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We report on a theoretical approach to the calculation of wave functions, ené&gasd widthsI' of
high-lying resonances of H with application to the identification of 76 states'##°, 'D°, and !F° symme-
tries up to then=4 threshold, with widths down to about<110™8-1x 10" '°a.u., depending on symmetry and
threshold. The overwhelming majority of these resonances have not been detected experimentally. Previous
calculations by different methods allowed the identification of 35 of these states, with only very few cases
having a level of accuracy comparable to the one of the present work. We suggest that the measurement of
these resonances might become possible via two-step excitation mechanisms using ultrasensitive techniques
capable of dealing with the problems of very small widths and preparation cross-sections. In this wokk, the
state at 10.872 eV above the Hs? 'S ground state, already prepared and measured by electron scattering as
well as by two-photon absorption, is considered as the stepping stone for the possible probing of resonances of
1po, 1p° andF° symmetries via absorption of tunable radiation of high resolution. By classifying the results
according to the Gailitis-Damburg model dipole resonance& product of a ¥? -like potentia) we find that
there are unperturbed as well as perturbed series, in analogy with the Rydberg spectra of neutrals and positive
ions (a product of a I-like potentia). For the former, the agreement with the Gailitis-Damburg predictions as
to the relationship of the extent of the outer orbital and of the energies and widths of states is excellent. The
perturbed series result from interchannel coupling and the remaining electron correlation. One of the effects is
the existence of overlapping resonances. For example, for'®fostates below the=3 threshold there is
degeneracy on the energy axi,& —0.0555763612 a.u. artel,= —0.0555763099 a.u.) but the widths differ
(I';=1.14<10 “eV andl',=5.45< 10 8 eV). We also comment on whether consideration of the relativistic
Lamb shift splitting of the hydrogen thresholds is sufficient for deciding the truncation of the resonance series.
Our calculations were carried out by implementing previously published theories, whereby the redgsance
andI'’s are determined from properly selected complex eigenvalues of non-Hermitian Hamiltonian matrices
constructed in terms of physically relevant square integrable real and complex function spaces representing the
localized and asymptotic parts of the resonance eigenfunctions. Fortlseities of resonances, the physical
relevance of the real functions implies the systematic construction of basis sets with aréragending to
thousands of atomic units, in order to account for the extreme diffuseness of the outer orbital as each threshold
is approached. The complex one-electron basis sets are Slater-type orbitals of a complex cowrdifiate
Their inclusion into the overall calculation and their optimization via the variation of nonlinear parameters
(including #) accounts for the contribution of the asymptotic part of the resonance, and for the energy width
and shift beyond the real ener@y, of the localized part.

PACS numbd(s): 31.50+w, 32.80.Gc

[. INTRODUCTION plex;z,=E,— (i/2)I" ., whereE, is the total energy anHl,,
is the total width.

The objective of the research reported here and in the Nonstationary states in the continuum of atomic negative
accompanying pap¢f], as well as in a recent lettg2], was  ions(ANI's) or of any other atomic or molecular system are
to compute and analyze highly accurate resonance wauwepresented by electronic structures signifying multiple exci-
functions of the hydrogen negative ion"Hand to com- tation from, or electron attachment to, or creation of a hole in
pletely resolve the resonance spectrum of id the energy a subshell of a particular configuration. A research program
range up to thex=4 threshold(In Ref.[2], the calculation since 19743], whereby the computation and analysis of the
of states of'P® symmetry went up to the=5 thresholg.  wave functions and properties of these states is done by con-
By resolution, we mean the accurate identification of all thesidering them in a unified manner @ecaying stategsee
physically relevant complex poles of the resolveR{z) Refs.[3-12), and references thergibreaks down the over-
=(z—H) 1, wherezis a complex variable and is the total  all calculation into two steps, regardless of the number of
Hamiltonian of the system. These poles are associated witblectrons, of electronic structure, and of level of excitation.
nonstationary(resonancestates| ), whose energy is com- The first step emphasizes the state-specific analysis and

application of advanced many-electron methods for the cal-
culation of electronic structures representing the localized
*Electronic address: mirekb@phys.uni.torun.pl part of resonances,&'f,. These structures may be character-
"Electronic address: can@eie.gr ized in zero order by one configuration or by a superposition
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of a few configurations with outer or inner subshell holes, ortion, demanding a much heavier load of computations: If we
with both, or may represent shape resonances associated wittst specify a particular energy region in the continuous
ground or excited configurations. In this context, it has beerspectrum of a particular system, how can we uncalethe
shown that state-specific Hartree-FqélF) or multiconfigu-  resonance states of a given symmetry in this region and pro-
rational HF(MCHF) equations can be solved in a meaning-duce theitg, andI", reliably? The fact that H has only two
ful way analytically or numerically, even for triply excited electrons makes this question answerable to very high accu-
resonances of ANI'§e.g., He 2s?2p2P°, 2s2p22D). The  racy. At the same time, we stress that the theory is applicable
HF or MCHF solutions represent optimal square-integrablgo larger atoms as well, since the calculation of electronic
wave functions with energies inside the continuous specstructures corresponding to the varioﬂ§ of N-electron at-
trum, and their validity is justified by following the conver- oms and ions can be done efficiently with currently available
gence of the total energy to a local minimum based on localeomputer power.
ization criteria such as occupancy, extent, and nodal The case of H is the simplest ANI from the point of
structure of the radials, and the satisfaction of the virial theoview of the number of electrons and of spin and angular
rem. Such zero-order representations of nonstationary stat@somentum couplings. However, the quest for the identifica-
allow the extraction of physically significant characteristicstion, theoretically or experimentally, of all the resonances of
and an understanding of the extent to whiskchangeand  a particular symmetry within a given energy range is plagued
near-degeneracinteractions, ompart of the continuunton- by the predictions of Gailitis and Dambu¢@D), who intro-
tribute to the stability of the resonance. The remaining elecduced the model of H * dipole resonanceé's[13] (see also
tron correlation which contributes to localization is addedRefs.[14—17). Accordingly, for a specific combination of
variationally. Both at zero order and all-order levels of cal-symmetry and thresholds, the number of resonances below
culation of ¢,, by construction, and by orthogonalization each threshold is infinite, with their spatial extent growing
(when necessayythe function space of the open channelsexponentially and their widths decreasing exponentially,
leading to decay is excluded. where the exponents are given by the theory of the model. It
On the other hand, there are electronic structures of ANfollows that the burden foab initio theory is to achieve the
resonances such as the ones treated in this work, where it jgentification of resonances whose widths are expected to
necessary to calculaig which are extremely diffuse, reach- decrease rapidly to extremely small values as threshold is
ing to about, say, 5000 a.u. Therefore, different techniquesapproachedsay ~10 '°eV). The question that then arises
numerically very accurate, have to be applied. As we discusi® where to stop the calculation Bf, andT", as|«) approach
in Secs. V and VI, given the wave-function features of thethe corresponding thresho]d8], so as to have, on the one
H™ resonances associated with each threshold, this probletvand, a definitive picture of the properties of Hesonances
has been solved here by using basis sets covering a largad, on the other hand, to avoid the expense of computa-
range with a systematically controlled position distribution, tional effort in seeking insignificant information. Given the
thereby allowing a “group of states” specific representationfact that the herein suggestésec. 1) dye-laser experiments
of z/f('_f,. based on two-step excitation mechanisms should produce, in
The second step addresses the issue of the incorporatigminciple, resolution of the order of 0.02—0.002¢h
of the effects of the multichannéh general continuum and (10 '—10 8a.u.), we thought it reasonable to adopt widths
of the final determination of the complex eigenvalue, withoutas low as 10 8-1x10 *°a.u., as a cutoff criterion for
or with reoptimization of the components ¢f . The func- the search of H resonances, depending on the hydrogen
tions representing the asymptotic part of the resonance cahreshold. This is an extremely small decay width for a
be either numerical or suitably optimized analytic basis setgnany-electron resonance state and the goal of computing
coupled to the appropriate term of the bound core. If reabuch a property accurately as the excitation energy increases
coordinates are employed, the procedures are based on magbnsiderably raises the demands on theory as regards com-
tichannel reaction matrix theof$,12]. If a basis set of com- putational completeness, efficiency, and numerical precision.
plex coordinates is employed, as in the present work, the In the following sections we discuss the choice of the
procedure involves construction and diagonalization of nonstates studied and the previous results for them, the theoret-
Hermitian matrices, from which the search for the eigenvaludcal background, and the framework for the calculation of
z,. is guided by conditions satisfied on resonance and by theesonances d-electron atoms and ions, the present imple-
fact that the overlap of the trial function with% must stay mentation of which is particular to H and our results. The
maximum(see Refs[4,7—-10, and references thergin total number of resonances 6P°, 'D°, and !F° symmetry
Calculations within the framework referred to above, with that were computed, and which constitute the i¢sonance
real or complex coordinates for the asymptotic componentsspectrum up to the@=4 threshold subject to the cutoff cri-
have dealt with the calculation of positions and total andterion, is 76. Of these, 41 are predicted here for the first time,
partial widths of a variety of states, ranging from doubly andto our knowledge, while for the ones already calculated by a
triply excited ANI resonances,(e.g., He 1s2s2p2P°, number of researchers since the 1960s, the present level of
1s2p?“*P, 1snP*P, 2%s n=2,3,...,6, 22p?*P,?P,2D  accuracy is higher, with the exception of recent results for
etc), to inner hole Auger statede.g., Be€ 1s2s?2S, the 'P° resonances below the=2 threshold(see Sec. IlI
Ne"1s2s?2p®2S). These calculations were done by first and Table ), which are also characterized by a high degree
specifying the particular electronic configurations, regardlessf numerical accuracy. In addition to values 6 andl’",,
of their energy position. In this work we ask a different ques-we calculate wave-function characteristics along the series,
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TABLE |. Energies and widths of H1P° Feshbach resonances below the?2 threshold.

Cl close coupling CCR Algebraic close coupling CESE
Venuti and Declev42] Lindroth et al. [43] Gien[45] This work
State —E(a.u.) I' (a.u.) —E(a.u) I' (a.u.) —E(a.u.) I' (a.u.) —E(a.u.) I'(a.u.)
(1) 0.126049581 1.3668] 0.12604985975 1.38] 0.12604518 1.3946] 0.126049837 1.3618]
(2 0.125035391  7.2318] 0.125035052 78] 0.12503492 7.938] 0.1250350503 7.28]
3) 0.1250012 20] 0.1250011892 2.6659] 0.12500119344  2.68]
(4) 0.125000039758  9.6151] 0.1250000408 1]

such as the breakdown into components basedlIdh ¢on-  dynamics from higher-lying states excited in collisions, as,
figurations, and the systematics of the average radius of the.g., it is done with beam-foil spectroscopy. For example, in
outer electron. All these data are used to establish the exishis way it became possible to observe, via its transition to
tence of unperturbed and perturbed series ofrelsonances the lower-lying He 1s2p?“P shape resonance, the triply

with respect to the predictions of the GD model of dipoleexcited 2°“S° bound state of He [30]. However, the

resonances. population and measurement BfandI" of each resonance
from decays of higher-lying states is not practically feasible,
Il. PRESENT CHOICE OF OBSERVABLE H ~ even via ultrasensitive techniques for fluorescence detection.
RESONANCES OTHER THAN THE PREVIOUSLY The third way is what we propose here as being the most
MEASURED LOW-LYING ONES promising one, if fully developed in the future, for measuring

The nonrelativistic spectrum of each ANI is characterized'®Sonances which are high lying and have narrow widths and
by very few bound states and many resonances, corresponte’y .s.mall absorption oscillator stren_gths for a one-photon
ing to multiply excited configurations. As regards the boundtransition from a lower resonance. This is based on the pos-
excited states, experimental information is rather scarce, argibility of using a two-step mechanism, rather than a direct
it is mainly theory and computation that have providedexcitation. Accordingly, the first step excites via one or more
knowledge of their existence and properti&ee e.g., Ref. photons(high resolution but symmetry restricted reso-
[19], and references thergimAs regards the resonances, their nance which serves as a stepping stone for the synchronized
preparation is in principle easier, due to the availability ofsecond excitation by a high-resolution tunable laser source.
more entrance channels. Nevertheless, the fact remains th@ay a 20-Hz nanosecond R6G dye laser with resolution of
the available spectroscopic data on resonances are still vegbout 0.02 cm?).
few, while the measurement of the positidand the width An alternative to using a photon pulse as the first probe is
I' of even a single resonance often constitutes a serious chab use an electron pulse. In this case, resolution is much
lenge. This is due to a superposition of limiting factors suchlower (see below, but more symmetries are in principle
as the general lack of easily prepared and controlled suitableachable. For example, such a two-step excitation mecha-
initial states, the restrictions imposed by selection rules ohism has been proposed for the creation of tfplets and,
energy difference and symmetry, and the requirements dfpecifically, of the H 2p? 3P bound state which is used for
high resolution when the resonances are narrow and/or the subsequent study of the variation of widths of two or
excitation cross section is very small. For example, consideimore triplet DES'’s coupled by external ac or dc fie[8%

H™, the ANI of interest here. Even if one assumes the avail- Here we note that in the case of a one-photon resonance-
ability of a beam of S ground state ions and of tunable resonance transition with a broad-band excitation of the ini-
radiation in the range 0—15 eV with perfect resolution, one+ial state, a recent theory taking into account the contribution
photon absorption excites doubly excited stalegES'’s) of  of the free-free dipole transition moment has produced the
only *P° symmetry inLS coupling, leaving out many other form of the absorption profile, with a quantitative application
singlet and all triplet symmetriegFor one-photon absorp- to the He 22p'P°— D transition[31]. When electron ex-
tion measurements of HDES's, see Refd20,21], and ref-  citation is used as the first step, restrictions of resolution
erences therein. For the excitation of the lowéBt reso-  allow the detection of only the lowest lying HFeshbach
nance at 10.8720.002 eV above the H ground state via resonances or of possib#haperesonances associated with
two-photon absorption, see R¢22]) [23]. each threshold24-29. If one assumes that a certain such

The above limitations on observation and measuremenrdtate is created, further excitation by narrow width tunable
can be rectified to some extent in three ways. The first is tdaser will be useless in detecting narrow higher-lying states
perform electron-atom collision experiments, from which ad-because of the much larger width of the initial state. A way
ditional information, especially for the low-lying states be- out is to utilize accurate theoretical dataBmandI’, such as
low each threshold, can be obtain@ge, e.g., Ref$24-29  the ones presented in this paper, in the following way:
and references therginThis approach is limited by require- Knowing the positions of the states which are collectively
ments of very high resolution which is necessary for veryexcited by the electron wave packet and knowing their
narrow resonances, as are the ones ineicept the lowest- widths, the shot of the laser can be synchronized for further
lying ones. The second is to be able to follow the decayexcitation after different durations corresponding approxi-
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mately to lifetimes of states to be excitd®ay 1, 5, 10, etc. The above arguments about the utility of a two-step exci-
ns). By this time the broader lower states, with lifetimes saytation mechanism can be tested by taking advantage of the
of the order of 100-900 fs, will have decayed and the seconghct that the lowest'D resonance has been prepared and
excitation wave packet will be narrow enough to resolve ameasured under controlled conditions via two-photon ab-
number of higher-lying states via ultrasensitive fluorescencgorption[22]. Although this state has also been measured in
or field ionization techniques. Such measurements are prols.H collisions[32,28, it is the precision of laser excitation
ably possible if one starts with a Hbeam of about T8 hat permits the immediate possibility of a reliable execution

atoms (say from the photolysis of HCI by a polarized o high resolution measurements of higher DES's using a
193-nm excimer laser puls@and thee+H cross section for second, tunable, laser. Thus the choice of the two-step
the formation of the initial H DES is of order of 10 & or mechanism in this case is

larger.

two photon tunable laser

H 1s?'S — H 2 p?’ 'D(resonance —— H~ 'P° 1D° 1F°, (1)

Suppose we consider the energy region up to the=+#4 carried out on a very fine energyeal or complex mesh.
threshold, which is 2.631 eV above the experimental positiorDtherwise, its results on the resolution of the resonance spec-
of the 1D state[23]. We then ask the questioftow many  trum are bound to be incompleté&or example, only the few
and which resonances of each symmetry are there whose ‘easy” cases may be identified.

andI" can be observed by measurements with resolution of, For example, let us consider the most extensively studied
say, 0.020.002 cm* (~107"-10"% a.u.)?As already stated symmetry,*P°, and the question of the number and proper-
in Sec. |, given this energy region the cutoff lower limits for ties of its resonances below the=2 threshold. In this paper
the widths which were searghed for In our computationsye report on the existence and properties of four such non-
were in fact set at aboutd10™°-1Xx 10" "a.u. The limit of  reativistic resonances, two of them below the relativistic
the n=4 threshold was chosen as providing a reasonablg, ~hreshold(Sec. V). However, large-scale calculations
energy range for the testing of advanced theory of resogy)gying the R matrix [34—36 or the complex coordinate

nances without an exorbitant expense of time for CompUtaFotation (CCR) [37,38 methods, have identified only one

tion. In addition, this range is also convenient for high- 1m0 " !
resolution measurements via tunable photon absorption usinSUCh P resonance. In fact, the positions of the first two
P b Were predicted by O'Malley and Geltman in 19630], via

dye lasers. Of course, the limit of observability of the high-

lying and very diffuse resonances will also be determined b)}heir_ pioneering variational calculations_on '_che roots of the
the size of the oscillator strengths and the degree of sensiti2XPlicitly cior;structed FeshbadHQ Hiarrllltoman. They re-

ity of the technique of measuring absorption coefficients. Ported ECP (12))2: 10.927eV andE("P°(2))=10.953eV
above the H1s” “S ground state. The experimental verifica-

tion of the second'P° resonance was first achieved in a
recent photoabsorption experiment by Anderséml. [21],
where the energy was measured at 10.9519 eV but the reso-
lution was not high enough to deduce the width. The first
The resonance spectrum of Hs the result of interactions ~prediction of this width was made in 1971 by Seiler, Oberoi,
of only three particles. Therefore, the relevant theory doe@nd Callaway40] who implemented the Harris-Nesbet alge-
not have to account for the complications characterizing arbraic close-coupling method. Using four coupled channels,
bitrary polyelectronic atomic states. This fact has facilitatedthey found E=10.958eV andI'=2.06<10 ’eV. Much
the implementation of variousb initio methods and the later, a more accurate theoretical predicti@specially for
model of dipole resonances since the early 1960s, when tHge width, which preceded the photoabsorption experiment
first numbers on a few resonances were produced. Neverthby a few years, was given by Costand Martn [41], who
less, a reliable quantitative answer to the question posed iimplemented Feshbach’s scattering formalism withbasis
Sec. Il has been lackindSee the reviews by Schu[25],  sets, to carry out calculations of the photoabsorption cross
Risleyet al.[26], Williams[27,29, and Buckman and Clark section. Their values areE=10.9522eV andI'=1.7
[33] on ANI resonances, the papers cited here, and their ref< 10 ®eV. A similar basis set expansion calculation by
erences. The basic reason for this fact is the requirement ofVenuti and Declevd42] also produced accurate results for
generality of the theoretical method and of very high numeri-the first two *P° resonancegSee Table | for a collection of
cal accuracy that the computation must achieve. Such a calesults of !P° resonances below the=2 threshold.
culation must account for the details of dynamical screening A prediction for the position of a thirdP° resonance
and polarization, configuration interaction, and interchanne{10.9531eV  above H 1s?, if we wuse 1a.u.
coupling to all orders, and must be economical enough to be=27.19658 eV) was given in 1965 by Temkin and Walker

ll. PREVIOUS RESULTS ON THE IDENTIFICATION
OF H™ 'P°, 1D°, AND 'F° RESONANCES
UP TO THE n=4 THRESHOLD
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TABLE Il. Energies and widths of HP° Feshbach resonances below the3 threshold.

R matrix CCR Cl close coupling CESE

Pathaket al.[34] Ho [87] Lindroth [88] Venuti and Declevd4?2] This work
State —E(a.u.) I'(awu) —-E(au.) TI(au) —-E(au) I'(au) —-E(au.) r (awu.) —E(a.u.) I' (a.u.)
1) 0.062713 1.258] 0.06271675 1.1918] 0.06273 1.198] 0.06271651 1.19128] 0.06271692 1.19008]
2 0.0585715 9.[®] 0.0585718 8.9%] 0.05857 8.85] 0.0585697 8.968] 0.0585718096 8.9876]
3) 0.056145 0.0561167 Z4] 0.05612 2.p6] 0.05611661 2.136] 0.056116399 2.2578]
(4) 0.055903 6.6/5] 0.055907 7.06] 0.05590 7.0965] 0.0559045 7.065] 0.05590626 7.0948]
(5) 0.05566 47] 0.05566923 4.617] 0.0556630559 3.95438]
(6) 0.05558 46] 0.05557517  4.068] 0.0555763612 4.18%4]
(7) 0.055577623 1.188] 0.0555763099 2.0030]
(8) 0.055559828 1.768] 0.055559575918 1.517&]
9) 0.055556725 2.447%) 0.05555679529 2.5693
(10 0.055556333474 2.909]
(11 0.05555570632  5.880]
(12 0.05555562951  1.5280]
(13 0.055555583 1[B]

[14] without anab initio calculation. Instead, they applied By applying the CCR techniqugs3-59, Ho, Bhatia, and
the Gailitis-Damburg formul&13] [see Eq(18) below] nor-  Callaway[56—58 have predicted onéD° and *F° reso-
malized to the lowest root of th@ HQ results of Ref[39]. nances below the=3 threshold[57,58, one F° shape
Higher energies of P° resonances were not given since, by resonance abov&,_; [57], and oneD° and two 'F°
following the argument first given by Gailitis and Damburg, Feshbach resonances bel&y_, [56]. Finally, two sets of
they considered that the series of resonances must stop beldmatrix calculations produced ond° resonance and one
the relativistic 24, level. More than 30 years latg43,44), 1F° resonance belovE,_; [34,35, and four 'D° reso-
the third 'P° resonance was calculatedb initio, including  nances and foutF° resonances belo®,,_, [34]. A collec-
the coupling to the continuum. By addding relativistic cor- tion of results for'D° and 'F° resonances is given in Tables
rections, Lindrothet al. [43] found it to lie below the §;, IV and V.
threshold. Again, the claim was made that this is the last one

in this energy range, due to the relativistic splitting of the

n=2 threshold. We return to this issue in Sec. IV. Finally, in

a very recent paper, Gigd5] presented very accurate non-

IV. THEORY: FRAMEWORK OF
THE PRESENT CALCULATIONS

relativistic results to many decimal digits for fodiP° reso- In general, there are two ways to define and identy (
nances below the=2 threshold, obtained by the algebraic andT") resonance states of a particular symmetry in the en-
close-coupling method. ergy representation. One is to follow the changes of the scat-

For the region between=2 and 4[46], there are experi- tering phase shiftor of the relateds matrix) as a function of
mental observations of a couple #?° resonancef20,29 as  real energy and to dedu&andI’ from the conditions that,
well as a few theoretical results mainly on low-lyifg®®  according to scattering theory, are satisfied on resonance.
resonancessee Tables Il and I}l Thus far, the largest num- The other is to look for the solution of an appropriate relation
ber of 1P° states identified below the=3 threshold in that producing directly a complex energg,=E—(i/2)T". Any-
achieved by the calculations of Venuti and Decld¥@] way, the important issue as regards the physics of real
(nine statel while for 1P° states below the=4 threshold, N-electron systems is the possibility of computing accurately
Pathaket al.[34] identified nine states. No shape resonance& andI" either for single states or for series of resonances
above then=3 and 4 thresholds have been predicted. One oéxpected to exist in a particular energy region. In some rela-
the important findings of the measuremefR2§] is that the tively simple cases, such an accurate computation has
preferred decay channel is the one nearest, in agreement wighoven, over a few decades of research on resonance states,
earlier theoretical predictions and explanatipng!7]. feasible by a number of methods. However, in the general

As regards thé'D° and 'F° symmetries, the existing the- case of arbitrary structures and/or of arbitrary energy range,
oretical predictions o andI" are as follows: The imple- the requirements on theory and computation are stringent. In
mentation and application by Callaway and co-workd&—  recognition of this challenging difficulty, a number of publi-
50] of the algebraic close-coupling approach led to thecations since 197Zsee, e.g., Refd3,5-12,59-6) have
prediction of one'F° belown=23 [48,49 and one'F° and presented a theoretical framework for the identification and
one 'D° belown=4 [50]. Lipsky et al. [51] predicted two calculation of arbitrary excited states in the continuous spec-
DO states and two'F° states below then=3 threshold, trum which emphasizes the significance of developing for-
obtained from the roots of the truncated diagonalizationmalism and methods that use physically appropriate and
method with hydrogenic functions. No widths are giyéa]. computationally manageable function spaces. These one- and
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TABLE lIl. Energies and widths of H1P° Feshbach resonances below the4 threshold.

R matrix CCR CESE

Pathaket al. [34] Ho [87] Lindroth [88] This work
State —E(a.u) I' (a.u.) —E(a.u.) I' (a.u) —E(a.u.) I' (a.u.) —E(a.u.) I' (a.u.)
(2) 0.0371305 1.243] 0.03717945 1.0338] 0.03718 1.0R8] 0.0371794 1.034328]
(2 0.034289 1.8(5] 0.03429405 1.93] 0.03430 1.805] 0.03429397 1.8328]
3) 0.032324 2.2H1] 0.0323525 2.44] 0.03235 2.p4] 0.032350629 2.41%2]
(4) 0.032192 8.06] 0.0321985 7[8] 0.03220 7.16] 0.032198287 7.9216]
(5) 0.0316025 0.031613 5.5 0.03161 6.66] 0.031613080 5.958]
(6) 0.0315535 4.65] 0.031562 3.18] 0.03156 2.p6] 0.03155516 2.716]
(7) 0.0313515 0.0314975 6.16] 0.03150 6.55] 0.03149750 7.598]
(8) 0.031349759 8.7183]
9 0.0313115 0.031315 142 0.03132298 1.13866]
(10 0.0313045 0.03131 15] 0.031304250 1.1698]
(17 0.031282674 2.96]
(12 0.0312645831 2.614]
(13 0.0312627480 2.5116]
(14 0.031260682 98]
(15 0.0312535114 3.28]
(16) 0.03125293164 5.788]
() 0.0312511519 1.0%8]
(18 0.03125067253 1.388]
(19 0.03125053534 9.50]
(20) 0.0312503765 3.89]
(21) 0.0312501542 3.18]
(22 0.031250120 3[9]
(23 0.0312500159 1.39]
(24 0.0312500172 1[8]

N-electron function spaces consist of parts which are optithe n=4 threshold would be a feasible project. The founda-
mized separately and which represent, on the one hand, thi®ns of our approach are briefly presented below.
short- and long-range self-consistent correlations contribut-

ing to localization, {,,E,), and, on the other hand, the
coupled open channels whose mixing wiify produces the
final characteristics of the eigenfunction and of the intrinsic

properties of the resonance state.

A. Complex eigenvalue Schrdinger equation

In the energy region where the resonance structure ap-

pears, the exact scattering statéE) is a superposition of
Given this framework and based on our previous experibound and energy-normalized scattering components. Ap-
ence with accurate calculations of doubly and triply excitedpropriate relations among diagonal and off-diagonal matrix
resonance$9,63,64, we considered that a comprehensiveelements led to formulas for the energy-dependent phase
cover of the!P®, 1D° and'F° H™ resonance spectra up to shift, and for the position and width of the resonaf@®,66].

TABLE IV. Energies and widths of H*D® and 'F° Feshbach resonances below tie3 threshold.

R matrix CCR CESE
Pathaket al. [34] Odgerset al.[35] Bhatia and Hd 58] Ho [57] This work

State —E(au) TI'(au.) —-E(au.) TI(au) -—-E(au) I'(au) —E(au.) TI(a.u.) —E(a.u) I' (a.u.)

ID°(1) 0.0594095 2.798] 0.05943 2.648] 0.059431007 2.49904] 0.059430923 2.4994]
2 0.0555997787 2.6766]
3) 0.055556101835 3.3083]

1F°(1) 0.056558 5[B] 0.056875 0.0565588 5.02] 0.0565587519 5.00686]
2 0.05565771162  5.54(7)
3) 0.05556643170  5.978]
(4) 0.055556720982 6.408]
(5) 0.0555556809 6[80]
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TABLE V. Energies and widths of H'D® and 'F° Feshbach resonances below the4 threshold.

R-matrix Variational close coupling CCR CESE
Pathaket al.[34] Callaway[50] Ho and Callaway 56| This work
State —E(a.u) I' (a.u.) —E(a.u) I'(a.u.) —E(a.u.) I' (a.u.) —E(a.u) I'(a.u.)
Do(1) 0.036498 1.178] 0.03635 1.28] 0.03652 1.123] 0.0365292 1.2248]
(2 0.032067 2.1 0.03209299 2.50202]
(3)  0.031709 7.06] 0.03171549133  7.420p8]
(4) 0.0314025 4.5%] 0.031416853 5.4618]
5) 0.0312835667 1.12288]
(6) 0.03127688546  4.9388
) 0.0312567786 2.276]
8 0.03125144201  2.6288]
9 0.03125137195 4.6184]
(10 0.0312502777 9.378]
(11 0.03125007408 2.10]
1Fo(1) 0.035098 6.55] 0.03515 6.M] 0.035125 6.54] 0.03511423 6.59@]
2 0.0334555 1.86] 0.033461482 2.043]
3 0.031846 6.5] 0.03184856 7.5718]
(4) 0.031661 4.8/] 0.03170402 7.946]
(5) 0.03147 4] 0.0314357 3.89@]
(6) 0.031418432 2.058]
) 0.031317286 1.4478]
(8) 0.031297999 5.820]
9) 0.0312746 2.06]
(10) 0.0312637636 1.877]
(11 0.031260405 2.428]
(12) 0.0312539447 4.98]
(13 0.0312515877 3.660]
(14 0.03125113086 1.378]
(15 0.0312503239 4.79]
(16) 0.0312502433 5.568]
a7 0.031250024 2[8]
The resonance state can be identified with a nonstationary (H—E)y(r;E)=0 ©)

state which is initially {=0) localized (), and which is

decaying into the adjacent continuous spectrum spanned lfgr any real value o in the continuous spectrum. In gen-

the background scattering wave functiq@s11]. The phys- eral, the matrix elemen¥ g mixing ,(r) with 2(r;E) is

ics of this picture implies that, on resonance, the asymptotigiven by

form of the scattering statef(E), represents the outgoing

wave only. By combining the above, it has been shown Voe=(U(r;E)|[H—=Eg| (1)), (4)

[67,68 how a complex eigenvalue Scliinger equation

(CESB describing resonancéshapeor Feshbachin short ~ with

range, Coulomb and lineadc-ac Stark effegtpotentials,

emerges simply but rigorously. Eo={(to|H|[ o) real ®)
Specifically, following Fano[65], the scattering state

function ¢(r;E) expressing the superposition ¢f(r) with and
the scattering functiong/(r;E) of the continuous spectrum Ve |2
into which it is embedded, can be written as E=E,+ Pf dE’ EiEE’ +N(E)|Voel (6)
Ve
Y(r;E)y=a(E)| ¢o(r)+ Pf dE’E_OE, Ur;E" Equations2) and(6) constitute the definition of the func-

tion A(E), whose value is fixed by the asymptotic boundary

conditions of the problem as follows: According to the phys-
, 2 ics of the decaying state, one must look at the asymptotic

behavior of ¥ (r;E) which is obeyed under resonance con-
which is valid for all values of the reaction coordinatand  ditions (i.e., under conditions of outgoing wave ohplyn
satisfies the stationary state Safirger equation doing sol/(r;E) are represented by their asymptotic analytic

+AE)VoeU(r;E)
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forms corresponding to a short-range potentiggssel func- model used by Zel'dovich, the same norm is obtained. They
tion), a Coulomb potentialCoulomb function, or to a linear  concluded that fh spite of the fact that the wave functions
potential (Airy function). By inserting these forms into Eq. vanish at infinity, the energy values are complex because of
(2) and by setting the ingoing wave part equal to zero, thehe non-Hermitian character of the Hamiltonian i’ \(the
value of\(E) on resonance is found to be volume of integration About a decade later, the same result
N(E)=—ia R was obtained in a mathematical language which analyzed the
' spectral properties of the rotated Coulomb Hamiltonian
(o) that the energy in E(qﬁ) becomes Complexy H(Q)Ee_ziaT"f‘ e_MV in the Hilbert Space Oﬁz functions
[74-74. It was shown that the complex eigenvalue$ig®)
: 9 i correspond to the second sheet poles of the resolvent, i.e., to
—imVoel*=Eo+A- oh resonance states. The computational implementation of the
(8) mathematical results was pioneered by Doolen and co-

workers[53-55, whose findings showed that, in practice,

"A"hér'itAo IIEowest dolfdgr flrldEto aovery good appr]oximgtionthe identification of the resonance eigenvalue in the midst of
(E)~A(E,) andI'(E)~I'(Eo). On resonance, then, Eq. a plethora of irrelevant complex energies can be done by

(3) becomes a CESE, focusing on the kinks of stability appearing in the

Voer|?
E-E’

E—z,=E,+ Pf dE’

(H—2,) '®(r:2,) =0, (9) f-trajectories.
where the asymptotic boundary condition f@t*3(r;z,) is C. Form of the trial resonance wave function for
(67,68 arbitrary atomic states and optimization of function spaces
We(r:z.) ~b(z,) €N (10) It was recognized in the mid 1970s that the diagonaliza-
140 0 "

tion of H( ) in a single basis set, a characteristic feature of

Both the coefficienb(z,), representing the flux of outgoing the CCR calculations on two-electron resonance states which
particles, and the energy factb corresponding to the po- Started at that time, is not practical for the calculation of
tential of interest, are complex and are given explicitly inmore difficult cases or of polyelectronic statgBiscussions
terms of the quantities present in H®) [67,68. on resonance state calculations with different basis sets in

This derivation of the CESE does not involve tBena-  conjuction with theH(#) Hamiltonian were initiated by
trix, as does the well-known Siegert treatment of resonanPoolen and co-workerg53-55 and Bainet al. [77].] This
scatterind 69], and reveals without restrictions as to the typelimitation is analogougbut more sevepeto the one present
of potential and of excitation process, the form of thewith the brute-force diagonalization of the redl for the
complex—and lacking a Hilbert space nofsee Eq(10)]— calculation of discrete states. Furthermore, such an approach
resonance eigenfunctiomy(r:z,), of the CESE. This form does not allow for a calculation of partial widths, although,
consists of two parts, of which one,, is square integrable 0N the positive side, it allows for a calculation of triply ex-
and contains all the function space components contributin§ited states where not only one- but also two-electron chan-

to the initial localization of the nonstationary state. nels are opef64].
The bypass of this bottleneck is achieved by making the

connection of the formalism of decaying stat&ec. IV A
) ) ~with the requirement of regularizing the resonance eigen-
The reliable solution of Ec(9) presupposes the possibil- function. No transformation of the Hamiltonian coordinates
|ty of dealing effectively with all the difficulties of electronic iS necessary_ Th|S has been discussed in a Series of papers
structure, electron correlation, and open channel mixing, ifyhere emphasis was given to the possibility of obtaining
addition to its non-Hilbert space character which is due toefficiently accurate solutions to E¢9) for many-electron
the fact that the resonance eigenfunction is unnormalizableytomic and molecular nonstationary states, without or with
The last problem, known in nuclear physics sincedbdehoc  the presence of a strong dc or ac electric or magnetic fields
introduction of complex energies by Gamow, reduced for(see, Refs[8,9,12,61,68 and references thereirThe rela-
many decades the interest in taCinng the problem of SO'VingionS and equations Wh|Ch have gauged the Strategy for dea|_
directly for the complex energfpole of the resolvent on the jng computationally with Eq(9), as do the calculations of
second Riemann shggetepresenting a resonance state evennjs work, were produced already in 1977-19886,4,67 in
of a small system. For example, Kemile0], in his 1937  forms expressing the notion of a two-part decaying state,
book on quantum meChar“CS, discusses this issue in terms there each part iS represented by Separate|y Optimized func-
the possibility of defining a new norm by introducing the tion spaces, and where the asymptotic part containing the
attenuating factoe 2", This idea, and further analysis using information about the energy shift and width is only an ad-
short-range potentials, was much later examined bylendum of symmetry adapted complex functions.
Zel'dovich [71] and Berggreri72]. For example, although the full implementation of the
In fact, a simple solution to the norm problem was pro-theory was delayed considerably due to the lack of computer
posed in 1961 by Dykhne and ChapliK3] by extending power at the time, the first such calculations on the He
integration into the upper half of complex coordinate plane2s2p P° resonance gave good results with a small expan-
i.e., by changing into re'’. They showed that for the simple sion. The localized part was a numerical Hartree-Fock func-

B. Norm issue and complex scaling
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tion together with correlation vectors such apd? p’d’, space which contributes to its localization. This zero-order
s'p”, etc., and the asymptotic part had Gamow orbigglef ~ approximation is usually multiconfigurational, especially for
the form electrons in the same shell. In the case of, ldn understand-
ing of the nature of configurations which are expected to mix
n: . 37 when the effective multielectron potential providing the con-
riiexp —kjexpi| 0—aj+—-1 |1, i TS .
2 ditions for localization is created, can be obtained from ex-

o _ - isting results on two categories of wave functions for doubly
wherek; and«; were optimized subject to the virial theorem excited states. In a full calculation, as in the present work,
constraint. It was argued that on resonance, the general forfe basis set must contain the fine details of the functions of

of the expansion should ld] (see section )7 both categories since the exagf are superpositions of
these.
g=a(0) o+ > by(Ou,, |al2+> |by2=1 (11 The first category denoted here (1), consists of com-
n n binations of intrashell configurations from the same hydro-
gen shell,n,

with u,, being complex functions. In subsequent work, hav-
ing already observed that most matrix elements in the non-

Hermitian matrix remain the same when all coordinates are #°(H=>, C'|(nl)(nl")), (14)
rotated, and with the availability of large computer memory LI

and speed, it was found convenient to have the square inte-

grableg; for each channel, expanded in terms of Slater or wherel,|’ are dictated by the total symmetry of the state.

Gau;sian_orbitals. Thus the substitutiongyfby £? basis Ab initio results on thep(1) and their properties have
functions is been obtained fon up to 15 in a series of publications since
1986 (see Refs[10,60,63, and references thergjnfor H™
gi(p)_)z Cu(0)Pi(r), (12) as well as fpr othe'r small _at_oms and ANI’s. Il_ocal|zat|on. in
K zero order is obtained efficiently by calculating the radials

self-consistently, with numerical as well as analytic tech-

where, in practice, the construction of the non-Hermitian manjques. Among other things, it was shos0] via explicit
trix is done by keeping all coordinates of the Hamiltonian computation of expectation values and conditional probabil-
operator and of the bound functions real, except for those 6ty plots that the state of the lowest energy at each manifold
y for whichr— p* =re"". has special geometrical properties, and constitutes a step in a

Optimization is carried out with respect to variationstpf  |ladder of resonances leading to a classically determined ge-
of expansion size and of other nonlinear parametergin ometry atE=0, where the electrons are free. Additional re-
(see Sec. Ysearching for the stable root closestBg and  sults in Refs[10,60,63 are also relevant to the understand-

with ing of the H resonance spectrum and to the present
calculations.
(] o) | = max. (13 (1) The use of hydrogenic rather than self-consistent radi-

L?II-S in ¢o(1) gives poor results for the properties of these

When more than one resonance state Is searc;hed for SIMUates. It follows that if fixed basis sets are used in the overall
taneously, as in the present work, the construction and diago-

nalization of the complex matrix accounts for all direct andcalqulqtlon ofy/g, as in .the present case, the space of single
indirect interactions. excitations corresponding to eagl(1) must be represented
extensively.

(2) As the energy excitation increases, double substitu-
tions from ¢2(1) influence more the wave-function charac-
teristics than the total energy. It follows that in the calcula-
tion of a property sensitive to electron correlation such as the

According to the present decaying state viewpoint, thewidth, the function space for double excitations in leso-
appearance of a resonance state in the continuous spectrummance states must be very accurate. The recognition of the
the result of temporary wave-function localization caused byinfluence of double substitutions follows from the systematic
an effective multielectron potential particular to the state ofexamination of the degree of validity of the Herrick-
interest. The localized statg,, not being an eigenstate of Sinanodu [79] classification scheme ofK(T) quantum
the full Hamiltonian, is nonstationary and decays into thenumbers, where the model space did not include pair excita-
adjacent continuum with a rate whose magnitude dependsons. It was found62] that this classification deteriorates as
primarily on the overlap of bound and scattering components increases, even for the lowest-energy state of each in-
near the nucleugs9]. trashell manifold. By including pair correlations in the cor-

A crucial element in the calculation of a resonance statetelated wave functions, it was shown that a new scheme
especially of the very difficult cases of the series of H (F,T) provides a consistently better description of such
resonances treated here, is an efficient and at the same timtates as well as of the others belonging to the same mani-
numerically accurate determination of, first, a zero-order apfold. The quantum numbeF is defined asF=N—-1-K,
proximation of ¢+,, and, second, of the additional function whereN andK are no longer good numbef62]. We note

V. THEORY: FEATURES OF THEH ~
RESONANCE SPECTRUM AS THEY RELATE
TO THE PRESENT CALCULATIONS
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that these conclusions were drawn after actual projection gbotential is capable of supporting an infinity of bound states

correlated wave functions onto th&(T) and (,T) basis below each threshold which fall into one or more regular

functions. series. For each symmetry and threshaldhe energy spac-
(3) Within the small uncertainty of the remaining energy ings €, =E(n)—E,(H™) and the widthdl", of each series

shift due to the interaction with the function space representare related by a fixed ratio

ing the open channels, the energy spectrum of the lowest-

energy intrashell resonances is given by a simple, yet gener- €, T,
ally applicable and computable, relati¢see Ref[60], and p; =F—=e(2”“”“)=R, k=234..., (19
references therein Kl el
n(n—1) where\ is obtained from the theory of the modgl3,17].
—E,=A——— (15 Furthermore, the extent of thdipole resonancevave func-
Mn tions also grows exponentially for successive states, with a

long-range tail described by Hankel functions of the first
kind [13-15. It is then clear that the configurations in
¢2(11) must involve an inner, compact arbital, and a numeri-
cally accurate very diffuse outer orbital.
where the radius,, is obtainedab initio from the computed Formulas(15) and(16) and other properties of Hreso-
wave functions, and is a constant characteristic of the sym- nances whose zero-order wave functions aredifi@), have
metry of the ladder states. Equati¢b6) follows from Eq.  peen obtained viaab initio calculations including self-
(15) because it is found computationally that~n® The  consistent radial relaxation and electron correlatisee
dependence oE, and especially of , on n® constitutes a Refs.[10,60, and references thergirOn the other hand, the
distinguishing feature for wave functiong;(1) vis a vis  degree of satisfaction of the predicted regularity of the H
those which are dominated by zero-order functions of th@esonance spectra below each threshH&d. (18)] has re-
second categorypa(l1), whose average is defined essen- mained without quantitative verification or falsification, al-
tially by the outer orbital in a range reaching thousands othough some related discussion exisit8,34,49. For this to
a.u. for each threshold. In practical terms, this means that thee done reliably, a complete resolution of Hesonance
two-electron basis sets which are used for the calculation opectra of different symmetries up to a reasonable level of
%, (mixtures of functions of both categorjemust be large  excitation, say up to tha=4 or 5 thresholds should exist.
and flexible enough to represent both compéetatively  Such a resolution implies the computation to high numerical
speaking wave functions in the regions~n?, something accuracy, and to all orders in the interaction, of the direct and
like the “valence” states of neutral atoms, and diffuse waveindirect mixing of correlatedp'g, and of the continua into
functions associated with the “dipole resonances” discussegvhich they are embedded. The correlau:ﬁjare superposi-
below. tions of zero-order functiong?(1) and ¢°(I1) and of con-
The second category of Hwave functions contains as figurations representing virtual one- and two-electron excita-
zero-order wave functions for a particular symmetry the sutions into the function space of the closed channels.

!

=7 for largen, (16)

perposition of intershell configurations, The overall mixing produces resonance eigenfunctions
with energiesE, and widthsI',., accumulating to a particu-
o1 = c W a1, 1 lar thresholq, as well as t_he occasional appearancesbépe
(1) n%, n 1) ) (7 resonance just above this threshold. As regards the former,

they correspond to thdipole resonanceand offer the pos-
wheren’>n, andl, |’ are dictated by the total symmetry of sibility of direct numerical comparison with E¢18) and,
the state. It is immediately evident that now, as the differ-consequently, of the classification of thé ldpectra for each
ence between the valueslj and (0'1") increases, the outer symmetry and threshold into perturbed and unperturbed
electron orbital becomes very diffuse, with exchange andpectra. As regards the latter, i.e., the resonances just above
correlation tending to zero. The question then is the follow-threshold, their wave functions are relatively compact, due to
ing: Should one expect zero-order wave functions likethe dominant presence of intrashell functiop1). As en-
#o(11) to produce effective potentials of localization? In- ergy increases, the probability of the appearance of shape
deed, the answer is positive, and is given by the penetratingesonances of different symmetries increases, since hydro-
analysis by Galilitis and Dambuid 3]. These authors made genic degeneracy is broadened, leading to larger numbers of
reasonable assumptions for the descriptioeofH scatter-  ¢2(1) and of different series of dipole resonances.
ing in the vicinity of each hydrogen threshold, and put forth  In closing this section, we point out that, as the title im-
an exactly solvable one-electron coupled-channel model qgblies, what we discussed above regards the very accurate
resonance creation in'H In this model, where only the large solution of the CESE and, consequently, #ieinitio reso-
r part of the outer electron is considered, where exchangkition of the H spectrum and the determination of the char-
forces are neglected and where only the dipole term of thaecteristics of the eigenfunctior(Sec. V). In so doing, we
full Coulomb interaction is kept, localization is due to an adopted the Gailitis-Damburg approximation as the zero-
attractive, one-electron effective potential, of the form?1/ order model not only to test the validity of its formal predic-
characteristic of each degenerate threshold of hydrogen. Thi®ons but, especially, to utilize it for the purpose of classifi-
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TABLE VI. The orbital basis set used in the present computatioﬁRff, 1D° and 'F° resonances. The number of localized radial
STO'’s, Njoc, and the number of complex rotated radial STQRg,,, for each orbital symmetry are given. The STO’s are chosen
systematically for groups of states so as to have their averégein a more or less regular way inside the range definedrby,;, and

<r>max-

S p d f g h i k
Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc NIoc <r>min <r>max
ipo 33 35 33 34 33 33 31 32 29 27 25 1.2 6600
Ipe 31 34 31 33 31 32 29 27 25 2.0 4300

1o 30 33 30 32 30 31 30 30 28 29 26 28 24 22 1.6 4500

cation of the computed complex eigenvalues ando make a related comment. The calculations of Refs.
corresponding states into grougs Sec. VI we will see that [43,85,44 were based either on the CCR method with nu-
in certain cases electron correlation causes the appearandssrical basis sef8t3], or on coupled-channel scattering with
of loner states, of overlapping resonances, and series pertumodel potential$85,44, the latter aiming, as in Reff16], at
bations, thereby destroying the regularities predicted by théetermining the number of resonances for finite values of the
model) As regards previous attempts to classify doubly ex-splitting of then=2 state. Both calculations were used to
cited states of H, we already mentioned the Herrick- Make specific predictions of the number of observable reso-
Sinandgu (K,T) scheme[79] and the more recentF(T) ~ Nances. For example, consider the® symmetry, The con-
schemd62]. Other work, based on approximate calculationstlusion of Ref.[43] is that there are only threéP° reso-

of low-lying states below each threshold, or on models or ofa1Ces- A fourth root of the CCR Hamiltonian matrix was
formal analysis leading to approximate quantum numberdiscarded43], as not representing a resonance state since its
can be found in Refd80—84 energy was found to be above the Id,2 threshold. Thus in

their Table Il they reported the existence of only thrée®
resonances, while a possible fourth resonance, for which a
complex eigenvalue was obtained, is characterized as “non-
The 1f2-like effective potential and the model prediction existent.” The same conclusions are published in Réd]:
of an infinity of “dipole resonances” result from the prop- The introduction of relativistic corrections into relevant in-
erty of nonrelativistic hydrogenic degeneracy far  teraction matrices and to tme=2 threshold energy led to the
=2,3,4.... However, Gailitis and Damburg pointed out result and conclusion that onlya’third state is actually
that in reality, the resonance series is truncated by the finbound by aboutl.4x 10 ®Ry” [44]. (The same conclusion
structure of the hydrogen thresholds. The question then iwas reached about thkS symmetry for which ‘all higher
how many resonances of each symmetry actually exist in ththan four states are shifted above the,pthreshold and
neighborhood of each threshold. In response, Galilti3] therefore disappear out of the serie$85]).
employed a simple formula for the maximum number of We would like to argue that the existence or not of reso-
resonances of each symmetry below tive3 threshold. The nances in H, or in any other spectrum of negative ions,
same formula was later used by Pattedlal. [34], who pre- need not depend exclusively and uniquely on whether the
pared a related table. For example, for the® symmetry  position of the predicted resonance lies below or above the
below then=2 threshold, the prediction of R€f34] is that  corresponding threshold. In other wordsresonance state
the number is 2. A more flexible treatment was done bymay exist above its potential barrier or above its threshold
Rotenberg and Cord¢46]|, who numerically solved the ap- in the nonrelativistic or in the relativisti®irac-Breit spec-
propriate coupled-channel equations with explicit inclusiontrum. For example, théP° resonance spectrum of Hgives
of threshold splittings. rise to the previously mentioneshaperesonance just above
Since the same theme was tackled again very recently fahe nonrelativistion=2 threshold. Its existence implies that
states below tha=2 threshold 43,44,83, this time the em- the residual Coulomb interaction®y even relativistic ongs
phasis being on high numerical accuracy and explicit consideoupling the localized component to the open channels
eration of relativistic wave-function mixing, we would like 1sep, 2sep, 2pes, and Zed, are not sufficient to make this

Relativistic shape resonances?

TABLE VII. The basis set expansion for the CESE computatiort®?, 'D°, and F° reso-
nances. For a given total symmetry, the number of radial terms within the angular contritbtition
is given.

sp pd df fg gh hi sf pg dh fi gk Total

1po 998 822 675 576 511 435 4017
1po° 869 768 689 601 519 3446
1o 701 606 534 456 756 621 520 468 395 5057
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TABLE VIII. P° shaperesonance above the=2 H threshold. The reaE and imaginary
- %l" parts of the complex energy, the energy position with respect tonth@ H threshold
(—0.125 a.u.)5E, and with respect to the Hground stateAE and the widthl’, are given. Our
results are compared with the experimen&d,90,29 and theoretical ones obtained from the CCR
[91,88,88, £? Feshbach41], close-couplind49], and R-matrix [34,36 methods.

Reference —E(a.u) %F (10 *a.u.) SE (10 %a.u.) AE (eV) I' (meV)

present 0.124387 3.55 61.3 10.9697 19.3
[91] 0.124351 2.60 64.9 10.9707 14.1
[88] 0.12437 63.0 10.9702 18.5
[86] 0.12436 3.45 64.0 10.9705 18.8
[41] 0.12424 76.0 10.9737 22.6
[49] 0.124395 3.68 60.5 10.9695 20.0
[34] 0.124328 5.8 67.2 10.9713 32
[36] 0.124242 3.425 75.8 10.9737 18.6

Experiment

[89] 10.971 21.211)
[90] 10.9743) 20(1)
[90] 10.97@3) 30(1)
[29] 10.9713)2 22(3)

&The result of Williams[29] is 10.217(3) eV above theslH ground level; this result has been
shifted to the 32 H™ position by the electron affinity 0.7544 eV.

spectral concentration disappear. Similarly, we expect that, if VI. CALCULATION AND RESULTS FOR THE
a series of nonrelativistically determined resonances for the H™ 'P°, 'D° AND 'F° RESONANCES
lightest of f?\t_omg crosses a relat_|V|st|c threshold, a resonance According to the contents of Secs. IV and V, the trial
whose position is now above this new threshold will remain . S ) :
) . . . . oo wave functions used in this work have two parts: a localized
in existence, in spite of a possibly very weak binding, if the S . .

part, which is composed of functions of real coordinates ac-

relativistic corrections cannot destroy its localization. There-

. . counting in a judicious way for the detalils, at large as well as
fore, in order to prove the disappearance of such a resonanc

in a liaht atom. one would have to applv a rigorous theor ofa? smallr, of electronic structure and of electron correlation

Y ! . . pply arg y contributing to the stability of the state; and an asymptotic
resonances with the Dirac-Breit one- and two-electron opera}:—)art which is composed of two-electron configurations
tors. ! )

i where one set of basis representing the outgoing electron, is
Our calculations(Secs. V and VI produced a well- a function ofre~? and, therefore, complex.

defined fourth complex eigenvalue above thmg 2threshold The hydrogen states associated with the open channels
and below the 8, one. Relativistic corrections will cer- ere represented by real Slater-type orbitt830’s) with
tainly affect Sllghtly its energy and width. However, itis a the exponents chosen to be equa| o 46 that, when com-
moot point whether such weak interactions will wipe it out. hined, they can form the exact hydrogen functions. The real
It is also possible that they will simply transform it into a STO’s which describe the localized part of the wave func-
relativistic shape resonance tion, as well as those complex STQGamow orbitals that

TABLE IX. Results of the present CESEomplex eigenvalue Schidinger equationcalcula-
tions for H™ resonances of P° symmetry below thex=2 threshold.E: total energy in a.u(for
H™, 1a.u=27.21139&[M/(M+1)]=27.19658 €Y. I': total width. e,,=E;,— E,: the energy
distance from threshol®R, =€, /€, andRy=I",,_,/T",.

State —E(a.u) €(10°° a.u.) I'/2 (10 *°a.u.) R, Rr
1 0.126 049 837 1049837.0 6809.0
2 0.125035050 3 35050.30 364.0 29.952 18.706
3 0.125001 19344 1193.44 13.2 29.369 27.576
4 0.125000 0408 40.80 0.1 29.251

The value of the ratio given by the GD model[ 7] 29.334

3Because of the extreme diffuseness of this state function and of the corresponding small number

for I', the value forR did not have the same level of accuracy, and therefore it is excluded from
the list.
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TABLE X. As in Table IX, for 1P°H™ resonances below the=3 threshold. Two series are
established, labeled andB. Note the existence of overlapping resonanées:andB4.

A B
r —8

State “E(au) e (10%au) 2903 gr R R R
1Al 0.062 716 92 716136 59503
2B1 0.058 571 809 6 301 625.40 449.37
3B2 0.056 116 399 56084.3 112.89 5.378 3.981
4 A2 0.055906 26 35070 3547.4 20.420 16.774
5B3 0.0556630559 107 50.03 19.774 5.217 5.709
6 A3 0.055576 3612 2080.56 209.27 16.856 16.951
7 B4 0.055576 3099 2075.43 10.015 5.180 1.974
8 B5 0.055559575918 402.0362 0.7586 5.162 13.202
9 A4 0.055556 795 29 123.973 12.849 16.782 16.287
10B6 0.055556 333474 77.7918 0.1451 5.168 5.228
11B7 0.055555 706 32 15.076 0.0294 5.160 4.935
12A5 0.05555562951 7.395 0.7640 16.763 16.818
13B8 0.055555583 2.7 0.55 5.493
The values of the ratio given by the GD model at&] 16.752 5.164

aSee the footnote of Table IX.

TABLE XI. As in Tables IX and X, for'P°H™ resonances below the=4 threshold. Note the appearance of the siatevhich does
not belong to any of the three serieg,, (B, andC), which are predicted by the GD model. This resonance overlaps with the neighboring

ones,B4 andA4.

A B C

r — 8
State —E(au) e (10%au) 2010 7auw R, R R, Rp R, R
1Al 0.0371794 5929.4 51716.4
2B1 0.034 29397 3043.97 916.4
3 A2 0.032 350629 1100.629 12076 5.387 4.283
4 B2 0.032 198 287 948.287 396.08 3.210 2.314
5C1 0.031613080 363.080 297.9
6 B3 0.03155516 305.16 135.8 3.108 2.917
7 A3 0.03149750 247.50 3275 4.447 3.687
8 B4 0.031349 759 99.759 43.59 3.059 3.115
9D 0.03132298 72.98 5693.3
10 A4 0.031 304 250 54.250 584.7 4.562 5.601
11B5 0.031282674 32.674 14.3 3.053 3.048
12C2 0.0312645831 14.5831 13.07 24.897 22.79
13 A5 0.0312627480 12.7480 125.55 4.256 4.657
14 B6 0.031 260 682 10.682 4.7 3.059 3.043
15B7 0.0312535114 3.5114 1.62 3.042 2.901
16 A6 0.03125293164 2.93164 28.94 4.348 4.338
17 B8 0.0312511519 1.1519 0.527 3.048 3.074
18 A7 0.03125067253 0.67253 6.69 4.359 4.326
19C3 0.03125053534 0.53534 0.475 27.241 27.516
20B9 0.0312503765 0.3765 0.190 3.059 2.774
21 A8 0.031250154 2 0.1542 1.55 4.361 4.316
22 B10 0.031250120 0.120 0.17 3.138 @
23C4 0.0312500159 0.0159 0.067 a a
24 A9 0.0312500172 0.0172 0.9 a a
The values of the ratio given by the GD model at&] 4.360 3.047 27.299

aSee the footnote of Table IX.
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TABLE XII. As in Tables IX=XI, for '1D°H™ resonances below the=3 threshold.

r

- —9
State —E(a.u) e (10 °%a.u.) 7 (10 7au) R, Rr
1 0.059 430923 3875367 124955
2 0.055599 7787 44223.1 1338.4 87.632 93.361
3 0.055556 101 835 546.28 16.517 80.953 81.032
The value of the ratio given by the GD model[ik7] 80.552

describe the outgoing electron, were chosen so that their avespectively. The decimal figures which are given were
erager values formed geometrical sequence covering the refound to be stable against variation 6f Our results are
gion from(r)min t0 (r)max. The values ofr) i, and(r)max ~ compared with the most accurate and extensive previous cal-
are given in Table VI together with the number of localized culations. Apart from the fact that only very few states, the
STO’s,Nj,c, and complex rotated STOHN, ., for each or-  ones lower lying in the region below a given threshold, were
bital symmetryl. The rotated orbitals were combined with identified by the previous computations, it is noteworthy that
the STOs representing the hydrogen target states to form tleme sequences of lower-lying resonances were incomplete
two-electron configurations describing the asymptotic part ofvith some states missing because of their small widths; see
the wave function. The real localized STO'’s are used to cone.g., Tables Il and V. In Table VIII we give our result for
struct the localized configurations. Since in the resonanceéhe only shaperesonance we obtained, tHé®° state lying
states which are to be represented in such a basis set, oabove then=2 H threshold. It compares very well with re-
electron is supposed to be, on average, close to the nucleusjlts of other authors. Especially, it is in an agreement with
whereas the other one is diffuse, the whole orbital basis setata of Callaway49] and of Ho and Bhati&86].

was used for the outer electron and only half oftite low The aim of our computation was to provide a complete
(r) par) was used for the inner electron. The number oflist of resonances including extremely narrow and close to
configurations obtained in this way is given in Table VII the threshold ones so that one can analyze general properties
together with the specification of angulaf terms. The non-  of the resonance spectrum and of the wave functions. Tables
Hermitian Hamiltonian matrices were built from such basisIX—XV are devoted to the analysis of regularity and of per-
and diagonalized for twelve values @fn the range from 0.2 turbances of the H resonance spectra. Given the prediction
rad up to 0.75 rad. Thé )i, parameter was also optimized of the dipole approximatiofi13], we classified resonances
within a range of a few atomitthe values ofr),;, given in  into series according to the rati®.=¢,,_1/€n, Wheree,

Table VI determine the lowest limit for this rangenits, in  =E,,—E,,, and according to the ratio of their widthB;
order to obtain the best stabilization of the complex roots =TI",,_;/I",,. The GD model predicts that the rati®&s and
corresponding to the sought after resonances. Ry should be the same for a given series as defined by Eq.
Our final results for the resonance energies and widths ar@ 8). The values of this ratio, obtained by Pathak, Burke, and
presented in Tables I-1Il fotP°, and in Tables IV and V for  Berrington[17] are also given in the tables. It is seen that, for

1D° and 'F° resonances below the=3 and 4 thresholds, the cases of single series below a given threshold or of the

TABLE XIII. As in Tables IX=XII, for 1D° H™ resonances below ttre=4 threshold. Note the
existence of overlapping resonancB8 andA®6.

A B

I o
State “E(au) e (10%au) 207AW o pl R Ry
1A1 0.0365292 5279.2 614.3
2 A2 0.03209299 842.99 125.101 6.262 4.910
3B1 0.03171549133 465.491 33 3.71047
4 A3 0.031416 853 166.853 27.307 5.052 4.581
5 A4 0.031 283566 7 33.5667 5.6119 4.971 4.866
6 B2 0.031 276 885 46 26.885 46 0.246 94 17.314 15.026
7 A5 0.031256 7786 6.7786 1.138 4952 4.931
8 B3 0.03125144201 1.44201 0.013119 18.644 18.823
9 A6 0.031251 37195 1.37195 0.23092 4941 4.928
10A7 0.0312502777 0.2777 0.046 89 4.940 4.925
11B4 0.03125007408 0.07408 0.00105 19266
The values of the ratio given by the GD model §t&| 4.940 18.777

aSee the footnote of Table IX.
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TABLE XIV. As in Tables IX=XIlI, for *F°H™ resonances below the=3 threshold.

State —E(a.u.) € (10 Pa.u.) I'/2(10 Ya.u.) R, Rr

1 0.056 558 7519 10031963 25034

2 0.055657 711 62 1021 560.6 2770.1 9.820 9.037
3 0.055566 43170 108761.4 298.6 9.393 9.277
4 0.055556 720982 116 54.26 32.04 9.332 9.320
5 0.055 555 680 9 1253 34 9.298 9.424
The value of the ratio given by the GD model[ik7] 9.323

lowest starting seried}, converges to the model value from terns. We consider the wave-function characteristics, includ-
above, whereaRr does so from below. This should be in- ing the estimate for the size of states due to the outer
terpreted as a reflection of the fact that the lower-lying mem-electron(r,,;), computed as the average of the distance of
bers of the series are bound more strongly, i.e., their posithe outer electron from the nucleus, and the angular term
tions are lower and they are more stable againstontributions to the resonance wave functions. The reso-
autoionization than predicted by the GD model. On the othenances belonging to a given series have common angular
hand, higher series in general are less regular or not at aklectron correlation pattern; that is, they have the same con-
For example, theC series of !P° resonances below the tributions of various angular terms to their wave functions. If
=4 thresholdTable XI) is quite irregular. The values &,  one considers the size of states, it changes regularly along a
at the beginning of the series are smaller than those predictesries. The ratid,y=(r out)m+1/{r ouy)m CONVErges along a
by the model. This means that the lower-lying members ofgiven series to a quite well-determined value which is char-
such series are pushed up via the interaction with the paralleicteristic for the series. For example, let us consider#fe
series. In the case of th@1 andC2 'F° states(Table XV) resonances below the=4 threshold, for which we give the
the values oR, and Ry differ by eight orders of magnitude wave-function characteristics in Table XV¥92]. The GD
from the GD model value. Finally, let us note that among themodel predicts three series of resonances converging to this
1p° states below they=4 threshold(see Table X) there threshold. We have identified them by our computation and
appears a loner stafg, which does not belong to any of the assigned the labels, B, andC. The dominant contributions
series predicted by the model. to the A series wave functions come from tipal angular

The classification of resonances into series is also sugerms with important admixture aff andsp partial waves.
ported by the recognition of their electron correlation pat-In the B series, thesp terms play the leading role with con-

TABLE XV. As in Tables IX-XIV, for 1F° H™ resonances below thre=4 threshold. Note the existence of overlapping resonar@ks:
andB3.

A B C

r — 6
State —E(au) e (10%au) 2107aw R, Rr R, Rr R, Rr
1A1 0.035114 23 3864.23 327.5
2B1 0.033461 482 2211.482 10.21
3B2 0.031 84856 598.56 3.789 3.695 2.695
4 A2 0.031704 02 454.02 39.73 8.511 8.243
5C1 0.0314357 185.7 194.0
6 B3 0.031418 432 168.432 1.026 3.554 3.693
7 A3 0.031 317 286 67.286 7.235 6.748 5.491
8B4 0.031 297 999 47.999 0.2910 3.509 3.526
9C2 0.0312746 24.6 10.3 7.549 18.835
10B5 0.0312637636 13.7636 0.0937 3.487 3.106
11 A4 0.031 260 405 10.405 1.212 6.467 5.969
12 B6 0.0312539447 3.9447 0.0245 3.489 3.824
13 A5 0.0312515877 1.5877 0.1830 6.554 6.623
14 B7 0.031251 13086 1.13086 0.006 88 3.488 3.561
15 B8 0.0312503239 0.3239 0.002 36 3.491 2.915
16 A6 0.031 2502433 0.2433 0.027 81 6.526 6.580
17B9 0.031 250024 0.024 0.011 a a
The values of the ratio given by the GD model &t&] 6.496 3.485 8.518]

aSee footnote of Table IX.
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TABLE XVI. Wave-function characteristics for théP°H™  comparable to the width of at least one of such states. One
resonances lying below the=4 threshold{r,,) is the estimate can find such overlapping resonances in Tables X, XI, XIlI,
for the size of each state due to the outer electron, computed as thgyd XV. The overlappingA3 andB4 P° resonances lying
average of the distance of the outer electron from the center of masse|ow then=3 threshold(Table X) can also be recognized
(ina.u). Ry, is the ratio of consecutive values @fo,,). The nota- i the results of Venuti and Decleyd2]. However, there are
tion[x] means 10*. TheD state does not belong to any of the three v\, gitferences: First, in our case the narrower stB, lies
series predicted by the GD model. above the broader onA3, whereas the result of Ré#2] is
the opposite. Second, in our case the overlap is stronger be-
cause the energy difference is five times smaller than that
1A1 3520 0.289 0.563 0.144 0F 0.75] 0.57] predicted by Venuti and DecleVd2]. An interesting case is
3A2 71.74 2.038 0.249 0.551 0.190 0.011 [8]40.67] the P° resonances below the=4 threshold, where reso-
7A3  151.4 2.110 0.215 0.542 0.226 0.017 [8]20.37] nanceD overlaps with its two neighbord34, lying below,
10A4 314.9 2.080 0.205 0.511 0.258 0.027 [6]10.1[6] andA4, lying above. The appearance of the loner resonance
13A5 666.3 2.116 0.196 0.521 0.257 0.025 [8]10.17] D, which is not_ predicted by the dlpole model, is a re_sult of
16 A6 1397 2.097 0.198 0.520 0.257 0.025 [6]30.28] strong corr_elatlon and exchange effects not taken into ac-
18A7 2920 2.090 0.195 0.520 0.260 0.025 [B)60.59]  count by this model.

21 A8 6095 2.087 0.195 0.519 0.261 0.026 [6]10.19]

24A9 9679 1.588 0.235 0.508 0.240 0.017 [@]60.510] VIl. SYNOPSIS

2B1 53.54 0.610 0.338 0.050 0Z 0.95] 0.17]
4 B2 96.41 1.801 0.585 0.352 0.062 [2B 0.45] 0.48]
6 B3 172.0 1.784 0.568 0.355 0.073 [@# 0.14] 0.17]
8B4 308.3 1.792 0.550 0.369 0.077 |24 0.46] 0.99]
11B5 543.8 1.764 0.543 0.372 0.081 [@# 0.46] 0.39]

State  (roup Ryy SP pd df fg gh hi

Given certain characteristics of the Hesonance spectra,
identified quantitatively from the Gailitis-Damburg model of
dipole resonances, we defined demanding cutoff criteria and
solved to very high accuracy, via the systematic and group-
of-states-specific choice and optimization of real and com-
14B6 953.3 1753 0.539 0.372 0.084 [25 0.36] 0.99] plex functions, the matrix complex eigenvalue Sclinger
15B7 1675 1.757 0.529 0.377 0.089 [26 0.47] 0.310] equation, for all states O*Po, lDO, and F° symmetry, up
17B8 2928 1.749 0.529 0377 0.088 [26 0.88] 0.410] {5 then=4 thresholdsee, Ref[1] for results on'S and 1D
20B9 5109 1.745 0.528 0.376 0.090 [26 0.18] 0.911]  states up to tha=4, threshold and Ref2] for results on'P
22B10 8549 1673 0.516 0.384 0.094 [P 0.48] 0.711]  states up to the=5 threshold. We suggest that at least a
5C1 7759 0.271 0.172 0.490 0.067 [B# 0.96]  subset of the theoretically identified resonances should be
12C2 319.0 4.111 0.295 0.116 0.495 0.095 [@]30.37] observable in sophisticated experiments based on multistep
19C3 1578 5.948 0.302 0.102 0.493 0.103 [6]10.18] excitation mechanisms and ultrasensitive detection tech-
23C4 6858 4.346 0.315 0.092 0.493 0.101 [@]60.410] niques.
9D 55.32 0.304 0.059 0.489 0.146 [22 0.25] This ab initio approach to the problem defined herein, i.e.,
to the possibility of resolving completely the resonance spec-
trum of a multiparticle system with a reasonably large and
tributions from thepd configurations. In theC resonances physically relevant span of its continuous spectrum, has pro-
the angular correlation is richer. Here ttié terms constitute vided a wealth of new and significant information on each
the main part of the wave function together with a largeresonance individually as well as on the spectral features
addition ofsp terms. Thepd and fg contributions, though collectively. As regards the latter, it was shown that, by
three times smaller than thep contribution, are not negli- adopting the Gailitis-Damburg model as the zero-order
gible. Finally, the stateD corresponds to a wave function model, the resonance spectra of Ean be classified into two
which bears some resemblance to @ease. However, the groups, just as it is possible to do with the spectra of neutral
sharing ofpd and fg contributions is different. Moreover, atoms and positive ions, where the zero order potential can
the radial distribution of the electron density, represented bype taken as having the Coulombr Fbrm. The first group
the(r,,,) values, does not fit the pattern for tieseries, for ~ contains unperturbed series whose energies and widths sat-
which theR,,, is about 5, while ther,,y value for theD isfy the GD conditions of Eq(18), and have similar angular
state is smaller than that of thél state lying belowD. correlation characteristics. The second group contain per-
Hence we have concluded that thestate is not a member of turbed series and loner states, with the occasional existence

the serie<C. of strongly overlaping resonances.
One can see that in all the cases of single series these are
regular and the characteristic rati®s, Rr, andR, con- ACKNOWLEDGMENTS
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