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It is shown how the semiclassical theory of path integrals can be implemented in a practical manner
for the analysis of a potential that combines the two-state system of a double well paie¥itial

with decay into a continuous spectrum. This potential may correspond to a variety of physical
situations in physics and chemistry. The structure of the formalism and of the results is such that it
allows computation not only for analytic but also for numerically given potentials. The central
theme is the determination of the energy-dependent Green’s function, which is shown to consist of
a regular part and a part containing simple and double complex poles. These poles represent the
position of the energy levels, as well as the energy widths and shifts due to the interaction with the
continuous spectrum. When applied to the bound DWP without tunneling, the theory is shown to
reduce in certain limits to known results from the Jeffreys—Wentzel-Kiamers—Bhrillouin
approximation. If the system is taken to be prepared in the first well, the interactions with the
remaining of the potential lead to two types of transition rates. One represents the transient motion
toward a virtual equilibrium state of the DWP. It emerges as a positive imaginary part of the
self-energy. The other represents the decay into the continuum and emerges as a negative imaginary
part of the pole. Comparison of the two mechanisms of nonstationarity is made for different
magnitudes of the second barrier relative to the first one. Since the system decays to the continuum
while oscillating, the theory obtains a correction to the frequency of oscillation in the DWP due to
the interaction with the continuum. This phenomenon is observable in real two-state systems, if an
external perturbation which affects mainly one state converts it into a resonance sta?©030©
American Institute of Physics[DOI: 10.1063/1.1612482

I. INTRODUCTION quential and dissipative tunneling, i.e., dynamics that may

. . characterize a number of situations in physics and chemistry,
Among the prototypical systems for the demonstration . : :
regarding, e.g., atomic and molecular spectra, various mo-

of the physics of the phenomenon of tunneling, are the SinglFecular rearrangements, and one-dimensional solid state

well potential (SWP with an unbound region and the X . ) . .
bounded double well potenti@DWP). Aspects of the phys- structures along a reaction coordinate leading to dissociation,

ics of these two systems have been published in numerofiantum transport in the sqlid state and in optica_\l lattices,
publications, using analytic potentials and/or the standarduclear and elementary particle resonances, and field theory.
model of the semiclassical version of quantum mechanicd;O" €xample, a specific model of tf;ls figure, using square
namely the Jeffreys—Wentzel-Kramers—BrillouigwkB) ~ Wells, has been invoked by Faist al” for the analysis of
approximation-? control, by tunneling, of interference in optical absorption in
The work reported here has a dual purpose: First, to seefuantum wells. A quantum mechanical version of the inter-
knowledge about the physics of a one-dimensidaal) po-  actions and processes described by Fig. 1 was examined for
tential whose generic form is as in Fig. 1, using semiclassicagoupled states of a real two-electron system afainitio
physics. Figure 1 constitutes the semiclassical representatigi@lculation in Ref. 4. Specifically, two neighboring doubly
of the coupling of two discrete spectra, of which one isexcited states in the continuous spectrum are coupled by an
coupled to a continuous spectrum. The continuous spectruglectric dipole field. One of them is discrete, of even parity,
has a lower bound if it corresponds to a system without ar{2p?3P), and the other one is unstable, of odd parity,
external field. Second, to do so by applying the formalism of(2s2p 2P°), decaying into the 4ep *P° continuum of scat-
path integrals and Green’s functions, thereby providing additering states. The lifetimes of the two states differ by orders
tional information as to the capacity of this type of method-of magnitude, one of the discrete state being of the order of
ology in the treatment of unstable systems of coupled stated0™° s (radiative decayand one of the resonance state being
In the potential of interest, one expects oscillatory, se-of the order of 10 s. First principles theory and computa-
tion demonstrated quantitatively that when the two states are

aElectronic mail: dtheo@eie.gr coupled by the electric field the discrete state acquires a finite
YElectronic mail: can@eie.gr width due to autoionization, and its lifetime is reduded.
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potential. G (E) consists of two major terms. One is regular
and one has poles, the latter being associated with the inter-
esting features of the dynamics. The results are general and

/“R \ can be applied to any analytic or numerical potential having
this form. In the course of the solution of this problem, the
DWP is also examined anew, and results beyond the JWKB
approximation are obtained.

II. THEORY AND CALCULATION OF THE
SEMICLASSICAL GREEN'S FUNCTION, G4 (E)

FIG. 1. The double-well potential plus tunneling into the continuum, exam-  1he aim of the herein implemented path-integral formal-

ined in this work. ism is the calculation 06, E) and its poles for the poten-
tial of Fig. 1. In total there are six regions for motion. The
classically allowed are denoted by I, lll, and V. The classi-
Similar situations are possible in molecular spectra that excally forbidden are the O, I, and IV. The DWP corresponds
hibit a variety of interactions and crossings or near-crossing® the regions O, I, Il, lll, with the second barrier being
of levels. replaced by an infinite wall. Because of the complexity of the

As regards the dissipative tunneling through a single fifroblem, it is necessary to define and utilize a number of
nite barrier, its extensive analysis in the literature has emphaguantities, and this makes the paper rather long. The solution
sized the derivation and calculation of time-independentias employed a building-up methodology, starting from the
quantities, such as rates and transmission coefficients. F6impler parts and adding possibilities until the complete
the SWP, an expression for the energy shift caused by theroblem is solved.
interaction with the continuum has also been derived. The calculation could in principle be done by taking the

As regards the bound system of the DWP, the physics oFourier transform of the classical limit of Feynman’s time-
tunneling that has attracted attention as well as application idependent propagator between pointsand r,, Gg(t),
normally analyzed in terms of the energy separation of thavhere, in general,

doublets(for initially degenerate states of each welhd of Gl 1) =God(r1,t:1,0)

the related period of oscillation. For discussions and results ~ °° sei b

of semiclassical treatments of this problem, the reader is re- 1 i

ferred to the books of Landau and LifsHitzand of = i pa%:S j \D ex gsjm_ M. (1)

Merzbachef, to the review on Quantum Dynamics in Low- _
Temperature Chemisttyby Benderskii, Goldanskii, and D is the Van Vleck determinan§, is the classical action
Makarov® and to the papers of Milléron symmetric and along the pathj, and« is the Maslov index. For the present
asymmetric DWP and of Holstéll on symmetric DWP. problem points; andr, belong to region I.

The present worKsee also Ref. bimplements a semi- The acknowledged great difficulty in computi®y(t),
classical path-integral approach and emphasizes the calculs- obviated(relatively speakingby focusing on calculating
tion of energy-dependent Green’s functidmather than the G (E) directly. In this case, the existence of classically for-
Hermitian g(E)=trace€E—H) ], and use of their trun- bidden regions requires the possibility of some type of ana-
cated Fourier transfornifrom E=0 to E=o rather than lytic continuation through such regions, which is formally
from E= —» to E= +®), for the calculation of the time- achieved by complexifying time or dynamical
dependent propagat@- (t), t>0. Discussions on the foun- variables-®*~*®Once the solution to this problem is under-
dations and methodology of the semiclassical approach astood, the calculation o6s.(E) requires a meticulous ac-
regards the calculation of propagation amplitudes and o€ounting of all possible paths and a good understanding of
phase changes at the turning points of allowed and forbiddethe related combinatorics. In so doing, the question of the
regions, can be found in the book of Feynman and Hiflbs, proper Maslov indices, i.e., of the phase change at the turn-
in the reviews of Benderskiiet al® and of Berry and ing points before a forbidden or an allowed region is entered,
Mount!! and in the papers of Gutzwilléf, McLaughlin!® s of crucial importance. It is in this respect that the papers of
Miller,”** Holstein and Swift® and of Holsteirf:% Holsteir?**>*%have been enlightening to us, since his analy-

It is worth pointing out that when the potential of Fig. 1 sis and the set of rules listed by him provide the framework
is inverted, as is done with simpler potentials in thestan-  for the formulation of systematic procedures toward the cal-
ton” model, e.g., Refs. 6, 9, 17-21, the topology of allowed culation of G¢(E) in the case of tunnelingand this work.
and forbidden regions remains the same, contrary to the case Once G¢(E) is known, one can obtain, via Fourier
of the DWP. transform, the time-dependent propagater,(t), for t>0,

The main goal of the problem which is treated in thisand from there the survival probability of the initial state,
paper is to derive and interpret expressions in terms of &(t).°
semiclassical Green’s functioBsE), corresponding to the The path integral approach requires the determination of
motion of a wave packet which is initially localized in the the amplitudes for motion for all possible paths framto
left well of Fig. 1 and which propagates according to thisr,, where bothr, andr, are in region I. In developing and
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applying the corresponding methodology, the resulting compropagation, starting from poimt and not traversing region
plexity requires extensive use of symbolism. We follow andl again, after region Il is reached. But, it is possible to
extend the one given in Ref. 5. traverse region | agaifwhile interchanging with region ]I
The strategy that we adopted for dealing with this prob-and then interchange regions Il and II, and so on. Hence, it
lem is to define the various regiofiBig. 1) and to account can be understood that we can construct a polynomial of the
progressively for their contribution. It has already beenvariable (I-IF)#/” (IlI-Il *)”#, which describes the inter-
shown that propagation in region O does not contribute tahange of the three regions, starting and terminating at point
G<(E).> Therefore, we considered four categorig$) A, and which is of infinite order since there is an infinity of
Propagation in region | onlyii) Propagation in regions | paths corresponding to this procedure. The amplitude for

and 1l only; (iii) Propagation in regions I, Il, and Ill only; such propagation is represented by the quantity
(iv) Propagation in regions I, Il, lll, and IV. X{LILNE; B, y}.
A considerable amount of “algebra” is needed for deriv- Finally, after reaching poing for the last time during

ing the amplitudes. For reasons of economy, below we onlyhis interchange, we must propagate to pointvithout pass-
give the results for each category and the description of theng through region Ill again. This last part of the propagation

symbolism. is described by the gquantity *(HI)B“2+A'B,2, which in-
(i) The amplitude is simply cludes the case where the particle propagates only in region |
|
Jl:A:’erI (2) (A,Brz)

(iv) The amplitude of the fourth category involves all
The symboIA:1r2 is the amplitude for propagation from four regions in all possible ways. We realize that this implies
point r, to pointr, in all possible waygpathg, with the  consideration of three regions at a time, without jumps. The

restriction that the particle remains in region | during thepossible triplets are(l-ll-Ill ) and (II-lll-IV ), and we must
propagation. consider all possible interchanges. For example, the symbol
(I-11-111 *)A'% means all possible interchanges having as first

. _ 18l
(i) Jp=(I-I*)PAL . the region | and last the region IlI, while propagating from

The symbol in parenthesis means the following: The Romar‘?omt'g to paint 5. We remind ourselves that every possible
eath must engage all three regions. So we have:

numerals represent the regions that are covered during R

propagation, in all possible ways and at least once for each  J,=(I-1I-1l *)"V(IV-IlI-11 *)TBY{LILILIV; B, 8}
propagation. The region with the asterisk is the last one that
is met in the propagation. The two upper indices express, in XZ{LILNE B, .12}, (58
order of their appearance, the initial and the final point.  where

Expression(3) has the following meaning: Since the fi- _ < BI5 518
nal point of the propagation is poing, if we want to inter- Y{LILILIVE B, 63 =1+ (-1 =) (V=N )
c_hange regions | and .II during the propagat@n aII. pos- (-1 %) BIOONEI-I *)9BY 24
sible ways, we must finally come to poinB8 which is the
boundary between these two regions. The quantity*()-H# _ 1
describes the above procedure. When pgiig reached, we T 1= (1111 %) PI3(NAI-IL *) TR (Sb)
account for all possible paths which lead to paigtwhile ) ) , ,
remaining in region I. The last procedure is described by thérhe quantltxYé{/léll,Ill,IV; '8* 5;,[;3 a p(_)lynom|al of the var-
quantityAfB,Z. Region | cannot be entered during the Iastable (I'”'”_I ) (I\_/'HI'” )" of |nf|n|_te order. This vari-

able describes the interchange of regions |, Il, and lll, start-

part of the propagation, because this has already been takfﬁb

in account through the quantity (144 at point 8 and terminating at poin®, (in all possible

ways followed by the interchange of regions IV, IIl, and I,

(iii) starting at points and terminating at poing (in all possible
Jg=(I-1%) Y YAN-1*)YBXLLILILE B,y (1% -11)A/2 ways.
| The quantityZ{L,ILIll; B,7y,r,} consists of:(A) Direct
+Aﬁr2] ' (48 propagation to the point, through region I(B) Exhaustion
. . . ) . of the pair(l-11) and propagation to,; (C) Exhaustion of the
where the quantit{LILIIl; 5, y} is defined as: triplet (I-1l-111 ) and then, either use of the pairll) and
X{LILIE B,y =14 (1-11%)Blrn-n *)v/8 propagation, or direct propagation. Therefore, the final result
is:
+((-1*) BN * ) VB2 4
1 Z{LILIE B, y,rok=((I-I1*-11)AB+ 1)
T ()R ) YR (4b) X A (L4 (I-I1%)P/8), (50)
Here, things are more complicated. Given two points, (Bf. As explained in Refs. 8, 15, the semiclassical propagator
describes propagation consisting of two parts. In the firsfor motion from pointr to pointr, of region | is the sum of
part, we interchange three regions, I, I, and Ill, in all pos-the above four amplitudes, multiplied by the factor

sible ways. Again, eventually we must arrive at pgitThe  1[27K(r)k(r,)], wherek(r) is the momentum, defined
first quantity, (I-1F)"2Y (1l-11 *)"#, describes one such by Eq.(6) below.
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We now have to compute all the terms appearing in the BARRIER FACTORS:
above relations. These terms consist of triplets for propaga-
tion involving three regions, or of pairs for propagation in- Kl:ﬁf dx\V(x)—E, (113
volving two regions, or, in the simplest case, of single am- B
plitudes for propagation in only one region. In what follows,

for reasons of economy we present only the main results, Kzzx/ifsdx\/V(x)—E, (11b
without the intermediate steps of analytic computation. °
We begin by defining certain quantities. These are di- exf — 2]
vided into two categorieg) Well factors[Egs. (6)—(10b)], PR —— (12)
and (pB) Barrier factord Egs. (11a—(13)]: 1+zexd —2x]
WELL FACTORS : ex —2x,] 13
K(1)={2[E-V(D)]}2 ©  itied-2x]
r Wi d btaiB (E).
)\(r)=f KO dx, @ e are now ready to obtai@ (E)
() i=Ar, (143
mr)=n(r)=0, (83 and, after some algebra,:
b=\(a)~ 7, (8b) 3= —2i sinu(r)exd —iu(ry)]
4 sinu(rq)sinu(r,)
N =AD—e, (98) e e (14b)
(pz)\(y)_;, (9b) (i) Jp=(l-I*)BAp, (153
. _ox B 4sinu(ry)sinu(ry)  8sinu(ry)sinu(ra)
expil2u(B)]=p", (109 J= AT PTG
expi[2&(8)]= 6~ (10b) (15b)
|
(i) Jg= (1) YA *)YEXLLILILG B,y (1% -11)A2, (16a
B 8 sinu(rq)sinu(r,) 8 sinu(rq)sinu(ry)[2(1—i8)+ix 5] _
3T 2(1-ip) +ixB" +[2(1—iﬂX)+ixﬁX][2(1—i5X)+ix5X]—4x2exp(2Kl)3X5X' (160
(iv)  Ja= (1= *) SOV %) TBY{LINIV; B, SYZ{LILILG B,y.r 5}, (173
B 8 sinu(rq)sinu(ry)[2(1—i8)+ix 8]
= T T A T X B 2(1—1 8 + ix 0] — AxZ expl2rey) B S"
8 sinu(ry)sinu(r,)[2(1—i8) +ix 6]
* [2(1—iB)+ixB[2(1—i ) +ix 5] —4x° exp(2k,) BX&+ (' (179
where
8x2exp(2k,)yB*8(1—i %) (17

A TIxA[2(11 89 T ix o] —ixy &'

Summing the four amplitudes gives the sought after Green’s function in an elegant form of two parts, the latter clearly
exhibiting poles:

1
Ged B)= ————(Jy+ Iy + 3+
sc( ) 20 k(rl)k(rz)( 1+ 2+ 3+ 4)
_ 1 i sinu(ry)exd — i u(ra)]+ 8 sinu(rq)sinu(ry)[2(1—i8)+ix5¥]
2 k(T k(T ) i 2T (1= B9 +ix B[2(1—1 89 +ix 6" — 4xZexp(2kq) B+ £

(18
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IIl. COMMENTS ON THE STRUCTURE OF Gg.(E) IV. POLES OF EACH CATEGORY J;

If the potential of Fig. 1 is known numerically, either Apart from the derivation of the Green’s functi¢kq.
from a quantum mechanical calculation or quasiempirically(18)], it is significant to know the its poles, or the poles of
then Gg(E) can be computed from first principles. In any parts of it. Because the potential contains classically forbid-
case, we can extract the significant aspects of the physiaen regions, the poles turn complex as soon as tunneling is
directly from the form of Eqs(14b), (15b), (16b), (17b), allowed. It is therefore expected that the presence of these
(179, (18). These are connected to the fractional quantitiegegions introduces certain time scales, via the real and the
where poles appear. The following comments are pertinentimaginary parts of the poles. For example, the energy split-
ting that emerges from the real part of the double pole is

(1) Considering the fo_rms 091, Jp, Js, andJ,, and the_ connected to the frequency of oscillation, whereas the imagi-
way they were derived, we observe that each contribu-

. : : . nary part of a pole is connected, in general, with a rate of
tion has one pole term that cancels identically with a,. .
time evolution. In other words, the nature of the poles deter-

pole term of the previous contribution and one pole termmines the dynamics. In this section, the focus is on the poles
that cancels identically with one of the next contribution. : N ' ;
For example, the first term of E¢L6b) describingds is of t.hg Green's funct|on,.as they emerge frqm each .amplltude.
cancelled by the second term of Ba5b) describingd,, This is do_ne by expanding the corresponding fraction arounq
while the second term af is canceled by the first term the energies of the unper_turbed bound .stg.te problem.. In this
f Eq. (17 describingd,. This symmetric relationship way, the poles depend directly on t.he initial preparation of
?s general and can be v‘\‘/ritten as the system. In order to compare with known results at the
JWKB level, we apply our results to the harmonic oscillator

3= =dhe1dnatF, 122, (19 well (HOW).

whereF,, is a function. This expresses the fact that the(Jl)
appearance of poles in the Green’s function must repre-
sent the dependence of the propagation on the full po-
tential and not on groups of locally coupled regions.

(2) The bound state problem is expressed by the factor (1 2,,(g8)=2nm+3m/2. (20)
—iB%) of Eq. (14b) (see next sectionAs soon as cou-
pling through the barriers is allowed, this term is can-
celled byJ,. It appears only together with other terms,
representing the coupling of the bound problem to the  From Ref. 5 we know that if the well is that of the
tunneling process. For example, the taxB* represents  harmonic oscillator them(8) = (E/ w) =+ (w/4). It follows
the coupling of the bound stat@X) with the first barrier  that Eq.(20) is equivalent to
(x). _ 1

(3) Due to the existence of the two wells, one must expect En=(n+3)o. (1)
the appearance of a product of two poles, provided th_el’herefore,\ll represents the exact bound state problem.

system is prepared in one well. Indeed, such a product is
present in Egs. (16b, (17b, where the term (J2)
4x2 exp(2;) B 8¢ represents the coupling of the two There is an additional pole, due to the denominator
resonance states3{5*), which takes place again {2(1—iB*)+ixB*}. This term cannot become zero exactly.
through a tunneling proce$s?exp(2«)]. However, we may assume that, for realistic probleris,1

(4) If the system is prepared in a stationary state of theand therefore we can develop the denominator around the
bound DWP, a different type of pole must represent thispoles resulting from such an approximation:
situation, namely a double pole. This is seen as the prod- _ _
uct of the first two terms of the denominator of Eq. 18. It 2(1—18%) +ixg"
is clear that for such a pole to arise, we must have tra- d
versed at least the first three regions of interest. Indeed, =[2(1—ig")+ixB"]g + E[Z(l—iﬁx)ﬂxﬁx]
we will show that the contributions fro; andJ, pro- E,
duce such poles, and so connection to ammonia-type

The pole is due to the denominator15*. Putting 1
i B*=0, results in ex®iu(B)]=—i, and so

A. Application to the harmonic oscillator well

systems, whereg8*= &%, as well as to the asymmetric X(E=En). (22

DWP can be made. Carrying out the algebra for the case of the HOW leads to:
1 w 1 23

2(1—iB)+ixp*  2m(f(x)+id(x)) w xf(x) o xd(x) ' 23

" 2m f02+d()2 | 27 F(0)2+d(x)?
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where w=[2(1-iBY)+ixBX]=[2(1—i8) +ix5 ], (27b)
f(x)zzi(g_; and d(x)=(2—x)E >0. (24) q=2xexp1;<1),8x=2xexqf<l)5x. (270)
e n
En We can analyze each of the two poles of EZj)) separately.
Each complex pole in Eq23) is given by We start with the term (1/2)(W—q). The corresponding
, part of the propagator is
W,=E,+A,—(i/2)T",,, (259 . '
where _4 sm,Lf(rl)sm,u,(rz) ' (283
[2(1—-iB%)+ixB*]—2x exp( k1) B~
1) xf(x) )
Ap= (energy shift, (25 C. Application to the DWP with harmonic wells

© 27 f(x)2+d(x)2

We expand the denominator around the pgiit= —i,
1) xd(x)

————"C__>0 (energy width. (259  thatis around the eigenvalues of one well. Let us assume that
" f(x)7+Hd(x)? o the DWP consists of two HOWs. In this case, according to
Note that the result foF, shows that this quantity is posi- OUr Previous results,
tive. This is in accordance with our previous resulthere dg* 2w
the potential is defined by the regions O, I, II. dE- o (28b
w
(Ja) If we define the quantity:
Here there is an additional pole, due to the term o d(xe)
: , . ~dE | TI™ (289
8 sinu(rqy)sinu(ry)[2(1—i 8 +ix6*] m E,
o . i . _ 2 .
[2(1—1 B9 +ixBI[2(1—16) +ix 5] — 4x eXF’(ZKl)ﬂzgg) the following relation is obtained:
We distinguish the symmetric from the asymmetric case of 1
the DWP. [2(1=ip) +ixB ] —2x explx1) B*
B. Symmetric case (c)? 293
For such a potential3*= §*. Therefore, the above term C{E-(Eq—A, =i, 2)}
can be written agneglecting 8 sin(ry)sin u(r,)], Here
W 1 1 1 1 o7 o
W 2w-q 2wiq’ (273 ¢ =—([f(x)—2xexp(ky) | +i[x—2+g(x) De,,
where (29b)
|
) xf(x)+2x exp(x1)(g(x) — 2) |
Ay=5— 2 2 2 2 , (299
27 F(X)°+4Ax°exp(2kq) —Ax exp k1) F(X) + (X—2)“+g(Xx) +2(x—2)g(x)\E
— 2x expl( k1) F(X) —4x% exp(2k7) —X(X—2) — Xg(X) | -
" ()2 AxZ exp(2k,) — Ax expl k) f(X) + (x—2)2+ g(x) 2+ 2(x—2)g(X)| . ° (29d
Repeating the procedure for the other pole we find:
1 (C+)*l
i oX iy X X + f +\1 ! (303)
[2(1—-ipB)+ixB*]+2xexp( k1) B* {E—(E,—A, —(i/2T)}
27 .
¢ =—([f(0)+2xexpx)) ] +i[x=2-9(x) D, (300
L o xf(x)+2x exp(k1)(g(x)+2) |
A== 2 2 2 7 , (300
27 f(X)“+4x exp2kq) +ax exp( k) f(X)+(x—2)+g(x) —2(x—2)g(x)\E
_ —Ax2 —y(X—
L 2x exp(k1) F(X) —4x2 exp(2k,) — X(X—2) +Xxg(X) ‘ (300

T T T 02 AXZ exp 2xy) + Ax expl k) T (X) + (X— 2) 2+ g(x)2—2(x—2)g(x)\E :
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If we now make the realistic assumptions that x2 exp(2kq)=exp(—2k,),
f(x)<1l, gx)<1l, (x—2)=-2 and
(i.e., x is very smal). (31 =21 > |ix Y. (35
then,
Then,
A= —exp— k1), A=+ ——exp— k1), (328
no zweXp( SUNE S 2 K1) 4iexp(—2k,)(E,) 4dim £ E
. T CiNE)) | e ETE
@ _
- . - :——( — l—m. (36)
At this point we stress that the above quantities as well as w (1-i5%(Ey

those that_ V\.'i." appear below, are calculated at the eigenvglu\(;\/e expand the denominator of the fraction of the last term
E, of the initial state. For the sake of economy and breV|ty,around an eigenvalug, of the second well, assumed to be

we omit the corresponding indices. i o
. _ very close toE;. In the numeratoiz; is simply replaced b
Under the assumptione1), the initial state has been . wThen . 1 ply rep y

split in two new states which are almost degenerate, with an >
energy differencé\ E= (w/m)exp(—«y). This is the result of dim
the JWKB approximation. Therefore, the herein derived for-  D=——| (E~Ey)
mulas for the energy shift, EqQ&9¢ and(30¢), represent a
level of accuracy that goes beyond the JWKB approxima-
tion, since the present treatment accounts for the energy de-
pendence of the tunneling process.

A noteworthy result is that, by considering the quantity
Kk, as energy dependent, the symmetry in the plus-minus
quantities of the energy shift of the symmetric DWP states,
Egs. (290 and (300), is slightly destroyed. In other words, (37)

even if we take the denominators 10 be the safieeping SinceE, is an eigenvalue of the second well, the relation

o_rt1ly the dorglna?t t;rn)sthe numer?ttc;rs do nﬁt havﬁ optpo- 5 (E,)=—i holds.[We note that Millef defines a quantity
site signs, due to the presence of the much smaller term (E), which is related to5* as follows:

xf(x), 2xexp(i) g(x), whose sign is the same in both
cases. This fact is again connected to the energy dependence s¥= —exp2imn,).] (39)
of the tunneling process, albeit of small magnitude. The

imaginary parts of the two pold290d), (30d are not simul- Therefore, we write:

taneously the same, the higher one having a slightly larger )

rate. Of course, the dominant terms are the same for both 5_ _ 4 © exp(—2ky)

poles. P Uy dn,
2m| —| (E1—Ey)
dE .
2

D. Asymmetric case (39

(1+i 84(E,))exp( —2k1) w
) 4

X

B o [ds
(1_|5(E2)—|<d—E) (E1—E»)
E;

In this case, we expect to see the palstte$ of only

the well where the points; andr, are located, shifted by the However,

interaction with the rest of the system. Let us consider the 5 dg* dn,
first well (the same treatment holds for the second )yalhd o T dE - ZW(E) , (40
focus on the term @ E,
1 33 and, therefore, we finally have:
o1 i ) 4 ix B 4x% exp(2k,) B8 .
A=)+ XB ]~ 5 5+ ix o] po_Hm (E—E,)
w
E. Application to two unequal HOWs
We expand the denominat@) around one eigenvalue, exp — 2xy)
E,, of the first well. By keeping only the most important - = (41
terms,D is reduced to: 27(%) 20 %) (E,—E,)
dE dE
- 4ix? exp(2k,) 8(E;) 4i7T(E E) E E
=X - - - —(E—-Ey).
[2(1-i6%(Ey)) +ixS(ED] @ Equation(41) shows that, if the above approximations are
(34) made, the semiclassical energy shift in the asymmetric DWP
Based on the physics of the problem, we take is
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exp(—2k4) and ignoring powers smaller than ex#x,;), such as
AE= dn; dn, (42 x?exp(2)f(x) and x?exp(2,)x, and putting 8*(E,,) = 8%
ZW(E) 2 E) (E1—Ey) +i68;7, we end up with the relation
E; E>

Equation(42) is the same as the one first given by Miller ! B —
[Eq. (21) of Ref. 7]. Note that in both derivations, ours and [2(1—i 8% +ix8"]— Ax”exp2k1)B"S

that of Ref. 7, the energieE, and E, are assumed to be [2(1-i6)+ix&]

close, meaning that the asymmetry of the DWP is assumed to d

be small. ~ , (443
We proceed to derivAE andI” for the DWP beyond the E—E —AE.—i 5

approximations leading to E¢42). To do so, we expand the " "2

denominator around an eigenvaldg of the first well which

is not close to an eigenvalue of the second well. where:
Keeping the main terms, that is making the realistic as- o X

sumptions that 4m{(1+ 6g,) —2i6R(1+ 6}

T {2051+ 80 +i(1+ dry)} |

(44b)

’ dim . 2ixm
@ @ A AmCexp2rnl(1s 55— 82851+ 89}
and " {485 (1+ 892+ (1+ 6r,)2)
21> ixo, @3 (449

X{28K(1+ 8)%+ (14 8r )% — X2 exp(le){45§f(1+ S)(1+268)+2(1+ 8r) Sk}
a

= : (440
" W{45% (1+ 81)2+ (1+ 6r)2}
|
with of the first well but not of the secondNote that the condi-
2 2 tion for an eigenvalue of the second well €= —i.)
Sr1=6 — g +257. (449
The above relations, where all quantities are evaluated dt/4)-  The DWP with tunneling
E,, do not apply fors{= — 1, since nowE, is an eigenvalue This category produces another pole, due to the term
|
8 sinu(rq)sinu(ry)[2(1—i &) +ix 5]
(45

8X° exp(2k1)y B S (1—i6%)
[2(1—-iB)+ixB][2(1—i8)+ix5]—ixy s
This is the relevant pole for the case beyond the DWP, where all regions are considered. In order to exhibit its physical
significance, we rewrite Eq45) as follows:

[2(1—iB)+ixB][2(1—i8) +ix 6] —4x? exp(2k,) BX 8+

) 77( 5)(1)()[ 77( 5)(7)() 77( 5X1y) - IXy(SX]
{n(B*x) 7(5*,x) — 4x* exp( 2 k1) B* S m( 5*,X) ( 8*,y) —ixy 8} + 8x® exp(2kq) yB* 6 (118’

8 sinu(rq)sinu(r,

(469
|
where the following relations hold: second barrier is large, therxBexp(2«,)yB S (1—id) can
be considered as negligible and, after some simplifications,
[2(1—iBY)+ixB*]=n(B*X), (46b)  the poles of the symmetric DWP emerge:
[2(1—i8%)+ix8]= n(5X), (460 7(5%,X)

7(B*,%) n(5*,X) — 4x* expl(2x1) B* 6
[2(1=i5%) +iy 5]=n(&"y). (460
So, in this case, whether we have prepared the wave packet
We observe that ify is very small, meaning that the in one of the nonstationary states of the first well or in one of
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the stationary states of the double well, the expansion will b&/. CALCULATION OF THE COMPLEX ENERGIES
done around the poles of the DWP. This is reasonable sinc&F THE FULL GREEN'S FUNCTION

even if we consider the first case, due to the small decay e complete problem is understood when the complex
from the last barrier the system has time to equilibrate in &oles are extracted from the relevant fraction of the full
DWP stationary state. Green’s functior(categoryd,). With reference to the unper-

If we consider that the conditior<1 is also satisfied, turbed model, energy shifts and widths for both the symmet-
then the poles of the first well emerge from the perturbatiorric and the asymmetric cases can be found.
of the bound states of the first well by the two barriers, the ~ We start with the expression for the Green’s function,
second well and the continuum. This is seen by the fact thagxcluding the regular pafEq. (45)]. Again, we will distin-
after certain simplifications, a quantity proportional to guish two cases, depending on whether the two wells are the
[1/2(1—iB%) +ixB*] remains.(This is theJ, case) same or not.

Given the above, in the expansion that follows we as- ) .
sume that the system has been prepared in a state of the fifst Symmetric DWP plus continuum
well and we examine the dependence of the new poles on the In this case,8*= §*. We write G;((E) as[without the
relative magnitude of the two barriers. factor 8 sinu(rq)sin u(ro)]

[2(1-iB") +ixB"]

— 47)
8xZexp2xy)y BB (115 (
_iaX H X712 _ 2 X HX
[2(1 IIB )+|Xﬂ ] 4x EXHZKl)B B + [2(1—i,8x)+ix,BX]2—ixy,8X
Let
~ 8x2exp(2x1)yS*BX(1—1pY) 4
S [2(1-ipY) +ixB P —ixy B (483
|
We put: [2(1—iBY+ixBX]—¢
) ) ok . 2 4 + o N 2_271'_'_dx+_ 27 de
4x°exp2k,) BB —{=¢", (48b) =X+ 2ix exp(k1) It qETX T GE
where X(E—E,). (509
g=pe'? (480 We define the quantity
2
with p and ¢ being real numbers. Thus expressiéf) takes t(x)= @ d(x"exp(2k,)) (500
the form: 2m dE e
[2(1-ip9+ixp] 1 1 and carry out algebra so as to obtain:
[2(1—iB)+ixBX]°—e? 2[2(1—ip)+ixB]—¢
1 1 1 1 (c)*
G T AETS 2[21-ip+ixpT-¢ R
E—|E,—AE, —i—
49
(49) (514
We observe that if the quantitis zero, then the problem is here:
reduced to that of the symmetric DWP. The condition for thisVNere:
to occur is for the quantity to become zero, i.e., to have the
situation of an infinite second barrier. 4= 2y exp( k1)
We turn to the first term of Eq49) and again focus on ¢ =—1| fO)—2xexpxy)+ (y—x)
the denominator. Expansion around the eigenvalues of the
i i t(x)exp —
;iaerlgsqnlc bound state problefiq. (28b)] of the first well til x— 24 (x) )F;( Kl))]’ (51b
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(f(x)x+ —2xyexp(;<1) +2x exp(kq) —t(x)exp(— Kl)—2 )
AR =5, (y_X)zy explKy) |2 i((x)eXF(—K )\ 2’ (519
(f(x)—2x explkq)+ TX)1> +(x—2+ fl)
I~ o (zw(flx_—q)jkl)Jer(x)exp(Kl)x—Mz exp2xq1) —X x—2+w )
L : (510
2 2y exp(k;)\? t(x)exp(— k1) \?
(f(x)—2x exp( k) + W) +<x—2+ f)
We repeat the procedure for the second pole:
[2(1-iB)+ixB]+e=x—2ix exp(ky)+| —2i 2—+f(x)+|x2—+ SE (E-E,), (52
from which
1 1 N (ct)y 1
2[2(1-ipY+ixBl+e { T (533
E—|E,—AE; —i >
where
L 4w 2yexpkq)| . t(x)exp(— k1)
c —j|(f(x)+2xexp(x1)—W)+|(x—2—f)}, (53b
(f(x)x— —2xyexp(;<1) +2xexp(kq)| 2+ —t(x)exq <) )
AR (Yy—x) (530
nT2 2 2 — k)2’
T (f(x)+2x explxq)+ —y(s)irf(l;l)) +<x—2— —t(x)ex)r(i Kl))
It o (%ﬂskl)—zf(x)exp(;cl)x—4x2exr(2;<l)—x x—Z—W )
L . (530
2 e 2y exp(kq)\? t(x)exp(— ;)\ 2
(f(x)+2x explkq)— W) +(x—2— f)
|
B. Return to the Green’s function  G,.(E) n:SinMn(rl)eXF{—iMn(fz)] 56

At this point, we can write the form for the fubs(E).
It consists of the regular part, which originates from region |,
and from the sum of the two terms, Eq®13a, (53), that
contain polegincluding the factor 8 sim(r;)sin u(r,)]:

G E) = Greguial E) + Gpoid E) + Gpoid E), (54
where
—j Nmax
Grequak E)= — 2 An, (559
nmax
Gpod E) = 2 Ang= W+, (55b)
2 e 1
Gpoid E) = 2 A ESw (550

with the definitions

+_
n=

A, =

A

Wn

VE,—V(r)VE,—V(rp)

(cy)™t
VE = V(r)VE—V(ry)

Sinua(ry)sinu,(rs),
(56b)

(cy)™t
\/En_v(rl)\/En_V(rz)

sinup(ra)sinun(ra),

(560
+
=En—AE:—i7”, (560)
_ Iy
=E,—AE; i (560
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C. Asymmetric DWP plus continuum

For this case, the Green’s function of Eg5) is written as

1
_ _ 4x° exp(2k4) BX S 8x° exp(2k,)yB*XoX(1—i ) ICY
[2(1—-iB")+ixB*]— = e e x —
[2(1-i8)+ixd"] [2(1—iBY)+ixB*][2(1—i6)+ix& ] —ixys[2(1—i)+ixd"]
which can be rewritten as
! 58
2(1_iBX)_’_Ql(e*L(l;ﬂX)_’_Qz(e*ZKl;ﬁX,5X)_’_Qs(efb(lye*ZKz;ﬁX,&X) . ( )
The quantitied) , are defined as follows:
Qy(e” 1 B =ixp, (593
4x2 exp(2k,) X8
—2K1- @X XY — _
QZ(e 1118 16) [2(1_i5X)+iX6x:|! (59b)
8x°exp(2 X&X(1—i 8"
93(6_2K1,e_2K2;ﬂX,6X): q K:I.)y:8 ( ) (59C)

[2(1—i B9 +ixB[2(1—1 ) +ix OPP—ixy o[ 2(1—1 8 +ix 5]

In this form, one can distinguish the perturbation that is applied to the bound states of the first well by the firstGgayier
by the first barrier and the second wé8Bb), and finally by the two barriers and the second wW&8c). When these terms and
their derivatives are evaluated at the eigenvalues of the first well, they give rise to complex numbers. So, using Bilomdex
the real part and the inddxfor the imaginary one, we obtain for the denominaiden:

w

—E,+
den=cy E—E, o

) w dQZR w dQ3R ) w dQZl w dQ31
{(X+QZR+93R)+|(021+Q31)}[(f(x)+Z dE T2 ae | X2t 5-4E 2. dE

X w dQZR w dQ3R 2 w dQZl w dQ31 2 ' (60)
f(X)+ =— +— +| X2+ ————+————
2w dE 27 dE 2w dE 27 dE
where the quantitg is defined as:
27T w dQZR w dQ3R ) w szj_ w dQ3l
C_?[ M0t 52 4E T27 dE | T\ X 2T 25 dE T24 dE [ 6

It follows that, in this case,

o dQ,r o dQzg o dQy o dQg
. (X+QZR+Q3R)(f(x)+ 548 T 3o db +(QZ,+93|)<X—2+ s qe EF)
o (f(X)+idQZR+idQ3R 2+ x—2+id92|+id93|)2 ’ (629
2w dE 27 dE 2w dE 27 dE
o dQr o dQjg w dQy  © dQg
r © (Qz|+Q3|)(f(X)+E dE +E dE )_(X+QZR+QSR)(X_2+Z dE 27 dE )
2 2n w d0n o dQq|2 w dQ, o dOg )2 ' (62h)
T+ 5248 27 ag | © H*zd—E*zd—E)
|
VI. THE DEPENDENCE OF I',, ON THE RELATIVE expressed in terms of the same quantities in both the numera-
MAGNITUDES OF THE TWO BARRIERS tor and the denominator. This is reasonable, since the second
FOR THE CASE OF EQUAL WELLS barrier did not cause any splitting. We recall that the creation

For both poles in Eq951d) and(53d), the dependence of the two poles is due to the first barrier. In the case of the
of I' /2 on the second barrier, that is on the quangihis ~ DWP, although the relations fdt; andI", are different, the
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dominant terms are the same. This is why, in the limit of acontinuum. Therefore, we expect that the imaginary part of
large barrier, we obtain the correct JWKB result—same inthe self-energy must be a positive number whose magnitude
both cases. decreases aks increases. The fact that it is positive implies
We now raise the question of the variationlof as the  that the rate with which the system approaches the virtual
relative size of the two barriers changes. We assume that thwo-level stationary state is larger than the rate with which
two wells are the same, we keep the first barrier constant anithe system decays into the continuum, while the fact that its
we change the second accordingyte Ax. [The symbol\x magnitude decreases implies that the second(eaggonen-
here is not the functioi(r) of eq.(7).] In this way,\ is a  tial decay, tends to dominate the first.
variable for the second barrier, before decay to the con- Indeed, forh=1/3 we find that the imaginary part ap-
tinuum. For example, it can be related to an electric field, proximately equalsd/7)exp(—2«,), while for A =1/2 it ap-
i.e., A=\(E). We will show that the width changes sign)as proximately equals ¢/27)exp(—2«,), which means a de-
becomes larger. This is caused by the operation of twarease by half its magnitude.
“mechanisms” concerning the dynamics of the system, the  We also find terms with opposite sign for the two poles,
one reflecting the preparation of a virtual or real two-leveland so these terms are related to the splitting effect that char-
equilibrium state, and the other reflecting the decay into thecterizes the symmetric DWP. They are negligible if the bar-
continuum. The first mechanism produces a positive imagiriers are treated within an energy-independent scheme.
nary part of the complex self-energy, while the second one (iii) If 1 <A<, we have the case where the second
produces a negative one. The latter mechanism dominatdsmrrier has become smaller than the first one, and so we
over the first one as increases. expect the imaginary part of the self-energy to be a negative
We discuss the following five cases for the value of thenumber, with increasing absolute value tending to the limit
parameter\, each of which describes a different physical — (w/27)exp(—2«;). Now, the rate with which the system
situation. decays exponentially is larger than the one with which the
(i) If A=0, (for a finite value ofx), the second barrier system tries to equilibrate, and the latter approaches zero as
becomes infinite. Let us assume, without loss of generality) increases. Indeed far=2 we find that the imaginary part
the harmonic oscillator potential. Then, bofy and I';, equals — (w/4m)exp(—2k,), while for A=3 the imaginary

tend to the quantity part equals— (w/3m)exp(—2«y). This implies an increase of
4/3 in absolute magnitude.
T =F,Tz _ iexp(—Z;cl). (633 (iv) Qn f[he other hand, ik — o, m(_aaning that the sec-
2m ond barrier is much smaller than the first, then both of these

The absolute value of the quantify,/2 is the imaginary part guantities tend to

of the complex self-energy, and therefore the solution does

not lead to exponential decay, since it represents a bound I’y —F+——9XF1 2Ky). (63b)

system. In this case, the physical meaninglofs that it

represents the result of the interaction via which the systerAccording to (iii) the opposite of this quantitytwice the

is taken from a state of the first well to a bound state of thamaginary part is the result of the sum of the positive quan-

double well. Hencel is equal to the rate with which the tity (w/27)exp(—2«;) and a negative one corresponding to

system approaches the two-level equilibrium state. At theexponential decay. So the rate with which the system decays

end of the interaction, the system is led to an oscillationexponentially is equal to (@/27)exp(—2«;). This result

between the states of the two wells. holds if one assumes that even though the second barrier
(i) If 0<A<1, we have the case where the second barbecomes much smaller than the first one, the second well is

rier is larger in magnitude than the first one, but not infinite.not affected and still remains equal to the first. If this is not

In this case, there will be two different processes. The finitethe case, then we would have odlyin the Green'’s function

ness of the second barrier allows exponential decay, as so@md, according to Eq250), this would give approximately a

as\ is larger than zero. At the same time, the system tends tquantity equal to— (w/27)exp(—2«;) for twice the imagi-

equilibrate to a virtual two-level stationary state, as if propa-nary part, which is the one predicted by the JWKB approxi-

gation were forbidden after the last turning point of the secimation.

ond well. Hence, the terms constituting the negative part of  (v) If A=1, which corresponds to the case where the two

the imaginary self-energy correspond to the exponential debarriers are equal, it is easy to see that the imaginary part of

cay, whilst those that constitute the positive part corresponthe self-energy tends to zero as-(w/27)(A—1)/

to the approach to a virtual two-level equilibrium state.Ms Aexp(—2«;), changing sign akh =1, which corresponds to

increases, but without affecting the region of the second welthe situation where the two rates are equal.

under E,, meaning that the two wells remain symmetric,

two things happen:

(@) The positive part of the imaginary self-energy re- VIl. THE DEPENDENCE OF AE, ON THE RELATIVE
mains the same, since in our approximation the preparatiofy»cNITUDES OF THE TWO BARRIERS

of the virtual two-level stationary state concerns only the tWopor THE CASE OF EQUAL WELLS
wells and the in-between barrier.

(b) The absolute value of the negative part becomes We now examine the problem of what happens\tg,
larger, since the system is now allowed to decay into thes the relative size of the two barriers changes. This is an
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interesting question, related to the fact that, for the symmetThis behavior is known for the periodic potential from the
ric case, where the doublet splitting leads to the notion of amvork of Holstein® Holstein’s results show that a periodic
inversion frequency, as in the standard case of ammonia, weotential has an infinity of poles, whose positions are given
expect that the results ought to have physical significanceby those of the initial well shifted by a quantity proportional
The same relation for the barriesgs=\Xx, is used. to cosfexp(—«), where the angl@is in the interval — m, ).

It is again evident that in this case as well, the dominanin our case, we do not have a periodic potential. Neverthe-
terms that are crucial for the qualitative description of theless, the finite number of poles are characterized by the same
model are those containing the quanttythat is the contri-  form, with 6 having a specific value. We chooge=x and
bution of the second barrier. Yet, there is a basic differenceot y=x (as in a periodic potentiglsince in the latter case,
that we meet in this case as compared with the behavior dahe result would be zero. From the fraction that describes the
I, andl';, and it comes from the structure of the numera-energy shift we kept only the dominant terms. Therefore, by
tor. Now, although the dominant term in the numerator is thdetting y=x we are led to considering the additional terms
same in absolute value for both poles, its sign changes. Thighich cause a small inequality. The poles are very close to
reflects the known situation of the splitting in the energies ofthe initial eigenvalues, which corresponds to values for the
the DWP. A physical consequence of this fact ought to be thangle 6 of /2.
change of the period of oscillation of ammonialike states. (v) Finally, for the case whera>1, that is where the

We discuss the following cases corresponding to differ-second barrier is much smaller than the first one, we find that
ent values ofx:

(i) If A\=0, we have a nearly infinite second barrier. N ® exp —3kq)
Then, =t
AE =+ ~—exp(— ;) and AE; =— ~—exp(—x,)  and
2 2
(64a _ ® exp—3kq)
in agreement with the JWKB resutt AR =-o2 2 ' (649

(ii) If 0<A <1, meaning that the second barrier is much
larger than the first one but not infinite, sgy-exp(—3ky), (vi) An interesting conclusion coming from the above results

then we find that is that the signs of the energy shifts corresponding to the two
poles remain the same, independently of the value @fe.,
+_, 9 exp— k1) -_ @ exp— x1) of the magnitude of the second barjieexcept for a small
AE =+ and AE, = . . .
27 2 2 2 region between values 1 and 2, where the two poles inter-

(64b  change their sign.

(i) If N is of order 1, sayx =1/2, where the first barrier
is slightly smaller than the second one, then
VIIl. GREEN'S FUNCTION FOR TRANSITION

AE* o 3expy—3ky) FROM ONE WELL TO THE OTHER
=4 — -
n
2m 2 Given Fig. 1, we may have propagation from region | to
and Il without, or with the participation of region IV.
) © 3 exg—3k,) A. Regions I, I, and IlI

ABy=—o5— 5 (640) The contribution to the propagator of these paths is
So we observe that with the decrease of the second barrier L,=(1—11*)"/7S{1IL,lIl; B,y}Ag'rz, (65
there is a drastic reduction of the size of energy level shifts.
The reason for this fact is the following: Since the first bar-\,here
rier becomes infinite around~0, the increase of the quan-
tity y, that is the reduction of the second barrier, has as a T+ =%)"Y
consequence the reduction of the degree of symmetry char- S{LILIII; B,y}= = (=) TP =1%) Pl (66)
acterizing the two wells. In other words, the degree of per-
turbation of the eigenvalues is an increasing function of thei:inall )
degree of symmetry. This is in harmony with the result of the y:
bound state problem of the DWP discussed above. Al Al All

(iv) If x=1 which is the limit where the two barriess L= 1B BY
andy are the same, we observe theE, andAE, tend to V(1 ALAL) (1AL AY ) — A AR AL AN
Zero as (67)

o (V=X - . _ _ i
_@ (y )exp(—Kl). (649 By defining the functionZ(r)=\(r)—\(8)+ w/4, L, be
2w 2 comes
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2B x exp(kq)

L,=2sinu(rq)sing(r»

We observe that Eq68) is of the form

a 11 11
“b?>-a? 2b-a 2b+a’ (693
where
a=2(1—-ip*)+ixB*=2(1—i8) +ix 5" (69b)
and
b=2p*x exp( k1) =25 exp(x1), (690

provided that the wells are symmetric. Therefore, taking into
account the previous analysis, this part of the Green’s func-

tion will exhibit the poles of the symmetric DWP. The cru-

V(1= 39 Fix BIT2(1=1 5 + ix 0" — Ax exp 2y B0~

(68)
[
R(r;)=—16yB*8 sinu(r)xy exp(ky), (72b)
D=q(p*, & x){a(B*, & x)w(5* X,y)
+8B%5*x%y exp(2k4)(1—i 69}, (720

q(B%, & x)=[2(1—iBX)+ixB[2(1—i5) +ix 6]
—4x? exp(2k4) B8, (720
W(8X,y)=[2(1—i8)+ix&][2(1—i &) +iy ]

—i&*xy. (728

cial difference comes from the change in sign of the second Therefore, provided all quantities that are related to the
fraction, a fact that produces the opposite phase for the odarriers tend to zero, this contribution exhibits three different

cillation.

B. Regions I, 11, lll, and IV

poles, of which two constitute a double one. The double pole
is created by the two wells coupled via the first barrier. The
simple pole is that of the second well coupled to the second
barrier.

We now have three additional subcategories, which have

as their multiplicative factor the term (I-II-fl)"/?. This

factor expresses the fact that since region IV is included in
the propagation, the poidmust necessarily be reached. The IX. ANOTE ON PREVIOUS RELEVANT PAPERS

subcategories are the following:
(a) After point 8, we include only regions IV and Ill. The
contribution of this subcategory is

L oo = (I-11-111 *)T /(-1 *) 92, (70a

(b) After point 8, we include only regions 1V, 1lI, and II.
The contribution is

Log= (I-1I-11 *)ra/?

(V=% YL %) Y 24 (IV-11*) T2 11-11 )Y/ 9)
x 1= (VAT (1111 %) 770 :

(70b
(c) After point &, all regions, IV, Ill, II, and I, are in-
cluded. The contribution is
*\I1/6, *\ 6/
27:1g-(lll:|llll|||)*1)’3’(‘!21_\'/'-::'-” 2*)f:’ﬂ{(l'”'III m
+ (- *)APL Ly g/ (1-11-111 %)l oT} (700
Doing the algebra, we end up with the result:
[2(1—i8%+ix 5]
Lo=Lo,tLost Ly, =R(ry)S(ry) D , (71)
where the symbols are defined as:
S(ra)=[2(1~1p) +ix B |{siné(ry)[2(1—~i5%)
+ix 8] —i sinZ(r,) ox}
+2x2 expl k1) BN &I sing(r,)
—2\/5 explk1)siNE(r,)], (729

ON THE DWP

Even though the problem treated here is one-
dimensional, it does not lack physical relevance, as ex-
plained in the Introduction, especially since it includes decay
into the continuum. Of course, it is a desideratum for this
path-integral formalism, which goes beyond the level of the
JWKB approximation, to be proven practical in the case of
multidimensional potentials as wellFor treatments of as-
pects of multidimensional tunneling, see, e.g., Refs. 2224,

As regards the approach followed here, it is noteworthy
that there have been earlier treatments that have analyzed
aspects of the problem of the DWRithout the dissipative
pard, in terms of the trace of the resolvent operator or of the
Green'’s function. We have already referred to, and compared
with, the works of Millef and of Holsteirf® We should also
cite the works of StrurZ and of Andradeet al,?® both of
which were brought to our attention after submission of the
manuscript. StrunZ’ derived a Green'’s function for the one-
dimensional multiple well potentialhis Eq. (11)], using
graph theory and the transfer matrix method. The barriers
were taken as inverted parabolas. Contrary to the present
treatment of the DWP, no practical formulas for the real and
the imaginary parts of the complex energies were produced.
Andrade et al?® produced a solution for a semiclassical
Green’s function with a pole structure analogous to ours.
Their approach has in common with our treatment the char-
acteristic of a building up methodology. In our case, all am-
plitudes and coefficients are produced analytically. In addi-
tion, the present development is transparent as regards the
required computational procedures, including the imaginary
parts of the poles.
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X. CONCLUSION In the follow up work, using the present results for the

We have shown how to obtain the semiclassical enerngSC(E) the semiclassical propagator will be computed, and

dependent Green’s functio, (E), Eq.(18), for the poten- hencg the explicit time-dependence of this system will be
tial of Fig. 1, and subsequently its complex poles using &*amined.
practical formalism of path integrals. Analysis of the struc-
ture of Gg(E) reveals basic aspects of the dynamics of this
system.
The building-up methodology that was adopted also al-
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