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Total-energy calculations of solid H, Li, Na, K, Rb, and Cs
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Augmented-plane-wave calculations within the local-density approximation of the total energy of
the solid alkali metals H, Li, Na, K, Rb, and Cs predict that except in Rb at T =0 K the fcc struc-
ture is more stable than the bcc, which agrees with experiments for Li and Na.

I. INTRODUCTION

A calculation of the total energy (TE) of a solid lets one
find the equilibrium lattice constant and other ground-
state properties of the solid, such as the bulk modulus
and other elastic constants. In addition, it permits deter-
mination of the stable structure of the solid at least at
T=O. Here, using total-energy calculations, we study the
structural stability of the elements of the first column of
the Periodic Table (H, Li, Na, K, Rb, and Cs) using the
augmented-plane-wave (APW) method based on the
local-density approximation (LDA). All the alkali metals
crystallize in the bcc structure at room temperature. At
T=O K, however, the LDA predicts that the fcc struc-
ture is more stable than the bcc structure. This agrees
with recent low-temperature experiments of Smith et al. '

for metallic Li and Na.

II. METHOD OF CALCULATION
AND APPROXIMATIONS

The total energy was calculated from the expression of
Janak which is valid within the muffin-tin (MT) approxi-
mation and needs as input the crystal potential, the
charge density, and the eigenvalue sum. These were cal-
culated self-consistently with the symmetrized APW
method using the muffin-tin approximation, which
should be adequate for cubic materials. The crystal po-
tential was calculated on a doubling linear mesh consist-
ing of 750 points within the MT radius. We have found
that for the alkali metals with large lattice constants, an
integration with a smaller number of points leads to er-
rors in the total energy of the order of 0.2 mRy. This
small error would be suScient to obscure the comparison
of total energies between the fcc and bcc structures. The
logarithmic derivatives were calculated on a mesh of at
least 1000 points per Ry to ensure good eigenvalue con-
vergence. To determine the charge density we treated the

highest occupied s and p orbitals as band levels, but we
found that our results were basically unchanged if we
used only the s orbital as a band. All other states were
treated as core levels because they form essentially flat
bands. The core levels were obtained by performing a
fully relativistic atomiclike calculation in each iteration.
The band states were calculated self-consistently in the
semirelativistic approximation (the spin-orbit coupling is
neglected), initially on an equally spaced mesh of 20 k
points in the irreducible zone for the fcc structure, and 14
k points for the bcc structure. We found that for the bcc
structure it was necessary to use a 55-k-point sampling to
achieve acceptable convergence, while for the fcc struc-
ture using the corresponding 89-k-point mesh introduces
negligible change on the total-energy value. Therefore,
we performed the APW total-energy calculations with 20
k points for the fcc and with 55 k points for the bcc
structure. A convergence in the energy levels of 0.5 mRy
assured a convergence in TE of less than 0.05 mRy. In
all our calculations the exchange potential was treated in
the exchange and correlation formalism of Hedin and
Lundqvist, which is accurate for ground-state proper-
ties. To find the equilibrium lattice constant we calculat-
ed the TE at various lattice constants, and determined
the minimum by fitting the results with a parabolic or cu-
bic least-squares fit as proposed by Birch. We also cal-
culated the cohesive energy by subtracting the fitted equi-
librium energy from the energy calculated by a full rela-
tivistic self-consistent atomic program. We then calcu-
lated the fcc and bcc band structures using the equilibri-
um lattice parameters on a mesh of 89 k points for the fcc
structure and 55 k points for the bcc structure in the irre-
ducible —,', th of the Brillouin zone (BZ). The density of
states was then calculated by the tetrahedron method.

III. RESULTS AND DISCUSSION

The equilibrium atomic volume V that we calculated is
almost the same in both the fcc and bcc structures. In
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Figs. I(a)—i(d) we show the TE as a function of the atom-
ic volume for Li, Na, K, and Rb, respectively. The TE,
the equilibrium lattice constant ao, and the bulk modulus

Ko estimated by the 6t are shown in Table I. Table II
shows energy-band information at the equilibrium lattice
constant especially for high-symmetry points of the fcc
and bcc structures. In Fig. 2 we show the energy bands
and densities of states for the fcc phase of Li and Na, in

Fig. 3 the same quantities for K and Rb, and in Fig. 4 the
fcc band structure of Cs. The bcc bands are not present-
ed here since they are well documented in the litera-

ture. '

From Fig. 1 and Table I we see that at T=O the fcc
structure is more stable than the bcc structure for all the
alkali metals except Rb. The difference in the equilibri-
um value of the TE is large for H and Li, 6 and 2.4 mRy,
respectively. This difference becomes much smaller for
Na and Cs, and is negative for Rb, favoring the bcc struc-
ture. However, as we discuss in Sec. V, these differences
are not precisely calculated by the APW method. So in
the following we consider as a reliable result the prefer-
ence towards the fcc structure for most of these metals.
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FIG. 1. Total energy (in Ry) of (a) Li, (1) Na, (c) K, and (d) Rb vs atomic volume (in a.u. ) for the fcc (circles) and bcc (triangles)
structures.
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fcc bcc
I( 0E, {fit)Er {fit) aoao

4.33
7.95
9.68

12.01
12.82
13.88

—1.7025
—14.834 82

—323.424 12
—1201.183 97
—5955.682 51

—15 567.988 16

3.46
6.38
7.69
9.54

10.13
10.76

1.150
0.156
0.090
0.046
0.049
0.033

H
Li
Na
K
Rb
Cs

—1.0669
—14.832 02

—323.423 16
—1201.183 22
—5955.682 88

—15 567.987 94

0.169
0.149
0.106
0.0893
0.0716
0.0465

0.0056
0.0028
0.000 96
0.000 75

—0.000 37
0.0022

0.174
0.157
0.107
0.085
0.0713
0.0467

1.07
0.148
0.087
0.047
0.042
0.020

which the local chemistry becomes insignificant. For
spherically symmetric atoms, the denser the material, the
larger the cohesion. Hence, the larger the alkali atom,
the more favored the fcc structure. The local attraction
is very strong for small atoms and decreases as Z in-
creases. The solid cohesion is small for small atoms,
which prefer to form molecules rather than solids, and in-
creases slightly as Z increases, forming the electron sea
more easily. It seems that these two factors, superposed,
form a minimum for Na.

From Figs. 2, 3, and 4 and Table II we see that the
larger the atom, the narrower the conduction band and
the Ef-I i separation.

We think that this behavior is to be expected because
there are two compensating factors, local chemistry and
solid cohesion. The alkali metals have one external s
electron, so they consist of spherical atoms. The smaller
the atom, the stronger the attraction between the outer
electron and the neighboring nucleus. Hence, an in-
creased number of neighbors around each atom results in
a more stable local environment and the lowest energy.
Since the fcc structure is more close packed than the bcc
structure, the smaller the atom, the more the fcc struc-
ture is favored, due to local attractions. On the other
hand, solid cohesion demands that the outer electron be
free and delocalized. This happens for large atoms in

TABLE II. Energies {in Ry), with respect to the muffin-tin zero, of high-symmetry and directionally equivalent k points of H, Li,
Na, K, Rb, and Cs in fcc and bcc structures, along with valence-band widths, at the equilibrium lattice constant.

CsRbLi Nafcc H

r,
Li
L2p
X)
X4p

Wi

Wqp
8'3

Ef
Ef —I )

L~p
—I i

L) —I )

w, —r,
8qp —I )

—0.493 66
0.788 74
1.376 87
1.253 13
1.863 47
1.431 70
2.466 03
2.388 06
0.708 00
1.201 66

0.056 55
0.565 37
0.315 50
0.688 60
0.440 54
1.02004
0.654 13
0.593 48
0.31650
0.259 95
0.258 95

—0.014 24
0.31707
0.281 12
0.413 04
0.381 19
0.602 59
0.470 23
0.473 84
0.245 00
0.259 24
0.295 36

0.003 14
0.174 11
0.229 09
0.201 56
0.298 01
0.371 72
0.246 79
0.295 43
0.17000
0.166 86

0.003 68
0.135 60
0.215 82
0.15061
0.276 96
0.304 49
0.192 72
0.243 34
0.143 50
0.139 82

0.007 36
0.205 11
0.229 20
0.238 86
0.302 67
0.421 70
0.280 19
0.320 26
0.185 50
0.178 14

1.28240
2.881 72

0.19775

0.272 83

0.17097

0.243 65

0.13192

0.18904
0.536 93

0.484 47

Libcc H Na Rb Cs

r,
N,

P4
Hi2
Hiq

Ef —I i

Ni —I i

—0.481 44
0.868 58

—0.003 44
0.36009
0.321 34
0.476 15
0.61095
0.658 70
0.266 00
0.269 44
0.344 78

0.055 09
0.573 18
0.333 65
0.572 10
0.907 37
0.734 50
0.320 80
0.265 71
0.278 56

0.010 59
0.215 85
0.247 58
0.300 35
0.300 34
0.47649
0.19000
0.17941

0.01168
0.18600
0.244 71
0.274 64
0.254 12
0.449 72
0.17600
0.164 32

0.023 28
0.15697
0.250 91
0.242 75
0.194 14

0.81000
1.291 44

0.168 40
0.145 12

1.35002 0.13369

0.170 86

0.205 26

0.289 75

0.174 32

0.43& 04
0.679 41

0.614 39

TABLE I. Equilibrium lattice constant (ao) in bohr, total energy (E, ) in Ry, bulk modulus (Ko) in Mbar, and cohesive energy

{E,) in Ry of metallic H, Li, Na, K, Rb, and Cs in fcc and bcc structures. hE is the difference E,{bcc)—E,{fcc)in Ry.
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IV. COMPARISON WITH EXPERIMENTS
AND OTHER CALCULATIONS

There are a few experiments on the stable structure of
Li as well as similar experiments on Na. " Overhauser'
first concluded from the data of McCarthy et al. ' that at
T=4.2 K the stable structure of Li is closed packed in
the 9R sequence ABCBCACAB. This was also verified
by Smith et al. "who found that the transition tempera-
ture from 9R to bcc increases with pressure, or

equivalently, the transition pressure from bcc to 9R in-
creases with temperature. Although the transition with
pressure from bcc to a more close-packed structure is ex-
pected, the preference of 9R instead of, say, fcc, is not ob-
vious. Similar conclusions from quantitatively different
results have been deduced by other workers. ' Moreover,
Smith et al. ' observe that between T=140 and 17S K at
a pressure of 6.5 kbar the 9R structure disappears,
whereas the fcc phase partially appears (-209o). Smith
et al. also find that at T= 140 K and P=6.5 kbar the bcc
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FIG. 2. Band structure of Li and Na in the fcc structure.
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lattice constant of Li is 6.49 a.u. Our calculation (at
T=o K) gives an equilibrium lattice constant of 6.38 a.u.
For the fcc structure of Li, Smith et a/. found a lattice
constant of 8.17 a.u. , whereas we find an equilibrium lat-
tice constant of 7.95 a.u.

For the bcc structure there are previous calculations by
Moruzzi et al. They found the equilibrium lattice con-
stants to be 6.42, 7.70, 9.45, and 10.21 a.u. for Li, Na, K,
and Rb, respectively, whereas we find them equal to 6.38,
7.69, 9.54, and 10.13 a.u. , respectively, with correspond-
ing total energies of —14.84, —322.98, —1196.45, and

—5872.52 Ry from Moruzzi et al. , and —14.83,—323.42, —1201.18, and —5955.68 from our calculation.
The differences are due to the relativistic effects that we
take into account, but which are not included in the work
of Moruzzi et al. Our calculated bulk moduli are also in
good agreement with those given by Moruzzi et al. and
with experiment. In Table I we list our calculated values
of the cohesive energy for both the fcc and bcc structures.
For the bcc structures, Moruzzi et al. ' reported nearly
perfect agreement with the measured cohesive energies.
Our values are somewhat greater than theirs.
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FIG. 3. Band structure of K and Rb in the fcc structure.
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FIG. 4. Energy bands and densities of states for fcc Cs.

V. LAPW CALCULATIONS

The energy differences between the fcc and bcc phases
of the alkali metals are quite small, on the order of 1 mRy
or less. Although we believe our calculations to be well
converged with respect to basis set size and number of k
points, it is possible that systematic errors in the APW
method could produce energy differences of this order be-
tween the two phases. To check the reliability of the
method, we have performed a set of linearized
augmented-plane-wave (LAPW) (Ref. 16) calculations on
the fcc and bcc structures in Li and Na. The LAPW pro-
gram used here' treats the core states fully relativistical-
ly and the valence and conduction bands in the semirela-
tivistic approximation, " just as our APW code does.
Both methods also use the Hedin-Lundqvist parametriza-
tion of the LDA. However, in the LAPW calculations
we are not making the muffin-tin approximation. In-
stead, the charge density and potential are expanded in
spherical harmonics to angular momentum !=8 within
the muffin tins, and expanded in Fourier series in the in-
terstitial region. For this reason the muffin-tin radii are
kept fixed, at 2.5 bohr for Li and 3.0 bohr for Na. A fur-
ther difference is that we used the method of Monkhorst
and Pack' to generate the k points.

We carefully checked the convergence of the total en-
ergy with respect to the number of basis functions and k
points. Our calculations used 28 k points for the fcc
structures and 40 (for Li) or 55 (for Na) points for the bcc
phases. Approximately 60 basis functions were used at
each k point. Tests done with a larger number of basis
functions lead us to believe that the total energies are
converged to within 0.1 mRy at all volumes.

We calculated the fcc and bcc equations of state for Li
and Na, and fitted the resulting total-energy versus
volume data to the Birch form. The fits are accurate to
better than 0.01 mRy. Our results are presented in Table
III. The difference in equilibrium energies is 0.47 mRy
for Li and 0.27 mRy for Na. If we assume that the
fcc~bcc transition is thermally activated, these energy
differences correspond to transition temperatures of 74
and 47 K, respectively, in very close agreement to the ob-
served transitions from close-packed (not necessarily fcc)
phases to bcc at 72 K in Li and between 36 and 51 K in
Na. "

Comparing these results to the APW results in Table I,
we see that the APW fcc-bcc energy difference is consid-
erably larger than that predicted by the LAPW method.
The Na energy versus volume curves for both methods
are shown in Fig. 5. We see that the curves calculated by

TABLE III. LAP%' equation-of-state data for the fcc and bcc phases of Li and Na.

Equilibrium parameters

Li
Na

ao
(bohr)

8.01
9.66

fcc

(Ry)

—14.834 79
—323.425 51

Eo
(Mbar)

0.147
0.092

ao
(bohr)

6.37
7.65

(Ry)

—14.834 32
—323.425 24

bcc
Ko

(Mbar)

0.151
0.092

hE
(Ry)

0.00047
0.000 27
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(due to the use of the no-shape approximation potential)
would not alter the basic result of this work, i.e., that the
fcc structure is more favorable for H and the lighter al-
kali metals.

VI. CONCLUSIONS
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FIG. 5. Total energy (in Ry) of Na vs atomic volume for the
fcc and bcc structures using the APW and LAPW methods.

We performed APW calculations of the total energy of
solid H, Li, Na, K, Rb, and Cs within the LDA approxi-
mation. We predict that at T=O K the fcc structure is
more stable than the bcc structure for H, Li, Na, and K,
a result that agrees with the existing experiments for Li
and Na. At equilibrium the difference between the fcc
and bcc total energies is larger for H and Li (6 and 2.18
mRy, respectively), and much smaller for the heavier ele-
ments. A comparison with our LAP W calculations
which were done with a no-shape approximation poten-
tial for Li and Na leads to the following assessment of
our APW calculations. The APW calculations (within
the muffin-tin approximation) accurately give the equilib-
rium lattice constant, the bulk modulus, and the cohesive
energy. However, the energy difference b,E between the
fcc and bcc structures is rehable only to the extent of pre-
dicting the stable structure, but should not be used to ex-
tract a structural transition temperature. It appears that
the LAPW results (perhaps further convergence tests are
needed) may be capable of accurately predicting transi-
tion temperatures as well.
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