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Resonance scattering theory: Application to the broad He ls 2s 2p I"resonance
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A resonance scattering theory for many-electron resonances is applied to the analysis of
the He 1s2s2p 2P' resonance. We have found that multiconfigurational Hartree-Pock

theory is applicable even in such cases and predicts the Feshbach nature of the state. Furth-

ermore, by including electron correlation and off-energy-shell pseudostates, we demonstrate

the strong energy dependence of the width of this resonance. We suggest that this is the

reason for the discrepancy of recent theoretical results with experimental ones. The theoret-

ically predicted cross section is asymmetric, ~hereas the recent experimental one is sym-

metric but non-Lorentzian. Defining the position and width of the resonance at maximum

and half-maximum values of the cross section correspondingly, we find Eq ——20.26 eV and

I g ——600 meV, compared to the experimental values of Eq ——20.27 eV and I q
——780 rneV.

I. INTRODUCTION

Electron scattering from He has attracted much
theoretical and experimental attention during the
past 20 years. Recently, ' advanced theoretical
models have been applied to the calculation of the
energy and width of the He 1s2s2p I" resonance.
The calculations presented in the most recent pa-
pers have used very large wave functions, and the
aim was to establish the character of the resonance
("shape" versus "Feshbach"), given the fact that it is
quite broad. It was declared to be a Feshbach
resonance lying between the He ls2s 5 and 1s2s '5
thresholds.

Although it is interesting to see that large wave
functions with "correct" projection operators or
similar orthogonality constraints yield different re-
sults from those computations which employed less
carefully chosen wave functions, ' we believe that
the really interesting point with this case is that all
the theoric --in spite of their computational
magnitude —have yielded widths which are much
smaller than that produced by the recent experi-
ment.

Given the level of sophistication of current
scattering theory and experiment, we thought that
this resonance constituted a good and timely case
for studying and analyzing its localized and continu-
um components and finding how they affect the ob-
served position and width as a function of energy
Applying rigorous resonance theory with accuracy
can be a serious computational problem if no previ-
ous analysis is made of the nature and electronic
structure of the resonance in question. Our ap-
proach has been based on previous work " which

presents such analyses and the results show the fol-
lowing.

(1) The position of the He 1s2s2p I" can be
found quite accurately with a small (32-term)
square-integrable wave function, provided a suitably
coupled multiconfigurational Hartree-Fock (MCHF)
function is computed and taken as the zeroth-order
vector. The "Feshbach" nature of the state is al-

ready present in the two-term zeroth-order vector.
(2) The broad resonance is characterized by an

energy-dependent width. This energy dependence in-

creases the magnitude of the width computed from
the standard golden-rule formula, as an energy-
independent quanti. ty, bringing it much closer to ex-
periment (see Table I).

II. THEORY

It has been shown ' ' that X-electron resonances
can be treated from a many-body point of view by
treating the localized part as in ordinary bound
states —with some additional constraints. Thus the
localized part of a multielectron resonance can be
written as 4'0 ——4+1 where 4 is in general a
MCHF solution over orbitals of the Fermi sea, ' and
7 is the orthogonal to 4 correlation function. *' To
a very good approximation, X contains configura-
tions that result from single or double excitations
from the orbitals of 4 to those of the virtual space.
The virtual orbitals are Slater-type orbitals (STG's)
with variationally optimized exponents and are
Schmidt orthogonalized to Fermi-sea orbitals and
among themselves. Configurations having the same
form as the open channels are excluded from the ex-
pansion.
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TABLE I. Positions and widths of the He 1s2s2p P'
resonance.

Source

Reference 4 (Theor. )

Reference 1 (Theor. )

Reference 2 (Theor. )

Reference 5 (Theor. )

Reference 6 (Theor. )

Reference 7 (Expt. )

Reference 21 (Expt. )

This work'
This workb

This work'

This work
This work'

E
(eV)

20.54
20.17
20.20
20.52
20.33
20.27
20.30
20.50
20.31
20.31
20.28
20.26

r
(meV)

330
400
437
355
780

—1000
245
370
420
575

-600

'MCHF. The width is evaluated at 20.31 eV in order to
compare with calculation b (golden rule).
MCHF plus localized electron correlation plus energy

shift due to the open channels (6) (golden rule).
'Calculation b plus second-order interaction with pseu-
doresonances [Eq. (111].
Solution of Eq. (9) in the complex plane.

E~ is the position of the maximum and I q is the full

width at half maximum of the theoretical cross section
(Fig. 1).

where u;~ is the wave function of the ith open chan-
nel. The vectors %„areorthogonal to each other
but not necessarily to the open channels, since
nonorthogonality does not affect the asymptotic
form of the total wave function and therefore the
scattering parameters. Let us define the matrix ele-
ment

V„;(E)=(g„iH E i; ), —

and through it the energy-dependent matrix, '

(2)

F „(E)= g H fdE'

where H signifies the principal part of the integral.
The diagonalization of the matrix E„5~„+F~„(E)
gives the second-order mixing of the vectors 4„.

Diagonalization of the Hamiltonian in this basis
results in a set of ¹lectron vectors 4„.We denote
%p as the one containing 4 with the largest coeffi-
cient. The rest are in general pseudoresonances at
energies outside the energy region of the true reso-
nance. However, they mix with 'kp through second-
order interaction mediated by the open channels.
Following Fano we can write the total wave func-
tion as

0's ——g a„(E)%„+g f dE'bgF (E)ups,

Thus we obtain a new state 4fp for the localized part
of the resonance at a new energy Ep+h(E). Both
the state and the eigenvalue are slowly varying func-
tions of the energy. We drop the other linear com-
binations, provided their energies lie outside the re-
gion of the resonance. The partial widths I;(E) are
given by

I; (E)=2m
( ( 4p

~

H E—
~
u;s ) ( (4)

and we can write S =Sp S"'Sp, where Sp is the
scattering matrix due to potential scattering only.
In the case of an isolated resonance, '

y; (E)y) (E)

where
~ y; ~

=I';. Owing to the nature of the exci-
tation (1s~2s) and the smallness of the correspond-
ing R integrals, the effect of the direct mixing of
the open channels 1s ep and 1s2s Sap on the cross
section is expected to be negligible compared to their
indirect mixing through the resonance. Therefore
the matrix Sp is almost diagonal, and the inelastic
cross section is not affected by its presence. So, we
have

] I p(E)I i(E)/4
k [E E h(E)] +I—(E)—I4

(8)

where the index 0 refers to the elastic and the index
1 to the inelastic channel. It appears then that we
cannot talk about energy-independent position or
width of the resonance. Nevertheless, theories treat-
ing resonances as decaying states define such a pair
of energy-independent qualities. These are given by
the solution of the equation'

Z Ep —6(Z) + i I'(Z ) /—2 =0

in the complex plane. A meaningful connection be-
tween the two approaches can then be made by

The total width I is the sum of the partial ones.
The approximate position of the resonance E, is

given by the solution of the equation

E —Ep —6(E)=0 .

If h(E) and the I'; (E)'s are slowly varying functions
of the energy in the energy region of interest, we can
choose their values at the approximate position of
the resonance as the ones to be compared with the
experiment. Otherwise, it is necessary to plot the
cross sections and compare with the experimental
ones at every energy point. The cross section is re-
lated to the scattering matrix by the formula

2S"(E)—5"
(E)- (6)
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transferring the energy dependence of the quantities
5 and I to a modified potential scattering matrix
Sp. In the single-channel case this is easily done by
a least-squares fit of the cross section. %hen more
than one channel is open, such a deconvolution ap-
pears to be complicated,

In this work, in order to have a more rigorous
comparison with experiment, we have (1) computed
the inelastic cross section and compared it directly
to the experimental one (Fig. 1} and (2} extracted a
position E~ and a width I ~ of the resonance by go-
ing beyond the standard golden-rule formula and
solving Eq. (9) to a good approximation.

III. COMPUTATION OF %p.

A T%0-TERM MULTICONFIGURATIONAL
HARTREE-POCK FUNCTION PREDICTS

A FESHSACH RESONANCE

As in every many-electron treatment of many-
electron states, the choice of the zeroth-order vector
is crucial to the qualitative description of the corre-
sponding state as well as to the rate of convergence
to the exact answers. A few years ago, using the
virial theorem as a guiding principle for localization
and convergence to the necessary local minimum, as
well as suitable cutting-off procedures, analytic
Hartree-Fock (HF} theory was applied to the calcu-
lation of the zeroth-order vectors of highly excited

20.0 20.5
Incident energy (eV)

FIG. l. Inelastic cross section of He at incident ener-
gies between the 2'S and 2'S thresholds. Experimental
cross section of Brunt et al. (Ref. 7) (solid curve).
Lorentzian distribution with the same maximum and
width as the experimental cross section (dashed curve).
Theoretical cross section calibrated to the same height as
the experimental one (dot-dashed curve).

autoionizing states. This approach, although it is
of course basis-set dependent and often difficult in
yielding convergence, has the advantage of produc-
ing good zeroth-order descriptions of even diffuse
resonances. (Negative ions may sometimes be
characterized by positive orbital eigenvalues. )

Numerical HF theory' bypasses the basis-set
problem. Using suitable extrapolation techniques
based on noninteger nuclear charges and noninteger
electron occupations in the calculation of the re-
quired integrals, we and Beck have demonstrated
(Refs. 10, 11, 16, and this work) that numerical HF
and MCHF solutions can be obtained for a number
of valence excited resonances (HF functions for
inner-hole excited states are relatively easy to com-
pute17)

For the state of interest, a two-configuration
(1s2s2p P and 1s 2p) MCHF solution was chosen as
the zeroth-order function. The solution is found by
choosing the vector with the largest coefficient in
front of 1s2s2p P. It is of the form

4=0.995
i ls2s2p 3P)

—0.099 '
1s 2p)

and gives an energy of —2.1503 a.u. This eigen-
value is below the energy of the He1s2s 'S threshold
which lies at —2.145 97 a.u. '

In computing 4 and later X, we chose the cou-
pling to be in the n=2 shell, where the interactions
are greatest. The more common' coupling be-
tween the 1s and 2s electrons, 1s2s 'S2p, is less
desirable for computational reasons. On the other
hand, in order to establish correspondence between
the physics of the scattering experiment and the
n =2 coupling, one can develop the 1s2s2p P config-
uration as a linear combination of 1s2s 'S2p and
ls2s 8 2p with coefficients v 3/2 and ——, , respec-
tively. The presence of the 1s 2p component
prevents an energy collapse and allows for a proper
convergence, in analogy with the better-known case
of the HF solution for the 1s2s 'S state. '

By analyzing the zeroth-order wave function in
this way, we observe that it contains a large part as-
sociated with the closed channel 1s2s 'S ep and two
smaller parts that can be expanded in terms of the
wave functions of the open channels 1s2s Sap and
1s ep. So, w'e have absorbed part of the open chan-
nels into the localized part 4 of the resonance and,
in doing so, we included part of the energy shift 5
into Ep.

Thus we have demonstrated that a two-term,
properly optimized wave function resolves the ques-
tion of "shape versus Feshbach" resonance for the
He 1s2s2p P' state, ' as its energy is below the
1s2s S thresho11 and its main component represents
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a closed channel. However, we note that such a
statement can be made rigorously only because the

experimental position of the resonance is available.
Otherwise, such a conclusion can be drawn only at
the end of the calculation, after the energy shift due
to the correlation function 7, which is always nega-
tive, and the energy shifts due to the open channels,
which can have either sign, have been computed.
This comment applies as well to the work presented
in Refs. 4 and 5, where the effect of the open chan-
nels was neglected.

IV. INCLUSION OF CORRELATION
AND NONORTHONORMALITY

The main contribution to the correction L, and
therefore to the energy, comes from the single exci-
tations 2s~V~ as well as from the double excita-
tions 2s2p~V Vp and 2s2p~V&V~, where VI are
virtual orbitals. Other single excitations such as
2s ~V, and 2p ~ Vz and double ones such as
2s2p~ V~ Vf are also included, although their con-
tribution is much smaller. Configurations of the
form 1s2s S V& and 1s Vz, which are similar to the
open channels, are excluded from the expansion.
The final wave function contains 32 configurations
constructed from the three HF orbitals and 11 virtu-
al orbitals. It gives an energy Ep ———2.1585 a.u.
This is very close to the experimental position of the
resonance which is 20.27 eV above the ground state
of He, that is, E,'" '= —2.1587 a.u.

As with the calculation of radiative transition
processes with separately optimized HF and correla-
tion functions for the initial and final states, ' ' the
correct treatment of resonance widths, in theories
which calculate them from transition matrix ele-
ments, requires the inclusion of nonorthonormality
effects between zeroth-order scattering and resonant
wave functions. The recent calculation of core-
excited shape resonances in He was based on such
a formulation. " This possibility was taken into ac-
count in the formulas written above, by using the
operator H-E instead of simply H.

In our case, the open channels with the correct
symmetry are the 1s ep and 1s2s S ep, where the He
atom is in its ground and first excited states, respec-
tively. We use HF solutions for the core orbitals
and fixed-core HF solutions for the zeroth-order
scattering orbitals.

V. RESULTS AND DISCUSSION

Neglecting the 1s ep continuum whose contribu-
tion to the total width is negligible ' as well as the
coupling to the pseudoresonances, we find, by apply-
ing formulas (2)—(5), 6=0.0013 a.u. and I =370
meV. In order to improve this value, we included in

~n p«)~„(E)= " ~p(E),
Ep —E„ (12)

where Ao is given by the condition g ~A„~'-=1.
The value of Ap is found to be close to unity in the
energy region of interest. The approximate position
of the resonance E, is given by the solution of Eq.
(5), where

N ~F (E)~
&(E)=F00(E)+ g (13)

Because of the smallness of the quantities I'„p,the
last term does not contribute significantly to the en-

ergy shift, which retains the value given above. The
width is now given by the formula

l(E)

=2rrAQ Vog(E)+ g V„~(E) . (14)
E,—E„

This formula takes into account the interaction of
'Pp with the continuum through the closed channels.
The resulting value of the width is 420 meV, in
agreement with other calculations (Table I) but still
far away from the experimental value. However, the
identification of I (E, ) as the width of the resonance
is based on the assumption of constancy of the
quantities I and 6 in the energy region of the reso-
nance. We found that this assumption is wrong in
our case, being correct only for the small partial
width due to the 1s ep channel. The plot of the in-
elastic cross section (Fig. 1), calibrated to the same

the expansion (1) the pseudostates arising from the
diagonalization of the Hamiltonian in the space of
square-integrable functions. There are 30 such
states in our calculation at energies above the 1s2s 'S
threshold and one at an energy well below the
1s2s S threshold. The latter one represents the
pseudostate where the 1s 2p configuration is dom-
inant. We observe that the energy region of our in-

terest, between the two thresholds, is clear from
pseudoresonances. As was discussed above, the
pseudostates have a second-order interaction with

%p, modifying in this way the resonance width,
which is now energy dependent and is given by

N 2

1"(E)=2m g V„g(E)A„(E)
n=p

where A„(E)are the mixing coefficients resulting
from the diagonalization of E„6„+F„(E).In-
stead of diagonalizing this matrix, for many values
of the energy, we make use of the smallness of the
quantities I' „and apply first-order perturbation
theory to obtain
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height at the maximum as the experimental one,
gives an apparent "width" of approximately 600
meV and a position of the peak at —2.1592 a.u.
However, because of its significant departure from
the Lorentzian shape neither can be taken to corre-
spond to the standard definitions of resonance posi-
tion and width. The same comment applies to the
experimental cross section.

Finally, we look at Eq. (9) which defines the posi-
tion of the resonance in the complex plane. This
equation was derived in Ref. 10, where a time-
dependent point of view was presented. Questions
of analytic continuation and connections to other
theories were also discussed. The complex energy
position can also be derived by employing Fano's
theory and outgoing boundary conditions on reso-
nance. '

The same equation has been derived and illustrat-
ed on a simple model by Drachman for the case of
elastic scattering. By making, as he did, a Taylor
expansion of I and 6 about the approximate posi-
tion Ez and retaining linear terms, we obtain

Eg —E = —— I g

and

I", I „'

, +,R —&.»
1 —d,' 1 —6,'

where the quantities with subscript r are evaluated
at E =E,. In our case I",=0.4514 and 6,'=0.3475.
Therefore we obtain

E~ ———2. 1583 a.u.

We observe that these values are quite close to the
ones obtained from the plot of the cross section.

The results of our computations are collected in
Table I together with the results of other theories
and experiments. Approximations (a)—(e} constitute
a hierarchy which demonstrates the magnitudes and
trends of the various approaches for this resonance.
For example, we observe that our two-term MCHF
calculation already yields a better energy than the
calculations of Refs. 4 and 5 where 54 and 40 con-
figurations were employed, respectively.

We close by pointing out the conceptual similarity
of the "saddle-point technique" of Ref. 4 to the
analysis and approach to the variational calculation
of inner-hole excited states presented earlier in Ref.
9, where emphasis was put on the importance of
orthogonahty constraints of the trial functions to

zeroth-order core orbitals. The form of the
q= 1 —

~

nl) (nl
~

projection operator of Ref. 9 (p.
2088) is the same as the one of Ref. 4. The choice
of the orbital

~

nl) is different. In Ref. 4 it is hy-
drogenic, whose nonlinear parameter is optimized by
maximizing the total E. However, given the reality
of the many-body problem, the purported relation-
ship of this technique to the rigorous establishment
of resonances ' is unclear.

VI. SYNOPSIS

Many-electron autoionizing states giving rise to
resonance phenomena present interesting and funda-
mental problems as regards the accurate description
of their electronic structure and the rigorous defini-
tion and computation of the observed quantities:
the position and the width.

In this paper we have studied the He 1s2s2p P'
state. Our interest in it arose from the fact that, in
spite of the apparent rigor and computational mag-
nitude of recent theories, a serious discrepancy
between experiment and theory appeared as regards
the width of the resonance. We note that the physi-
cal significance of this fact was not emphasized by
the previous groups, who aimed at establishing
whether this resonance is a closed-channel resonance
or not.

The basic aspects of our theory are the following.
(1) The zeroth-order localized part of the reso-

nance is described by a two-term MCHF function
[Eq. (10)]. The question of Feshbach versus shape
resonance is already resolved at this stage. Electron
correlation is included variationally. Questions
about lower states and open channels are answered
within the framework of the theory of Refs. 9 and
10.

(2) The standard golden-rule-type formula for the
calculation of widths is improved by including
second-order effects due to the S-electron pseudo-
states %„[Eq.(11)]. Nonorthonormality effects be-
tween initial- and final-state configurations are in-
cluded explicitly by redefining the interaction ma-
trix elements [Eq. (2)].

(3) Having developed accurate methods for ob-
taining I (E) and h(E) as functions of energy, the
energy dependence of this broad resonance is
demonstrated via the approximate solution of the
defining Eq. (9} in the complex energy plane and via
the calculation of the inelastic cross section [Eq.
(6)]. The second procedure provides a direct com-
parison with experiment. The first is mainly of
theoretical interest and can be compared with the
experimental values only when the elastic and all the
inelastic cross sections are known accurately. In this
case, a least-squares fitting could determine the
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values of ER and I ~ as well as the partial widths.
Both of these calculations improve the agreement

with experiment. However, some discrepancy
remains. On the theoretical side, a further but small
improvement might occur via sizable increase of the
number of configurations describing the diffuse
function %0.

Finally, given the discrepancy between the result
of the large (126 configurations) complex coordinate
calculation and experiment (Table I), we suggest
that more applications of this method to broad reso-
nances should be made in order to establish the
range of its Aexibility or validity.
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