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The survival amplitudés(t) of a nonstationary state decaying into a purely continuous spectrum is treated in
terms of an integral transform of an energy distribution wittP E=0. We examine three such distributions.
Two are real functions, the Lorentziagt(E) and a modified LorentziaG(E)=g-(E)EY2 and one is the
complex version ogL(E),g'c'(E). Real distributions are associated with Hermitian treatments while complex
ones result from non-Hermitian treatments. The difference between the two has repercussion&(onftne
nonexponential decafNED) and on the understanding of irreversible decay at the quantum level. For all three
distributions, we derive analytically amplitudgzopagatorsfor NED and then show that these satisfy differ-
ential equations, from which additional insight into the decay process for very long and very short times can be
obtained. By making analogy with the classical Langevin equation, the terms of the differential equation that
are derived when the simplgt(E) andg'g(E) are employed, are interpreted using concepts such as friction and
fluctuation. On the other hand, wheh(E) is multiplied by an energy-dependent factor, a&iE), the results
are, as expected, more complicated and the interpretability of the differential equation satisfied by the NED
propagator loses clarity.
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[. INTRODUCTION The formal deviation from ED|in the Iim(i_t/hc))LWO can be
. . . seen immediately if we write|W(t))=e™" Vo (the
When the problem OT the time evolution of an |§oI§1ted Hamiltonian is time independentand then expand the ex-
uns_tabl_e system, which is assumed creata¢9tand dISSI.- ponential for t=0:e/MHt~1—(i/#)Ht. In this time interval,
pating into a purely continuous spectrum, is treated rigoryecay depends on time quadratically. This fact expresses the
ously, the cpncl_usmn is reached that the law of exponentla degree of stationarity” of the nonstationary st{8 How-
decay(ED) is violated within the quantum mechanics for- eyer, since it is not clear how to identify the result of a
malism in the limits oft—0 andt—o. This conclusion measurement on a physical quantity with time intervals close
raises questions as to the origin, the magnitude and obseny t~ 0, before the onset of ED, this range is mainly a source
ability, and the relevance of nonexponential de¢BeD),  for discussions which, thus far, assume observability at the
issues that have attracted the interest of many researchergtant of preparation, notwithstanding the constraints of the
over the past few decades. For example, it is possible thaincertainty principle. For example, such a discussion is the
from such details fundamental aspects of irreversibility at theone connected to the phrase “Zeno paradox,” e.g., R&f.
guantum level can be assessed, depending on whether thad references therein. A related study of the question of
formalism uses real or complex energy distributi¢hg]. observability “of early-time departures from Fermi’s golden
The quantity which is normally of interest in connection rule” using a model within the framework of first order per-
with the physics of decay of unstable states, is the survivaiurbarion theory and field-induced ionization was published

probability P(t) defined as in Ref. [5]. The issue of NED at=0 is also discussed in this
paper.
P(t) = (W[ W(1)> = |G(1)[2. (1) The NED in the limit oft— < is related in a fundamental

_ _ way to the degree of proximity of the resonance state to the
The wave functionV'(t) represents the formal solution of the fragmentation threshold, see Ref$,6] and this work. It is

time-dependent Schrodinger equati@®SE) for t=0, and  enhanced, in principle, when the interaction betwéég)
must be such tha®(0)=1 andP(«)=0. The main character- and the scattering states is such that the width function is
istic of Wo[=W(0)] is that it is a localized many-particlen  strongly energy depende(gee below.
general wave packet at=0, whose energ{, is inside the In order to compute the propagat@mplitude G(t) of
continuous spectrum of the system. Exponential decaq. (1), it is necessary to know the soluticly of the
means thaP(t)=e """, t>0, whereI'=#i/7, and r is the  TDSE. For real systems, where the physically significant in-
lifetime of the excited state. terparticle interactions are included, the calculation of the
appropriateW, constitutes a difficult many-particle prob-
lem. Results onP(t) of polyelectronic atomic resonance
*Email address: dtheo@eie.gr states which were obtained by first computifg, from first
"Email address: can@eie.gr principles, are described in Rd8], and references therein.
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An alternative approach, which has dominated the fielde— . However, because of the quadratic energy depen-
for decades in the framework of models, is to assume a forndence of the denominator, regarding the question of NED for
for the energy distribution of the unstable state and themhysical states the integral ovgfE) is dominated by the
study analytically the amplitud&(t) via Fourier-Laplace region whereE is close toE,.
transforms, e.g., Ref§4,6—9. (The reader can find other As emphasized in Ref§l,6], real energy distributions are
references on such calculations from the papers cited)herehe result of Hermitian frameworks. However, strict consid-
As was stressed in RefEL,6], there are two types of distri- eration of the physics of decaying states suggests that time
butions that have been assumed as being physically relevameversibility must be broken by a singularity &0 in the
For example, the distributions adopted by Khalfiff and  solution of the TDSE. In turn, this suggests that, provided no
Fonda, Ghirardi, and Rimin[9], and by many other re- memory of the formation is incorporated into the concept of
searchers, are real functions. If, however, the formalism ofn excited state, in order to follow the arrow of time one
the sectionally analytic resolvent operator is appli@dand, must exclude the contribution of time-reversed states,
according to the restriction @f> 0, only one of the resulting thereby engaging a formalism which is nhonHermitian. This
two Green’s function is kept, the distribution is complex can be achieved if the reg(E), which, as we saw, results
[6,8]. Regarding the understanding of irreversibility at thefrom the insertion of the Hermitian unit operator, is split into
quantum level, this difference might become significant ifthe two complex Green’s functiorG-(E+i0) for t>0 and
NED is observed in detajll,2]. It is worth noting that if the ~ G_(E-i0) for t<0, and the amplitudes(t) of Eq. (2) is
t>0 treatment of decaying states follows the route of theexpressed in terms @& (E+i0). In this way, two physical
differential equation rather than that of the integral equationconstraints are taken into account, namﬂwo andt>0
Fhe s_olution of th_e TDSE must account, in principle, for a1 2 6,11. Obviously, exact knowledge d¥(t) demands the
16(t) inhomogeneity at=0 [1,6]. exact knowledge of(E) or of G-(E+i0), and an accurate

The present discussion follows the integral equation apintegration of the truncatetE = 0) Fourier transform. For an
proach. It employs real and complex energy distributions;so|ated nonstationary state, both energy functigf® and
where the width function is assumed to be either '_”de?g”de%>(E+iO), contain the same physically relevant simple com-
of the gnerg)(Lorentz distribution or to depend on It as™, lex pole just below the real energy axis, which is the source
a density-of-states dependence which becomes important i yne Ep and of the identity of the unstable state. It is in

s waves a£—0 [8]. terms of this pole that the resonance state is normally defined
in the complex energy plane. However, the magnitude of
Il. REAL AND COMPLEX ENERGY DISTRIBUTIONS long-time NED does depend on whether a real or a complex
OF AN ISOLATED DECAYING STATE energy distribution drives the decfl,2,6. The analogous to
. , " the present investigation case of a complex energy distribu-
If the Hermitian unit operatof =f;dE[EXE|, where[E)  {jon will be discussed in detail in a separate paper. Here we
are the stationary scattering states of the continuous SPepresent and discuss only certain of the basic results.
trum into which the nonstationary state decays, is inserted in - Gjyen the difficulty of the many-body problem for real
[W(1))=e""| W), then the amplitud&(t) of Eq. (1) becomes  systems, the computation from first principles of the exact
o o g(E) of each nonstationary stati full detail, especially at
G(t) :f dEe EVR|(W|E)? = f dEe®'"g(E). (2) the wingd remains a desideratum, even for an isolated state.
0 0 (For overlapping resonances, this task is harder even in mod-
els) Therefore, in most papers on the subject, the problem of
obtaining P(t) from Eg. (2) has been tackled within an ap-

the first step of the theoretical development. The lower limitProXimate framework suitable for understanding the phe-
of the integral, which represents the threshold of the continufiomenology, i.e., by assuming analytic formsg¢g). The

ous spectrum, is set at zero, and this is equivalent to setting©"k of this paper employs two real and one complex energy
g(E)=0 for E<0. Given the formation at=0 of [Wy), it istribution, whose choice is based on the exact form, Eq.

(39, and on the correspondir@-(E+i0) for t>0.
The first is the truncated Lorentzian function

It is seen that, in this framework, the energy distribution
functiong(E), is real because of the use of the projection

follows from decaying state theory or from Fani]| Her-
mitian, standing-wave theory of wave function mixing in the
continuous spectrum, that the general form g(E) is

[1,6,10 g-(E) = Ni% forE>0, (4)
1 I'(E (E-E)?+—
oE)= L2 G :
[E-Eo-A(B) P+ ——
4 =0 forE<O.

with Equation(4) results from Eq(3a by assuming a weak in-
teraction and concomitant first order expressions for the en-

f g(E)dE=1. (8b)  ergy width functionl'(E) and the energy shift functiof(E),
which are then energy independent and are given by their

The width functionl’(E) must go to zero aE—0 and as value at E,, or at the exact resonance positidh=E,
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+A(E;). N is the normalization coefficielisee Eq(4')]. The N[ (* exd-iEt/A]
i istributi i Gt)=—| ——=55-dE, t>0. (7)

Lorentzian distribution, or extensions thereof, have been 2wy (E-E)2+T24
used before in studies of NED, e.g., Rdf5,6,7,9,12,138 '

The second choice for the form g(E) takes into account ;s integral can be obtained analytically using relation
the possible small energy dependence of the fundfids), (3.723 of Ref. [14];
by multiplying the numerator of“-(E) by E*?, which is the
s-wave density of states that was used by Goldberger and N N
Watson[8]. In other words, we take G(t) = ;exr{— iIE/AIA(L) + Eexr{— iE t/A]exd - Tt/24]

—qt 1/2 iN r
CE=g(BE ® - |2—eX|:[— iErt/ﬁ]{exp:— FtIZh]Ei<£t>
aw
for all E>0. In fact, such a dependence acquires its impor-

tance in the region close to threshold. _ exp[Ft/Zh]Ei<— Lt)} (8)

The third distribution is complex: 2h
N 1 where
GE)=-———, E>O0, (6)
2T it 0 i
1 A = J exp{— I't(tan 6)}d0. (9a)
tan'l(—ZB) h

yvhere N is the normalization constant so that the energyThe symbolE; stands for the exponential integral function
integral equals 1Eg. (3b)].

The aim of the present work is to diversify and enrich ourand we have set
understanding of irreversible decay for short and long times,
when an isolated decaying state is characterized by the above E =p. (9b)
three energy distributions. One of the main results is the r
demonstration that it is possible to identify a propagator de-
scribing NED and a differential equation satisfied by it. ForFrom Eqs(8) and(9a) one can understand why NED has not
the real and complex Lorentzian distributions, we show thayet been observed in a time-dependent measurement of an
this differential equation has the same form as the classicafolated decaying state. It is because, in most cases of real
Langevin equation. Consequently, their terms have been if2onstationary states, the conditigp>1I" holds andE; is far
terpreted accordingly. On the other hand, when the modifie@oove threshold. _
Lorentzian of Eq(5) is Considered' the presence of the en- Let us see how this follows from the above results. If
ergy factor leads to results that are less transparent. Thig>T', then tan*(-2p) tends to /2, and so
result is reasonable, given the fact that the Langevin equation
is also subject to restrictions in classical physics as regards
general applicability. Sections 1l1I-VI below deal with the

0 .

A — exp[— %Ft(tan 0)]«10
—l

g-(E) of Eq. (4) and Sec. VI deals with th€(E) of Eq. (5). ?

/2 H
= f exp|: I—l“t(tan 0)] de. (10
0 ﬁ

Using Eq.(3.716 of Ref.[14], Eq. (10) becomes

lll. THE CASE OF ¢-(E): CONDITION FOR
EXPONENTIAL DECAY AND THE ANALYTIC
FORM OF THE NED CONTRIBUTION
TO THE AMPLITUDE G(t)

At) = lzTexr[— Tt/2h] + ia{exr[— Ft/2ﬁ]Ei<%t>

The energy integral over the distribution must be equal to

1, sinceG(t=0)=1. This requirement leads to a normaliza- r
tion coefficientN for g-(E) of - exp[Ft/Zh]Ei<— £t> , t>0. (11
-1
N = {} ¥ ltan‘l<@>] _ 4y  Therefore, ifg,>T
2 r

G(t) =N exd-iE/t/alexd-Tt/2], E >T. (12
Using Egs.(4) and (4') in Eq. (2), it is possible to obtain
useful analytic expressions fds(t). These show that the If gis>1, then the distribution is already normalized, since
magnitude of NED depends on the relative magnitud&,of N=1.
andI’ and, especially, on the distance Bf from threshold One must then expect that NED is enhanced to some de-
[3,6]. If E,>T, the decay is essentially exponential fortall gree in states where the conditi&p>1I" is not satisfied. We
This can be seen from the following computation Gft). suppose that this is the case and we|tiati(—23)| < 7/2.
We have Then,
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ex iﬂz
M 2%

A(B,t) = :I:I_exﬂ:— iErt/ﬁ]J ?dz, (140

-2

i
At) = exp[— th(tan 0)}d0

tan_l(—Z,B)
where M is a large number, tending to infinity. Since the

O .
[
+ exp| — —T't(tan 6) [dé6. 13
f—w/Z p[ 2h ( )] (19
) . integral covers the region of very large valueszpthe de-
The second integral has already been evaluated. When it {§yminator can be taken out. So we have

combined with the other terms, it gives the ED form. So we

concentrate on the first term, which represents the NED con- N 1 M ir't
tribution. Including the coefficien{N/m)exp(—iE t/#) we A(B,1) = —exp[—iErt/ﬁ](22—1> f exp{zz]dz
have the quantity14a which we call the “NED propaga- 77 T et

tor” for the Lorentzian distribution N i ( 1 ) 2% ir't
=—expg-iEt - —1expl =M
N ™ H-iEUA] Z+1/, it 2h
INEP(B,1) = —exp[~ iE,t/#] iTt
T —exp —« | . (14e
1 . 2h
J e p[ Lyt 9)](10 t>0
X - n , . L . - .
l2 & h a The expression in curly brackets gives a finite number, while

the term 1(z2+1) tends to zero. Therefore, the contribution
of A(B,t) is negligible. It follows that the form of the propa-
gator can be taken as in E@.4b).

Let

(14a

IV. BEHAVIOR OF THE PROPAGATOR 1]'¥P(g,1)

FOR SHORT AND LONG TIMES N (tari2p i
. . . ) (Bt = —J exp{—Ft(tan 0)}d¢9. (15)
The lower limit of the integral in Eq(149), i.e., w/2, has ) 2h

its origin in the lower limit of energy in the Fourier trans-
form, which is normally set equal tos- It is a property of By lettingy=1"t/2#4 tan 6 and by taking the time derivative
the Lorentzian distribution. However, even for a weak inter-of Eq. (15), we have

action, the exact distribution must have some—albeit very _

small—energy dependence at the wings, especially for states  d=(B,t)  NI' [?TF  ye¥ Tt
near the threshold. We then allow the absolute value of the ot 27kt 5'y2+-|-2dy’ whereT=—-".
lower limit to be a very large, but finite, number. Conse-

quently, in the rest of the discussion we replace the lower

limit of the integration over the angle with, whereé is a
value very close tar/2. So we write

(16)

Equation(16) is the starting point for the calculation of the
following results.

NED N ) tar 128 i
I (B1) :;eXF{‘lErt/ﬁ] ) ex zrt tan 6 |d6 A. Limit of very long times

(14b) We recall that we are looking at the condition @f
=0(1) and not ofE, >T', the latter guaranteeing exponential
holding for short and long times. decay. Also, we note that the limits tend to infinity but at
We will now show that the above substitution does notdifferent rates. Specifically, the upper limit goestoas T
cause any significant change mED('B,t). Let us define a Whereas the lower limit goes to it ag. After some algebra

correctionA(,t) as follows: we find that
N s Tt IT(BY i NI'% | exdiE t/A] |’
A(B.Y) = —exd - iEt/A] f . exv{ o tan 0}10, ot 2w | (P¥4+EXt
N[ T%4
(149 - ————exfilT4%44?]. (17
2mh 24 +E2 1 1 an
where § is an angle very close ta/2. We let tand=z,dz
=d(tan 6)=(1/co 6)d6, and so The prime means the time derivative. The last term can be
ignored because of the strong oscillations of the phase factor.
z We therefore obtain
do=cog #dzO do= 21
NI'7% | exfdiE t/h
INEP(B,0) = i { f[ ’ 2] }exp[— iE t/i],
Therefore, 2m (T4 +EDt
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N2 42
4* (%4 +ED)A?

=B = (18)
The result(18) is the same as the one first derived implicitly
by Khalfin [7] [Eq. (3.20]] and explicitly by Nicolaides and
Beck [6] [EQ. (8.54—corrected for a misprifit See also
Refs.[1,11,13.

B. Limit of very short times

We start again from Eq16), and consider times so short
that it is safe to assume thai(28)=0. The producty
=(I"/2A)t tan & gives a term of order 1. Therefore, Bsends
to zero, we have that?+T?=y? and we can write

(92(,8;':) N[ (720t tan & eiy

i—dy.
at 27Tﬁ0 Iy y

(19

Focusing on the produdl’/2#)t tan § for t—0, we look

for a function{(t) that can describe it. This is chosen as

follows: Let a very small interval of time, withy its cen-
tral value. We define the function

r
o= st to)

The value ty is the moment at which the product
(I'/2A)t tan 6 becomes almost zero. For timést, this

for t=t,. (20

PHYSICAL REVIEW A 69, 032105(2004)

FZBY) 2k ,{1 1 }
o ' I2ﬁ5(t—t0)
M<_£>Q B}
F-t)\ 2 dt[ﬁ(t ] (27
or
FZBY) p{_-i 1 ]_,g B
Py St —tg)ex I2h5(t—t0) —|dt[6(t to)].
(28)
Formal integration of Eq(28) leads to
v FZBY) p|:—'£ 1 }
f Py St —tg)ex I2ﬁ5(t—t0) dt
(v d
—|f0 a{&(t—to)}dt. (29

We assume that’ is very small but still larger thary. It
follows that

product is dominated by the tangent, and becomes infinite®"

Indeed, it is easy to see that

: _ _r. 1 ri
(i) fort=ty Lty = 2 tg— 1) =55 =0, (21a
" _r. 1 ri_o
(i) fort>t, )= 2% -1y =55=> (21b)
Based on the above, we write
dZ(B,1) o f{(t) ﬂ
—at = oy dy, (22
where
NI"
Then,
FzBY) _ _ exdidv] (24

g()

dZ(B,t)
at

L at
L o __exdicolds o
d_ I 1 d

It is also true that
PZ(BY) 9 { ]
a¢ dt Lt dt
However, from Eq(20) we can define the differentiation
dt 2% B(t-ty) dt
and, therefore,

S(t—tp) (26)

322 , 1 .
%t) exp[— IE;] =t —to) — (- to)}
t=t,
(302
’Z
%tgvt) =i{at' ~t) - d-to)}, (30D

t=tg

wheret’ >t,. So the second derivative is a function tgf
which is very close to zero. Let two arbitrary values of time
71, Ty, With 7 <7, <t’. Allowing now t, to be a variable, we
have

F PZ(B,1)
at?

dto =i J LAt —to) - A to)}dto
(319

71 t=t,

or

dZ(B,t)
at

_AZ(BY
it

=0.

=7y

(31b)

t=7,

However, the timesr, 7, are arbitrary. Consequently, in
the region of short times the time derivative of this propaga-
tor is constant. Therefore, the form of the propagatoctis
The additive constant is zero, since ter0 the requirement
that the probability be unity must be satisfied exclusively by
the exponential propagator. Keeping this form, we observe
that the time derivative ofl=°(8,t)|? tends to zero fott
— 0. Hence, by itself, this propagator shows the “Zeno para-
dox” and therefore, taken together with the exponential
propagator, it must contribute to a delay in the decay, in the
limit of short times.

In conclusion, the previous paragraphs were concerned
with the time development arourié=0 in the following se-
quence. We first examined the behavior of the system around
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a valuet,, very close to zero. Then we let time run, with like term, with a coefficient that is purely imaginary and that
t’' >t,. Finally, we integrated with respect tgin an arbitrary  depends on energy=2iE,. If this were the only term, we
region of timeg 74, 7] close to zero. Additional analysis of would have

thet~=0 dynamics is presented in Sec. VII.
ALPBY | 2 ITBY

> . 0. (35
Jt fi Jt

V. DIFFERENTIAL EQUATION FOR THE NED
PROPAGATOR The differential equatiori35) is equivalent to the following

. . o . two equations:
Having at our disposal E@14by), it is instructive to estab- g

lish a differential equation for the NED propagator, the aim JINED(BY) gy 2
being to uncover various terms and their possible physical y= L 0 2= %E,y (36)
significance. The calculation of the first derivative of Eg. Jt Jt

(14b) leads, after some algebra, to from which it follows that

IINEPBY i e iTN :
—_— = - —_— —ij exd - 2iE,t/h
It ﬁErlL (B,t) + Zwﬁexr{ IErt/ﬁ] IPED(IB,t) = cih F{ " r ] +d. (37)
tan 1(23) i '
XL tan 6 ex EI‘t(tan 6)/7:|d6. Equation(37) brings out the contribution of the second term

to the dissipation of the state, if this term were to appear in
(32 Eq.(33 by itself. It follows that the friction which is intrin-
sic to the NED propagator depends only on the energy posi-
tion of the unstable state inside the continuous spectrum. As
1 E, increases, friction diminishes.
tarf 6 dg= mda—dazd(tan 0) - do, The two constants in Eq37) can be determined from
initial conditions. Thus, sinc§'°(3,0)=0, then

Using the identity

we end up with
c

ALBY 1, T2 NEDg g - A Iy d=-ic. (38)
otz A\ 4 )t T T ot '
iTN it r The expansion of Eq.37) in series around=0, gives
—3 1-e ;{——(Er——tan 5)]
2mht 1 - 2AE,Uh
NED(B,1) = cih——— +d=ct (39
(33) I (B,t) =ci E :

T
Equation (33) is the differential equation satisfied by the
Lorentzian NED propagator. The right-hand side consists o
three terms, to which we have given the following interpre-
tation.

The first term is 1%(E2+12/4)I'¥°(8,1). Given the fact
thatE, a”dr. are rea] and ppsitive qu.antit'ies, if this were thecombined, it is seen that the correct exponential decay
only term in the differential equation it Would_ represent, ih the appropriate time phase factor is obtained:
exponential decrease as well as mcryez;lse,2 in the forr@xr{—iErt/h]exp{FtIZﬁ] and  exp-iE,t/A]exd Tt/ 24].
ciexp - p/h]+cexp+n/n], where y=VE+I®/4. For  gipco e are interested in the description of decayt o6,
physical reasons we discard the growing exponentiaB If only the second term has relevance.
=0(1), then The third term is (iTN/2wht){1-exg~(it/%)[E,

- -T —(I'/2)tan 8])}. We attribute to it the concept of “force” that
y~\I'%4+T?%4=T/y2> Py (34 can be associated with the NED part of the full propagator,
and we will connect it to a measuring process.

Since y is larger thanI'/2, the exponential decrease de- This function consists of two parts, both inversely propor-
scribed by this part is larger than the one of the purely EDtional to time. The second part is strongly oscillatory. The
propagator, namely, ofl(t)=N exd—iE t/A]exd-I't/24].  oscillation is executed with a frequencyw.=[E;
This property is enhanced ghsincreases and finally, when —(I'/2)tan §]/#, that tends to infinity. We observe the fol-
B>1, the contribution of this part of NED is eliminated, lowing.
in harmony with the conclusion of Sec. Ill. We stress that (i) For very long times, the “force” term tends to zero
this part of the NED propagator allows both directions ofbecause of the presence in the denominator. The term
time, not differentiating betweet>0 andt<0. exp(—iw.t) is averaged out.

The second term is (2i/4)E[aIE°(B,1)/dt], i.e., a first (i) For very short times, the produet.t is assumed to be
time derivative. Therefore, we interpret it as being a friction-again small—withl" not large. Then,

}l’he physical significance of this result will be discussed later
on. It suffices here to observe that, given conditi@8) at
t=0, the friction(delaying term, alone, would give an NED
with a quadratic dependence on time.

When the first two terms of the right part of ER3) are

032105-6



NONEXPONENTIAL DECAY PROPAGATOR AND ITS.. PHYSICAL REVIEW A 69, 032105(2004)

ir'N NT'w FINEP(BY 1 i'N
F(t) = ——[1-1-iw.t]0 F(t)limt— 0= =5 —E 2 = S (E2+T9/4)INEP
=t o]0 FOlim t = 0= =" TR L ey
(40) 2_iE aINEP(B,Y)  iI'N expi—io.1)
So, in the limitt— 0, this “force” is almost infinite. o at 27ht @)
If we divide time in an infinite humber of portions and (43)

consider that the force is periodiits constant value is re-
peateq, the conclusion is that the period tends to zero andrhe correspondence with the form of the Langevin equation
therefore the frequency tends to infinity. This is a basic conis evident. Only now, Eq43) is obeyed by a time-dependent
dition for the argument in favor of the formal appearance ofamplitude, which is characterized by the paramejer
the “Zeno paradox]4], meaning that one has to measure the=E,/I". The “external force” is recognized as the term
unstable state, at— 0, with infinite frequency in order to .
block its decay. The fact that this “force” becomes infinite is = 1 2, 12/4)|NED + i'N

. h - . fex(t) z(Er r /4)|L (B-t) .
in harmony with the fundamental problem of defining rigor- h 2mht

ijéistge preparation time af=0 through the measuring This quantity has two parts, each with its physical meaning.
process. The first one is a dissipation term, since, if it is present by
(iii) If it holds that 8> 1, then we may assume that, . . ) . .

. itself, the solution of the differential equation expresses ex-

—Ag, whereAe — 0. In this case : o :
ponential decay, albeit with a different rate than the one con-

iTN I'N nected to the original complex pole. This force could be seen
Py = - —|Ae], (41) formally as a harmonic oscillator force with a constépt
27t 27t : % . .
=(-iw/#)(-iw" /h), where the quantityv and its complex
and so the “force” tends to zero. This is in accordance withconjugate are the two conjugate poles of the energy distribu-
the discussion above, since f@>1 the decay has to be tion functiong(E). This constant contains the quantitias
exponential and therefore the NED propagator has to tend tand T", that are products of the interaction of the localized
zero. We should stress that the argument is based on thgavepacket with the continuum. Using the language of the
assumption of DFOESDF limits ab..t for_t—>0, implying thatin  potential, such an interaction is possible when an external
the initial integrall,"=~(3,1), the region around the value of field is imposed on the system, thereby creating a potential
/2 (and not exactlyr/2) is acceptable, since it does not barrier through which tunneling takes place.

(44)

IF()im t0= (- itAe)

produce infinity. The second term of the external force shows a singularity
at t=0. It can be interpreted as an interaction of measure-
VI. THE DIFFERENTIAL EQUATION FOR  IEP(B,1) ment, if we assume an external cause that is cancelifit.
AS A LANGEVIN-TYPE EQUATION which case only the ED term remains, which is, in principle,

, , ) . . . measurablg.Thus interpreted, this singularity expresses the
In this se’c\l:'ggn we interpret the terms in the differentialjhossibility of defining rigorously the measurement of the
equation forl ~-(B,t) by making a connection with the clas- system at the preparation instanttefO.
sical Langevin equation. The classical Langevin differential ~ The next pair of corresponding quantities is
equation describes the behavior of a particle in a bath of
temperaturel, having an infinite number of degrees of free- _2i_alYFP(BY
dom. The particle may or may not be subject to external B ““(t)‘_gEr It ' (49
forces. The form of the equation is, e.g., Rf5],
q This is a frictional force, coming from the interaction with
M— = o (1) — au(t) + Fq(t). (42) the continuum. The |dent|f|cat!on is Jus_tlfled by the fact that
dt we have already shown that if only this term were present,
The functionu(t) represents the velocity of the particle. The we would have a linear time dependencetat0 for the
o . propagator, and a delay of the onset of ED. In the case of a
term f.,(t) represents the external force, if it exists. Thecomplex energy distributionSec. VI, we show that this
two other terms describe the interaction of the particleterrn owes its presence to the symn,1etry in time when the
}N't.h th.e tf’"’?th: The f'(;St one, Wh'cr;‘ IS rl)ropl)ortlr?nal fo ve- energy distribution is real—in which case the contribution of
f?mty, IS frgﬁtlon, ?nl exptrﬁsst)e?[ht '?hs ovtvhy Ctd?ngtjlng 'N"time-reversed states are included. In other words, the system
uence of the particle on the bath. The other tefpit) is is initially influenced by the opposite arrow of time, with the

a fluctuating forge, W'hose. average over a period is largefaq it of a momentary increase of the degree of its stationar-
than the correlation time is zero. This force expresses thg

fact that if the particle is in a stable position there is no
preferential direction in space, the force becoming posi-
tive and negative very fast. In view of the statistical nature i ]
of the Langevin equation, we attempt to make a connec- Fa(t) = - z—ﬂﬂexq— fwt) (46)
tion with the results of the previous sections.

We recall the differential equation fd)E‘ED(,B,t), Eq.(33), that comes from the interaction of the system with the bath
and we rewrite it as (the continuum

The last term stands for a rapidly fluctuating force
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VII. OBSERVABILITY OF NED IN THE LIMIT Green’s function fort>0. The difference in the NED as
OF VERY SHORT TIME derived from the Lorentzia@), and the complex Lorentzian
¢ (6), is related to the subtleties of irreversible decay as dic-

In Sec. IV, attention was paid to the limit of very shor .
P y tated by the flow of time.

time, starting with the functioig(t) [Eq. (20)], which carries , ) . I

information from the limits of the energy spectrum at each W|'thout going through the details of derivation, he're

point of time.[As noted in Ref[6], p. 488, the asymmetry in W& give the result for the NED propagator corresponding

the Fourier transform of Eq2) implies that ast~0 the  © Ed.(6):

depletion of the initial state that is caused by high-energy

components cannot be balanced by similar depletion from

below and, therefore, NED is inevitabjé=ocusing now on #P0O(B,1) 1 T\? N T
g =\ ETig) 0By - o | E s

the differential equation satisfied by the NED propagator, Eq. g2 ~  #2 2mht\ T 1o

(33), we note the following. The first term and the term of N

the strongly oscillating force may be ignored, each for a _ s _ _ s
different r?agson. The f%st one bec)e(use;ag we assume that XL - expl- i) 27rit2{1 exp- v}
the contribution to propagation is dominated by the exponen- N

tial propagator, which will give the total propability equal to + —weXp(— i w.t). (48)
one. The second one averages to zero even for very short 2mt

times, since the correlation time coupling the state to the

continuum(bath can always be considered as being smaller.

Therefore, if one can apply, in principle, a measuring proceThis differential equation shows only the correct energy
dure whereby a external “force” neutralizes the termpole, namely, the one with the negative imaginary part, and
iI'N/2mht, then the solution of the differential equation differs from the one obtained for the real distribution in two
would be the result described by E@9), which is equiva-  substantial features. The first is that the term of friction is
lent to the quantum “Zeno effect.” However, the term thatapsent. The second is that the terms which were related to the
must be neutralized is Characterized, on the one hand, by a.ﬂeasuring procedure have a different t|me dependence_
infinite frequency and on the other by an infinite measure in  Tne first difference is directly related to aspects of irre-
the limit of t—0. The infinite frequency of repetition that \e(gibjlity. Friction is connected with some type of delay in
accompanies this term is indeed the main feature of thgecay as compared with the case where this term would be
Zeno effect. absent. The backward direction of time acts as a kind of

Let us now examine the origin O.f thls.term. It must b.e thememory for the decaying state, which follows its time evo-
second time derivative of a quantity with the same dimen,

) . lution and eventually slows it down. It is noteworthy that, in
sions as those of the propagator. Let the corresponding M%he case of the real distribution, where two poles enter in the
trix elementM(t) be defined by(W|u(t)| Vo), whereu(t) is ’ P

. . contribution of NED, if only the friction term were kept in
the perturbation effected by the measurement. It is easy tﬁ‘le differential equation, the nature of the solution would be
see thatM(t) must have the form 4 '

the same as the one for the Zeno effect.
i'N i’'N The terms that are connected to the measuring procedure
Mm:("‘l_ ﬁ)“ ooyl N+ e, (47) " have the dependence of' (the term (N/2a#it)[E,~iT'/2]
o _ _ o _ _ andt™2 (the termN/2it?)). The first term was already dis-
In the limit of t— 0, thisM(t) gives a finite result, implying  cyssed for the real energy distribution. Because of the second
that the measuring process is in principle realizable. Howyerivative, the presence of the second term implies that at
ever, both the first and the second derivativesMift) be-  ~( the measuring force becomes infinite. This is in accor-

come infinite att=0. Therefore, the variation of this force yance with the fact that, as already mentioned, the solution is
close tot, is discontinuous. This means that there is N0 meagparacterized by a singularity.

suring procedure that can follow the system in this limit. At
the same time, the “force” is finite, since 0 is not a singu-
larity point for M(t). It follows that, although it appears that
NED is possible as— 0, this cannot be observed, the uncer-
tainty principle regarding the preparation @, notwith-
standing.

We now can observe the following. If we keep in E48)
only the first term of the right-hand side, the solution is a
pure exponential decay. Similarly, if we keep in E§3)
only the first two terms of the right-hand side, again the
solution is exponential decay. Therefore, we argue that there
is an intrinsic difference between the results of the two types
of distribution (real and complexthat can be distinguished
VIIl. QUANTUM IRREVERSIBILITY AND NED: by an external measuring procedure. Specifically, if in the
RESULTS FROM THE COMPLEX ENERGY case of a real distribution the force is such that it cancels the
DISTRIBUTION OF EQ. (6) aforementioned two terms, then only exponential decay
When time symmetry is broken, the poirst0 is a singu-  should be observed. However, in the case of the complex
larity for the solution of the TDSE. The rigorous result is that distribution, a different force is needed to produce exponen-
the corresponding energy distribution must be compleg®].  tial decay, namely a force that cancels only the first term of
In this work, we chose the form of E¢6), representing the the right-hand side of Eq48).
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IX. RESULTS FOR THE ENERGY-DEPENDENT z=TI2+iE,, 7 =TI2-iE,. (540)

DISTRIBUTION G(E) OF EQ. (5) _ _ _
Differential equation for &FP(t). From Egs.(548 and

The quantity that must be evaluated is (54b), it is easy to show that the following differential equa-

tions hold:
e Et/A]VE
G() = f Mda (49)
(E-E)-+T7/4 dAt) 1 =z z
TR %A(t) (553
This integral is part of the following contour integral on the t Vht
complex energy plane
and
0 ()
x =E -il2 aBt) 1 7 7
" — == + —B(t). 55b)
dt  2\mht # ® (550
Combining Egs(55a and (55b) leads to
dGNED(t) |1 T r
i ———— =-iKe"™* Z—+ —[B(t) - At
-ioco dt IKe 2\’,% Zﬁ[ () -A)]
The complex pole fort>0 is at E,—il'/2. Evaluation of iE
the integral produces - —GNED(1). (56)

f
KL (“ exd—iEVAINE _ K[ . _,
Py (E—E)—2+F2/4dE+ l;e It follows that the second order differential equation that is
0 ' satisfied byGNEP(t) is

XJ“ exd- Et/h]\ﬂE

(E+E2+T% GV 1
o (E+ Er)2 +T%/4 T() - _ h_z(Erz +iE,I'/2)GNED(t)
=K\VE, —il'/2 exg-i(E, —iT'/2)t/k]. (50 r dGNED(t)
—iml4 —i /4
Therefore,G(t) is given by + (- iKe™ on a2 K "TUETA()
G(t) = GEP(t) + GNEP(1) LSS e—mmdA(t) _keima_EL_
= K\E - iT/2e E/igTu2h iK_F h dt 2hht
2 )
- +iKe M ———o. (57)
xe‘i”"‘fc exq—EVANNE (51) A7t
o (IE+E)2+T%4"

B This equation resembles the one derived for the Lorentzian
The integral in Eq(51) is evaluated by first lettingc=yE.  function (33). However, it is not possible to make the clear

Then, distinctions made before. This is a result of the effect of the
. o s energy factolEY? featured inG(E) of Eq. (5).
GNED(t) = | Ee—iﬁm f exp - xUhi x Asymptotic behavior of the nonexponential propagator
T o X°-TI2-iE, Using the relation 3.468) of Ref. [14], the quantitiesA(t)
B f Egs. (54 4
* ext— XK andB(t) of Egs.(54a and(54b) become
- s o dx (52
o X°+T/2-iE, 1 —
A(t) = —\V-IiE, - T/2exd (- iE, - T/2)t/A]
and, after some algebra, 2
GNED(t) - _ iKe—ivr/4{A(t) + B(t)}, (53) ><erfc\s"(— IEr - F/Z)t/ﬁ, (58)
where 1
= — —\/— 1 —_ H
* exp— th/ﬁ] B(t) = 5 iE, +T'/2exd (- iE, + T/2)t/h]
At) = — - dx (549
mlo Xz xerfcy(— iE, + [/2)t/h. (59)
B exp[ xztlﬁ] The symbol erfc represents the complementary error func-
B(t) =~ 7_7 2+7 (54D tion. The asymptotic behavior of this function dictates the
asymptotic behavior of this propagator. From Ré#], Eq.
and (8.259, we obtain
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1 —— ) able energy distributions, namely, the Lorentzian function

A~ = PAL= I'12exd (- iE, - T/2)t/h] (4), the modified Lorentzia(s), and the complex Lorentzian
(6). We analytically determined the corresponding ampli-
y i+ T/2Wh 1 tqdes fo_r NED and showed that they _satisfy second or_der
exp (i, ) ]Z\e"q_r[(—iEr—FIZ)t/h]w differential equations. The NED amplitudes may acquire

some physical significance only when the position of the

(60)  unstable staté, is close to threshold ang= (E,/T') is of
or order 1. Analytic expressions were derived for the limits of
very long and very short times, where exponential decay

A~ .~ 732 (61) (ED) breaks down, and related conclusions were drawn. For
oo 4\;7_7(_ iE, - T/2)32 example, for the Lorentzian distribution, when the fact that
o the time derivative ofl'=°(8,1)|? is zero at=0 is combined
The same type of evaluation yields with the ED of the full propagator, the main characteristic of
4302 the “Zeno paradox” is obtained, namely, the initial delay in
B(t)~¢ o= e (620  the onset of ED. -
Am(=IiE, +T/2)t In order to extract further insight into the process of quan-

tum dissipation outside the region of ED, we provided inter-
pretations of the terms df*=°(B,t) [Eq. (33)] and of the
corresponding propagator for the complex distribution

Therefore, the asymptotic form of this NED propagator is
3/2

GNED(t) ~t e = iKe—i w4

A\t32 O(B,1) [Eq.(48)], via concepts of force. We showed that it is
possible to make analogies with the terms of the Langevin
1 _ 1 equation, using the continuum as the classical bath. For both
(=iE, +T'12) (-iE,-T1/2) propagators there is a term for the external field acting as a
32 r spring and driving the system to the continuum, as well as
=-iKe™t—— 5 , (63) terms representing strong fluctuations as a consequence of
4\ mt32 (EF + I'%/4) the lower limit in the energy spectrum. On the other hand,

only in the case of the real distribution is there a term for
friction, causing time delay due to the existence of both di-
2 rections of time.
Ke7—=— "7 (64) Finally, when the distribution deviates from the Lorentz-
\N—1Z+VIzZ . . 1
ian due to additional energy-dependent factors, such'4s
coming from the density of states of thgarticle continuum
X. SYNOPSIS [Eqg. (5)], the good correspondence with the terms of the
Langevin equation is lost. Here one must be reminded of the
We examined the issue of nonexponential dg@¢fgD) of  fact that in classical physics as well, the Langevin equation
unstable isolated states by adopting three physically reasoiras limits of applicability.

where the normalization constaldtis
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