potential is defined by the regions O, I, II.

„J 3…

Here there is an additional pole, due to the term

8 sinm~r 1!sinm~r 2!@2~12 idx!1 ixdx#

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx.

~26!

We distinguish the symmetric from the asymmetric case
the DWP.

B. Symmetric case

For such a potential,bx5dx. Therefore, the above term
can be written as@neglecting 8 sinm(r1)sinm(r2)],

w

w22q2 5
1

2

1

w2q
1

1

2

1

w1q
, ~27a!

where
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
f

w5@2~12 ibx!1 ixbx#5@2~12 idx!1 ixdx#, ~27b!

q52x exp~k1!bx52x exp~k1!dx. ~27c!

We can analyze each of the two poles of Eq.~27! separately.
We start with the term (1/2)(1/w2q). The corresponding
part of the propagator is

4 sinm~r 1!sinm~r 2!

@2~12 ibx!1 ixbx#22x exp~k1!bx . ~28a!

C. Application to the DWP with harmonic wells

We expand the denominator around the pointbx52 i ,
that is around the eigenvalues of one well. Let us assume
the DWP consists of two HOWs. In this case, according
our previous results,5

dbx

dE
5

2p

v
. ~28b!

If we define the quantity:

v

p

d~xek!

dE U
En

5g~x! ~28c!

the following relation is obtained:

1

@2~12 ibx!1 ixbx#22x exp~k1!bx

.
~c2!21

$E2~En2Dn
22 iGn

2/2!%
. ~29a!

Here,

c25
2p

v
~@ f ~x!22x exp~k1!#1 i @x221g~x!# !En

,

~29b!
Dn
25

v

2p

x f~x!12x exp~k1!~g~x!22!

f ~x!214x2 exp~2k1!24x exp~k1! f ~x!1~x22!21g~x!212~x22!g~x!
U

En

, ~29c!

Gn
25

v

p

2x exp~k1! f ~x!24x2 exp~2k1!2x~x22!2xg~x!

f ~x!214x2 exp~2k1!24x exp~k1! f ~x!1~x22!21g~x!212~x22!g~x!
U

En

. ~29d!

Repeating the procedure for the other pole we find:

1

@2~12 ibx!1 ixbx#12x exp~k1!bx .
~c1!21

$E2~En2Dn
12~ i /2!Gn

1!%
, ~30a!

c15
2p

v
~@ f ~x!12x exp~k1!#1 i @x222g~x!# !En

, ~30b!

Dn
15

v

2p

x f~x!12x exp~k1!~g~x!12!

f ~x!214x2 exp~2k1!14x exp~k1! f ~x!1~x22!21g~x!222~x22!g~x!
U

En

, ~30c!

Gn
15

v

p

22x exp~k1! f ~x!24x2 exp~2k1!2x~x22!1xg~x!

f ~x!214x2 exp~2k1!14x exp~k1! f ~x!1~x22!21g~x!222~x22!g~x!
U

En

. ~30d!
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If we now make the realistic assumptions that

f ~x!!1, g~x!!1, ~x22!.22

~ i.e., x is very small!. ~31!

then,

Dn
2.2

v

2p
exp~2k1!, Dn

1.1
v

2p
exp~2k1!, ~32a!

Gn
25Gn

1.2
v

2p
exp~22k1!. ~32b!

At this point we stress that the above quantities as wel
those that will appear below, are calculated at the eigenv
En of the initial state. For the sake of economy and brev
we omit the corresponding indices.

Under the assumptions~31!, the initial state has bee
split in two new states which are almost degenerate, with
energy differenceDE5(v/p)exp(2k1). This is the result of
the JWKB approximation. Therefore, the herein derived f
mulas for the energy shift, Eqs.~29c! and ~30c!, represent a
level of accuracy that goes beyond the JWKB approxim
tion, since the present treatment accounts for the energy
pendence of the tunneling process.

A noteworthy result is that, by considering the quant
k1 as energy dependent, the symmetry in the plus-mi
quantities of the energy shift of the symmetric DWP stat
Eqs. ~29c! and ~30c!, is slightly destroyed. In other words
even if we take the denominators to be the same,~keeping
only the dominant terms!, the numerators do not have opp
site signs, due to the presence of the much smaller te
x f(x), 2x exp(k1) g(x), whose sign is the same in bot
cases. This fact is again connected to the energy depend
of the tunneling process, albeit of small magnitude. T
imaginary parts of the two poles~29d!, ~30d! are not simul-
taneously the same, the higher one having a slightly la
rate. Of course, the dominant terms are the same for b
poles.

D. Asymmetric case

In this case, we expect to see the poles~states! of only
the well where the pointsr 1 andr 2 are located, shifted by the
interaction with the rest of the system. Let us consider
first well ~the same treatment holds for the second well!, and
focus on the term

1

@2~12 ibx!1 ixbx#2
4x2 exp~2k1!bxdx

@2~12 idx!1 ixdx#

. ~33!

E. Application to two unequal HOWs

We expand the denominator~D! around one eigenvalue
E1 , of the first well. By keeping only the most importa
terms,D is reduced to:

D.x1
4ix2 exp~2k1!dx~E1!

@2~12 idx~E1!!1 ixdx~E1!#
2

4ip

v
~E2E1!.

~34!

Based on the physics of the problem, we take
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
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n
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e

x2 exp~2k1!.exp~22k1!,

and

u22idxu@u ixdxu. ~35!

Then,

D.x1
4i exp~22k1!dx~E1!

2~12 idx~E1!!
2

4ip

v
~E2E1!

52
2ip

v H ~E2E1!2
~11 idx~E1!!

~12 idx~E1!!J . ~36!

We expand the denominator of the fraction of the last te
around an eigenvalueE2 of the second well, assumed to b
very close toE1 . In the numerator,E1 is simply replaced by
E2 . Then,

D.
4ip

v H ~E2E1!

2
~11 idx~E2!!exp~22k1!

S 12 idx~E2!2 i S ddx

dE D
E2

~E12E2!D
v

4ipJ .

~37!

Since E2 is an eigenvalue of the second well, the relati
dx(E2)52 i holds. @We note that Miller7 defines a quantity
n2(E), which is related todx as follows:

dx52exp~2ipn2!.] ~38!

Therefore, we write:

D.2
4ip

v H ~E2E1!2
v

2p

exp~22k1!

2pS dn2

dE D
E2

~E12E2!J .

~39!

However,

2p

v
5

db1

dE
52pS dn2

dE D
E2

, ~40!

and, therefore, we finally have:

D.2
4ip

v H ~E2E1!

2
exp~22k1!

2pS dn1

dE D
E1

2pS dn2

dE D
E2

~E12E2!J . ~41!

Equation~41! shows that, if the above approximations a
made, the semiclassical energy shift in the asymmetric D
is
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



er
d

e
d

e

as

8242 J. Chem. Phys., Vol. 119, No. 16, 22 October 2003 T. G. Douvropoulos and C. A. Nicolaides
DE5
exp~22k1!

2pS dn1

dE D
E1

2pS dn2

dE D
E2

~E12E2!

. ~42!

Equation~42! is the same as the one first given by Mill
@Eq. ~21! of Ref. 7#. Note that in both derivations, ours an
that of Ref. 7, the energiesE1 and E2 are assumed to b
close, meaning that the asymmetry of the DWP is assume
be small.

We proceed to deriveDE andG for the DWP beyond the
approximations leading to Eq.~42!. To do so, we expand th
denominator around an eigenvalueEn of the first well which
is not close to an eigenvalue of the second well.

Keeping the main terms, that is making the realistic
sumptions that

U2 4ip

v U@U2ixp

v U
and

u22idxu@u ixdxu, ~43!
d

e
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to

-

and ignoring powers smaller than exp(22k1), such as
x2 exp(2k1)f(x) and x2 exp(2k1)x, and puttingdx(En)5dR

x

1 id1
x , we end up with the relation

1

@2~12 ibx!1 ixbx#2
4x2 exp~2k1!bxdx

@2~12 idx!1 ixdx#

.
d

S E2En2DEn2 i
Gn

2 D , ~44a!

where:

d52
4p$~11dR,I !22idR

x ~11d I
x!%

v$2dR
x ~11d I

x!1 i ~11dR,I !%
, ~44b!

DEn5
4px2 exp~2k1!$~11dR

x2
2d I

x2
!2dR

x ~11d I
x!%

v$4dR
x2

~11d I
x!21~11dR,I !

2%
,

~44c!
Gn58p
x$2dR

x ~11d I
x!21~11dR,I !

2%2x2 exp~2k1!$4dR
x2

~11d I
x!~112d I

x!12~11dR,I !dR,I%

v$4dR
x2

~11d I
x!21~11dR,I !

2%
, ~44d!
with

dR,I5d I
x2

2dR
x2

12d I
x . ~44e!

The above relations, where all quantities are evaluate
En , do not apply ford I

x521, since nowEn is an eigenvalue

at

of the first well but not of the second.~Note that the condi-
tion for an eigenvalue of the second well is:dx52 i .)

„J 4…. The DWP with tunneling

This category produces another pole, due to the term
physical
8 sinm~r 1!sinm~r 2!@2~12 idx!1 ixdx#

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx1
8x2 exp~2k1!ybxdx~12 idx!

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#2 ixydx

. ~45!

This is the relevant pole for the case beyond the DWP, where all regions are considered. In order to exhibit its
significance, we rewrite Eq.~45! as follows:

8 sinm~r 1!sinm~r 2!
h~dx,x!@h~dx,x!h~dx,y!2 ixydx#

$h~bx,x!h~dx,x!24x2 exp~2k1!bxdx%$h~dx,x!h~dx,y!2 ixydx%18x2 exp~2k1!ybxdx~12 idx!
,

~46a!
ns,

cket
of
where the following relations hold:

@2~12 ibx!1 ixbx#5h~bx,x!, ~46b!

@2~12 idx!1 ixdx#5h~dx,x!, ~46c!

@2~12 idx!1 iydx#5h~dx,y!. ~46d!

We observe that ify is very small, meaning that th
second barrier is large, then 8x2 exp(2k1)ybxdx(12idx) can
be considered as negligible and, after some simplificatio
the poles of the symmetric DWP emerge:

h~dx,x!

h~bx,x!h~dx,x!24x2 exp~2k1!bxdx .

So, in this case, whether we have prepared the wave pa
in one of the nonstationary states of the first well or in one
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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the stationary states of the double well, the expansion wil
done around the poles of the DWP. This is reasonable si
even if we consider the first case, due to the small de
from the last barrier the system has time to equilibrate i
DWP stationary state.

If we consider that the conditionx!1 is also satisfied,
then the poles of the first well emerge from the perturbat
of the bound states of the first well by the two barriers,
second well and the continuum. This is seen by the fact t
after certain simplifications, a quantity proportional
@1/2(12 ibx)1 ixbx# remains.~This is theJ2 case.!

Given the above, in the expansion that follows we
sume that the system has been prepared in a state of the
well and we examine the dependence of the new poles on
relative magnitude of the two barriers.
s
hi
e

t
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V. CALCULATION OF THE COMPLEX ENERGIES
OF THE FULL GREEN’S FUNCTION

The complete problem is understood when the comp
poles are extracted from the relevant fraction of the f
Green’s function~categoryJ4). With reference to the unper
turbed model, energy shifts and widths for both the symm
ric and the asymmetric cases can be found.

We start with the expression for the Green’s functio
excluding the regular part@Eq. ~45!#. Again, we will distin-
guish two cases, depending on whether the two wells are
same or not.

A. Symmetric DWP plus continuum

In this case,bx5dx. We write Gsc(E) as @without the
factor 8 sinm(r1)sinm(r2)]
@2~12 ibx!1 ixbx#

@2~12 ibx!1 ixbx#224x2 exp~2k1!bxbx1
8x2 exp~2k1!ybxbx~12 ibx!

@2~12 ibx!1 ixbx#22 ixybx

. ~47!

Let

z5
8x2 exp~2k1!ybxbx~12 ibx!

@2~12 ibx!1 ixbx#22 ixybx . ~48a!
We put:

4x2 exp~2k1!bxbx2z5«2, ~48b!

where

«5reiw ~48c!

with r andw being real numbers. Thus expression~47! takes
the form:

@2~12 ibx!1 ixbx#

@2~12 ibx!1 ixbx#22«2 5
1

2

1

@2~12 ibx!1 ixbx#2«

1
1

2

1

@2~12 ibx!1 ixbx#1«
.

~49!

We observe that if the quantityz is zero, then the problem i
reduced to that of the symmetric DWP. The condition for t
to occur is for the quantityy to become zero, i.e., to have th
situation of an infinite second barrier.

We turn to the first term of Eq.~49! and again focus on
the denominator. Expansion around the eigenvalues of
harmonic bound state problem@Eq. ~28b!# of the first well
yields:
s

he

@2~12 ibx!1 ixbx#2«

.x12ix exp~k1!1S 22i
2p

v
1

dx

dE
1 ix

2p

v
2

d«

dED
3~E2En!. ~50a!

We define the quantity

t~x!5
v

2p

d~x2 exp~2k1!!

dE U
En

~50b!

and carry out algebra so as to obtain:

1

2

1

@2~12 ibx!1 ixbx#2«
.

~c2!21

E2FEn2DEn
22 i

Gn
2

2 G ,

~51a!

where:

c25
4p

v H S f ~x!22x exp~k1!1
2y exp~k1!

~y2x! D
1 i S x221

t~x!exp~2k1!

x D J , ~51b!
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DEn
25

v S f ~x!x1
2xy exp~k1!

~y2x!
12x exp~k1!F t~x!exp~2k1!

x
22G D

2 2 , ~51c!
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2p S f ~x!22x exp~k1!1
2y exp~k1!

~y2x! D 1S x221
t~x!exp~2k1!

x D

Gn
2

2
5

v

2p

S 4xy exp~2k1!

~y2x!
12 f ~x!exp~k1!x24x2 exp~2k1!2xFx221

t~x!exp~2k1!

x G D
S f ~x!22x exp~k1!1

2y exp~k1!

~y2x! D 2

1S x221
t~x!exp~2k1!

x D 2 . ~51d!

We repeat the procedure for the second pole:

@2~12 ibx!1 ixbx#1«.x22ix exp~k1!1S 22i
2p

v
1 f ~x!1 ix

2p

v
1

d«

dED ~E2En!, ~52!

from which

1

2

1

@2~12 ibx!1 ixbx#1«
.

~c1!21

E2FEn2DEn
12 i

Gn
1

2 G , ~53a!

where

c15
4p

v H S f ~x!12x exp~k1!2
2y exp~k1!

~y2x! D1 i S x222
t~x!exp~2k1!

x D J , ~53b!

DEn
15

v

2p

S f ~x!x2
2xy exp~k1!

~y2x!
12x exp~k1!F21

t~x!exp~2k1!

x G D
S f ~x!12x exp~k1!1

2y exp~k1!

~y2x! D 2

1S x222
t~x!exp~2k1!

x D 2 , ~53c!

Gn
1

2
5

v

2p

S 4xy exp~2k1!

~y2x!
22 f ~x!exp~k1!x24x2 exp~2k1!2xFx222

t~x!exp~2k1!

x G D
S f ~x!12x exp~k1!2

2y exp~k1!

~y2x! D 2

1S x222
t~x!exp~2k1!

x D 2 . ~53d!
I

B. Return to the Green’s function Gsc „E…

At this point, we can write the form for the fullGsc(E).
It consists of the regular part, which originates from region
and from the sum of the two terms, Eqs.~51a!, ~53!, that
contain poles@including the factor 8 sinm(r1)sinm(r2)]:

Gsc~E!5Gregular~E!1Gpole
1 ~E!1Gpole

2 ~E!, ~54!

where

Gregular~E!5
2 i

p (
n50

nmax

An , ~55a!

Gpole
1 ~E!5

2

p (
n50

nmax

An
1

1

E2Wn
1 , ~55b!

Gpole
2 ~E!5

2

p (
n50

nmax

An
2

1

E2Wn
2 , ~55c!

with the definitions
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
,

An5
sinmn~r 1!exp@2 imn~r 2!#

AEn2V~r 1!AEn2V~r 2!
, ~56a!

An
15

~cn
1!21

AEn2V~r 1!AEn2V~r 2!
sinmn~r 1!sinmn~r 2!,

~56b!

An
25

~cn
2!21

AEn2V~r 1!AEn2V~r 2!
sinmn~r 1!sinmn~r 2!,

~56c!

Wn
15En2DEn

12 i
Gn

1

2
, ~56d!

Wn
25En2DEn

22 i
Gn

2

2
. ~56e!
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C. Asymmetric DWP plus continuum

For this case, the Green’s function of Eq.~45! is written as

1

@2~12 ibx!1 ixbx#2
4x2 exp~2k1!bxdx

@2~12 idx!1 ixdx#
1

8x2 exp~2k1!ybxdx~12 idx!

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#22 ixydx@2~12 idx!1 ixdx#

, ~57!

which can be rewritten as

1

2~12 ibx!1V1~e22k1;bx!1V2~e22k1;bx,dx!1V3~e22k1,e22k2;bx,dx!
. ~58!

The quantitiesVk are defined as follows:

V1~e22k1;bx!5 ixbx, ~59a!

V2~e22k1;bx,dx!52
4x2 exp~2k1!bxdx

@2~12 idx!1 ixdx#
, ~59b!

V3~e22k1,e22k2;bx,dx!5
8x2 exp~2k1!ybxdx~12 idx!

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#22 ixydx@2~12 idx!1 ixdx#
. ~59c!

In this form, one can distinguish the perturbation that is applied to the bound states of the first well by the first barrie~59a!,
by the first barrier and the second well~59b!, and finally by the two barriers and the second well~59c!. When these terms an
their derivatives are evaluated at the eigenvalues of the first well, they give rise to complex numbers. So, using the indR for
the real part and the indexI for the imaginary one, we obtain for the denominator~den!:

den.cH E2En1
v

2p

3

$~x1V2R1V3R!1 i ~V211V31!%H S f ~x!1
v

2p

dV2R

dE
1

v

2p

dV3R

dE D2 i S x221
v

2p

dV21

dE
1

v

2p

dV31

dE D J
S f ~x!1

v

2p

dV2R

dE
1

v

2p

dV3R

dE D 2

1S x221
v

2p

dV21

dE
1

v

2p

dV31

dE D 2 J , ~60!

where the quantityc is defined as:

c5
2p

v H S f ~x!1
v

2p

dV2R

dE
1

v

2p

dV3R

dE D1 i S x221
v

2p

dV21

dE
1

v

2p

dV31

dE D J . ~61!

It follows that, in this case,

DEn5
v

2p

~x1V2R1V3R!S f ~x!1
v

2p

dV2R

dE
1

v

2p

dV3R

dE D1~V2I1V3I !S x221
v

2p

dV2I

dE
1

v

2p

dV3I

dE D
S f ~x!1

v

2p

dV2R

dE
1

v

2p

dV3R

dE D 2

1S x221
v

2p

dV2I

dE
1

v

2p

dV3I

dE D 2 , ~62a!

Gn

2
5

v

2p

~V2I1V3I !S f ~x!1
v

2p

dV2R

dE
1

v

2p

dV3R

dE D2~x1V2R1V3R!S x221
v

2p

dV2I

dE
1

v

2p

dV3I

dE D
S f ~x!1

v

2p

dV2R

dE
1

v

2p

dV3R

dE D 2

1S x221
v

2p

dV2I

dE
1

v

2p

dV3I

dE D 2 . ~62b!
era-
cond
ion
the
VI. THE DEPENDENCE OF Gn ON THE RELATIVE
MAGNITUDES OF THE TWO BARRIERS
FOR THE CASE OF EQUAL WELLS

For both poles in Eqs.~51d! and ~53d!, the dependence
of Gn/2 on the second barrier, that is on the quantityy, is
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
expressed in terms of the same quantities in both the num
tor and the denominator. This is reasonable, since the se
barrier did not cause any splitting. We recall that the creat
of the two poles is due to the first barrier. In the case of
DWP, although the relations forGn

1 andGn
2 are different, the
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dominant terms are the same. This is why, in the limit o
large barrier, we obtain the correct JWKB result—same
both cases.

We now raise the question of the variation ofGn as the
relative size of the two barriers changes. We assume tha
two wells are the same, we keep the first barrier constant
we change the second according toy5lx. @The symboll
here is not the functionl(r ) of eq. ~7!.# In this way,l is a
variable for the second barrier, before decay to the c
tinuum. For example, it can be related to an electric field,E.
i.e.,l[l(E). We will show that the width changes sign asl
becomes larger. This is caused by the operation of
‘‘mechanisms’’ concerning the dynamics of the system,
one reflecting the preparation of a virtual or real two-lev
equilibrium state, and the other reflecting the decay into
continuum. The first mechanism produces a positive ima
nary part of the complex self-energy, while the second o
produces a negative one. The latter mechanism domin
over the first one asl increases.

We discuss the following five cases for the value of t
parameterl, each of which describes a different physic
situation.

~i! If l>0, ~for a finite value ofx!, the second barrie
becomes infinite. Let us assume, without loss of genera
the harmonic oscillator potential. Then, bothGn

1 and Gn
2

tend to the quantity

Gn
25Gn

1.2
v

2p
exp~22k1!. ~63a!

The absolute value of the quantityGn/2 is the imaginary part
of the complex self-energy, and therefore the solution d
not lead to exponential decay, since it represents a bo
system. In this case, the physical meaning ofG is that it
represents the result of the interaction via which the sys
is taken from a state of the first well to a bound state of
double well. Hence,G is equal to the rate with which th
system approaches the two-level equilibrium state. At
end of the interaction, the system is led to an oscillat
between the states of the two wells.

~ii ! If 0 ,l,1, we have the case where the second b
rier is larger in magnitude than the first one, but not infini
In this case, there will be two different processes. The fin
ness of the second barrier allows exponential decay, as
asl is larger than zero. At the same time, the system tend
equilibrate to a virtual two-level stationary state, as if prop
gation were forbidden after the last turning point of the s
ond well. Hence, the terms constituting the negative par
the imaginary self-energy correspond to the exponential
cay, whilst those that constitute the positive part corresp
to the approach to a virtual two-level equilibrium state. Asl
increases, but without affecting the region of the second w
under En , meaning that the two wells remain symmetr
two things happen:

~a! The positive part of the imaginary self-energy r
mains the same, since in our approximation the prepara
of the virtual two-level stationary state concerns only the t
wells and the in-between barrier.

~b! The absolute value of the negative part becom
larger, since the system is now allowed to decay into
Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to A
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continuum. Therefore, we expect that the imaginary part
the self-energy must be a positive number whose magnit
decreases asl increases. The fact that it is positive implie
that the rate with which the system approaches the vir
two-level stationary state is larger than the rate with wh
the system decays into the continuum, while the fact tha
magnitude decreases implies that the second rate~exponen-
tial decay!, tends to dominate the first.

Indeed, forl51/3 we find that the imaginary part ap
proximately equals (v/p)exp(22k1), while for l51/2 it ap-
proximately equals (v/2p)exp(22k1), which means a de-
crease by half its magnitude.

We also find terms with opposite sign for the two pole
and so these terms are related to the splitting effect that c
acterizes the symmetric DWP. They are negligible if the b
riers are treated within an energy-independent scheme.

~iii ! If 1 ,l,`, we have the case where the seco
barrier has become smaller than the first one, and so
expect the imaginary part of the self-energy to be a nega
number, with increasing absolute value tending to the lim
2(v/2p)exp(22k1). Now, the rate with which the system
decays exponentially is larger than the one with which
system tries to equilibrate, and the latter approaches zer
l increases. Indeed forl52 we find that the imaginary par
equals2(v/4p)exp(22k1), while for l53 the imaginary
part equals2(v/3p)exp(22k1). This implies an increase o
4/3 in absolute magnitude.

~iv! On the other hand, ifl→`, meaning that the sec
ond barrier is much smaller than the first, then both of th
quantities tend to

Gn
25Gn

1.
v

p
exp~22k1!. ~63b!

According to ~iii ! the opposite of this quantity~twice the
imaginary part! is the result of the sum of the positive qua
tity (v/2p)exp(22k1) and a negative one corresponding
exponential decay. So the rate with which the system dec
exponentially is equal to (3v/2p)exp(22k1). This result
holds if one assumes that even though the second ba
becomes much smaller than the first one, the second we
not affected and still remains equal to the first. If this is n
the case, then we would have onlyJ2 in the Green’s function
and, according to Eq.~25c!, this would give approximately a
quantity equal to2(v/2p)exp(22k1) for twice the imagi-
nary part, which is the one predicted by the JWKB appro
mation.

~v! If l51, which corresponds to the case where the t
barriers are equal, it is easy to see that the imaginary pa
the self-energy tends to zero as2(v/2p)(l21)/
lexp(22k1), changing sign atl51, which corresponds to
the situation where the two rates are equal.

VII. THE DEPENDENCE OF DEn ON THE RELATIVE
MAGNITUDES OF THE TWO BARRIERS
FOR THE CASE OF EQUAL WELLS

We now examine the problem of what happens toDEn

as the relative size of the two barriers changes. This is
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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interesting question, related to the fact that, for the symm
ric case, where the doublet splitting leads to the notion of
inversion frequency, as in the standard case of ammonia
expect that the results ought to have physical significan
The same relation for the barriers,y5lx, is used.

It is again evident that in this case as well, the domin
terms that are crucial for the qualitative description of t
model are those containing the quantityy, that is the contri-
bution of the second barrier. Yet, there is a basic differe
that we meet in this case as compared with the behavio
Gn

2 andGn
1 , and it comes from the structure of the nume

tor. Now, although the dominant term in the numerator is
same in absolute value for both poles, its sign changes.
reflects the known situation of the splitting in the energies
the DWP. A physical consequence of this fact ought to be
change of the period of oscillation of ammonialike states

We discuss the following cases corresponding to diff
ent values ofl:

~i! If l.0, we have a nearly infinite second barrie
Then,

DEn
1.1

v

2p
exp~2k1! and DEn

2.2
v

2p
exp~2k1!

~64a!

in agreement with the JWKB result.1,2

~ii ! If 0 ,l!1, meaning that the second barrier is mu
larger than the first one but not infinite, sayy;exp(23k1),
then we find that

DEn
1.1

v

2p

exp~2k1!

2
and DEn

2.2
v

2p

exp~2k1!

2
.

~64b!

~iii ! If l is of order 1, sayl51/2, where the first barrie
is slightly smaller than the second one, then

DEn
1.1

v

2p

3 exp~23k1!

2

and

DEn
2.2

v

2p

3 exp~23k1!

2
. ~64c!

So we observe that with the decrease of the second ba
there is a drastic reduction of the size of energy level sh
The reason for this fact is the following: Since the first b
rier becomes infinite aroundl'0, the increase of the quan
tity y, that is the reduction of the second barrier, has a
consequence the reduction of the degree of symmetry c
acterizing the two wells. In other words, the degree of p
turbation of the eigenvalues is an increasing function of
degree of symmetry. This is in harmony with the result of t
bound state problem of the DWP discussed above.

~iv! If l51 which is the limit where the two barriersx
andy are the same, we observe thatDEn

1 andDEn
2 tend to

zero as

7
v

2p

~y2x!

2
exp~2k1!. ~64d!
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This behavior is known for the periodic potential from th
work of Holstein.9 Holstein’s results show that a period
potential has an infinity of poles, whose positions are giv
by those of the initial well shifted by a quantity proportion
to cosu exp(2k), where the angleu is in the interval~2p,p!.
In our case, we do not have a periodic potential. Nevert
less, the finite number of poles are characterized by the s
form, with u having a specific value. We choosey>x and
not y5x ~as in a periodic potential!, since in the latter case
the result would be zero. From the fraction that describes
energy shift we kept only the dominant terms. Therefore,
letting y>x we are led to considering the additional term
which cause a small inequality. The poles are very close
the initial eigenvalues, which corresponds to values for
angleu of p/2.

~v! Finally, for the case wherel@1, that is where the
second barrier is much smaller than the first one, we find

DEn
1.1

v

2p

exp~23k1!

2

and

DEn
2.2

v

2p

exp~23k1!

2
. ~64e!

~vi! An interesting conclusion coming from the above resu
is that the signs of the energy shifts corresponding to the
poles remain the same, independently of the value ofl ~i.e.,
of the magnitude of the second barrier!, except for a small
region between values 1 and 2, where the two poles in
change their sign.

VIII. GREEN’S FUNCTION FOR TRANSITION
FROM ONE WELL TO THE OTHER

Given Fig. 1, we may have propagation from region I
III without, or with the participation of region IV.

A. Regions I, II, and III

The contribution to the propagator of these paths is

L15~ I2II * !r 1/gS$I,II,III; b,g%Agr 2

III , ~65!

where

S$I,II,III; b,g%5
11~ III 2II * !g/g

12~ III 2II * !g/b~ I2II * !b/g . ~66!

Finally:

L15
Ar 1b

I Abg
II Agr 2

III

~12Abb
I Abb

II !~12Agg
III Agg

II !2Abb
I Abg

II Agb
II Agg

III .

~67!

By defining the functionz(r )5l(r )2l(d)1p/4, L1 be-
comes
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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L152 sinm~r 1!sinz~r 2!
2Abxdxx exp~k1!

@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#24x2 exp~2k1!bxdx . ~68!
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We observe that Eq.~68! is of the form

2
a

b22a2 5
1

2

1

b2a
2

1

2

1

b1a
, ~69a!

where

a52~12 ibx!1 ixbx52~12 idx!1 ixdx ~69b!

and

b52bxx exp~k1!52dxx exp~k1!, ~69c!

provided that the wells are symmetric. Therefore, taking i
account the previous analysis, this part of the Green’s fu
tion will exhibit the poles of the symmetric DWP. The cru
cial difference comes from the change in sign of the sec
fraction, a fact that produces the opposite phase for the
cillation.

B. Regions I, II, III, and IV

We now have three additional subcategories, which h
as their multiplicative factor the term (I-II-III* ) r 1/d. This
factor expresses the fact that since region IV is included
the propagation, the pointd must necessarily be reached. T
subcategories are the following:

~a! After point d, we include only regions IV and III. The
contribution of this subcategory is

L2a5~ I-II-III * !r 1/d~ IV-III * !d/r 2. ~70a!

~b! After point d, we include only regions IV, III, and II.
The contribution is

L2b5~ I-II-III * !r 1/d

3
~ IV-III * !d/g$~ II-III * !g/r 21~ IV-III * !d/r 2~ II-III * !g/d%

12~ IV-III * !d/g~ II-III * !g/d .

~70b!

~c! After point d, all regions, IV, III, II, and I, are in-
cluded. The contribution is

L2g5
~ I-II-III * !r 1/d~ IV-III-II * !d/b

12~ I-II-III * !b/d~ IV-III-II * !d/b $~ I-II-III * !b/r 2

1~ I-II-III * !b/d@L2b /~ I-II-III * !r 1/d#%. ~70c!

Doing the algebra, we end up with the result:

L25L2a1L2b1L2g5R~r 1!S~r 2!
@2~12 idx!1 ixdx#

D
, ~71!

where the symbols are defined as:

S~r 2!5@2~12 ibx!1 ixbx#$sinj~r 2!@2~12 idx!

1 ixdx#2 i sinz~r 2!Adx%

12x2 exp~k1!bxAdx@ i sinz~r 2!

22Adx exp~k1!sinj~r 2!#, ~72a!
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R~r 1!5216Abxdx sinm~r 1!xy exp~k1!, ~72b!

D5q~bx,dx,x!$q~bx,dx,x!w~dx,x,y!

18bxdxx2y exp~2k1!~12 idx!%, ~72c!

q~bx,dx,x!5@2~12 ibx!1 ixbx#@2~12 idx!1 ixdx#

24x2 exp~2k1!bxdx, ~72d!

w~dx,x,y!5@2~12 idx!1 ixdx#@2~12 idx!1 iydx#

2 idxxy. ~72e!

Therefore, provided all quantities that are related to
barriers tend to zero, this contribution exhibits three differe
poles, of which two constitute a double one. The double p
is created by the two wells coupled via the first barrier. T
simple pole is that of the second well coupled to the sec
barrier.

IX. A NOTE ON PREVIOUS RELEVANT PAPERS
ON THE DWP

Even though the problem treated here is on
dimensional, it does not lack physical relevance, as
plained in the Introduction, especially since it includes dec
into the continuum. Of course, it is a desideratum for t
path-integral formalism, which goes beyond the level of t
JWKB approximation, to be proven practical in the case
multidimensional potentials as well.~For treatments of as
pects of multidimensional tunneling, see, e.g., Refs. 22–2!

As regards the approach followed here, it is notewor
that there have been earlier treatments that have anal
aspects of the problem of the DWP~without the dissipative
part!, in terms of the trace of the resolvent operator or of t
Green’s function. We have already referred to, and compa
with, the works of Miller7 and of Holstein.8,9 We should also
cite the works of Strunz25 and of Andradeet al.,26 both of
which were brought to our attention after submission of
manuscript. Strunz25 derived a Green’s function for the one
dimensional multiple well potential@his Eq. ~11!#, using
graph theory and the transfer matrix method. The barr
were taken as inverted parabolas. Contrary to the pre
treatment of the DWP, no practical formulas for the real a
the imaginary parts of the complex energies were produc
Andrade et al.26 produced a solution for a semiclassic
Green’s function with a pole structure analogous to ou
Their approach has in common with our treatment the ch
acteristic of a building up methodology. In our case, all a
plitudes and coefficients are produced analytically. In ad
tion, the present development is transparent as regards
required computational procedures, including the imagin
parts of the poles.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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X. CONCLUSION

We have shown how to obtain the semiclassical ener
dependent Green’s function,Gsc(E), Eq. ~18!, for the poten-
tial of Fig. 1, and subsequently its complex poles using
practical formalism of path integrals. Analysis of the stru
ture of Gsc(E) reveals basic aspects of the dynamics of t
system.

The building-up methodology that was adopted also
lowed the investigation of aspects of the physics of
double well potential~DWP!. The preparation of the system
occurs in the left well and complex energies emerge natur
due to tunneling.

An interesting result for the DWP, not previously r
vealed in treatments at the JWKB level,1,2,7 is the appearance
of an imaginary part connected to the system’s duration
equilibration @Eqs. ~29c!, ~30c!, ~44c!#. The fact that in a
bound state problem, namely that of the DWP, there app
complex poles, has to do with the implied time evolution
the system from a nonstationary state of the first harmo
well, where it is prepared, to a final eigenstate of the bou
DWP.

Formulas beyond the JWKB approximation were a
derived for the real part of the self-energy of the DWP. A
counting for a nonlinear energy dependence of the bar
leads to a slight asymmetry in the plus-minus quantities
the energy shift@Eqs.~29c!, ~30c!#. The treatment is genera
and concerns both the symmetric and the asymmetric D
When it is assumed that the degree of asymmetry is sm
then the results@Eq. ~42!# reduce to the ones obtained earli
by Miller.7

For the physics of the full potential, Fig. 1, which wa
the real object of this work, the complex poles ofGsc(E)
provide information about the tendency to a virtual equil
rium, oscillation and decay of the system, initially prepar
in the left well. The related dynamics was examined us
the relative sizes of the two barriers as a parameter. In
way, it is possible to observe the effect of an external per
bation, say an electric field.
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In the follow up work, using the present results for th
Gsc(E) the semiclassical propagator will be computed, a
hence the explicit time-dependence of this system will
examined.
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