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The survival amplitudeGstd of a nonstationary state decaying into a purely continuous spectrum is treated in
terms of an integral transform of an energy distribution with`.Eù0. We examine three such distributions.
Two are real functions, the LorentziangLsEd and a modified LorentzianGsEd=gLsEdE1/2, and one is the
complex version ofgLsEd ,gc

LsEd. Real distributions are associated with Hermitian treatments while complex
ones result from non-Hermitian treatments. The difference between the two has repercussions on theGstd for
nonexponential decay(NED) and on the understanding of irreversible decay at the quantum level. For all three
distributions, we derive analytically amplitudes(propagators) for NED and then show that these satisfy differ-
ential equations, from which additional insight into the decay process for very long and very short times can be
obtained. By making analogy with the classical Langevin equation, the terms of the differential equation that
are derived when the simplergLsEd andgc

LsEd are employed, are interpreted using concepts such as friction and
fluctuation. On the other hand, whengLsEd is multiplied by an energy-dependent factor, as inGsEd, the results
are, as expected, more complicated and the interpretability of the differential equation satisfied by the NED
propagator loses clarity.
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I. INTRODUCTION

When the problem of the time evolution of an isolated
unstable system, which is assumed created att=0 and dissi-
pating into a purely continuous spectrum, is treated rigor-
ously, the conclusion is reached that the law of exponential
decay(ED) is violated within the quantum mechanics for-
malism in the limits of t→0 and t→`. This conclusion
raises questions as to the origin, the magnitude and observ-
ability, and the relevance of nonexponential decay(NED),
issues that have attracted the interest of many researchers
over the past few decades. For example, it is possible that
from such details fundamental aspects of irreversibility at the
quantum level can be assessed, depending on whether the
formalism uses real or complex energy distributions[1,2].

The quantity which is normally of interest in connection
with the physics of decay of unstable states, is the survival
probability Pstd defined as

Pstd = ukC0uCstdlu2 ; uGstdu2. s1d

The wave functionCstd represents the formal solution of the
time-dependent Schrödinger equationsTDSEd for tù0, and
must be such thatPs0d=1 andPs`d=0. The main character-
istic of C0f;Cs0dg is that it is a localized many-particlesin
generald wave packet att=0, whose energyE0 is inside the
continuous spectrum of the system. Exponential decay
means thatPstd=e−sG/"dt, t.0, whereG=" /t, and t is the
lifetime of the excited state.

The formal deviation from ED in the limit oft→0 can be
seen immediately if we writeuCstdl=e−si/"dHtuC0l (the
Hamiltonian is time independent), and then expand the ex-
ponential for t<0:esi/"dHt<1−si /"dHt. In this time interval,
decay depends on time quadratically. This fact expresses the
“degree of stationarity” of the nonstationary state[3]. How-
ever, since it is not clear how to identify the result of a
measurement on a physical quantity with time intervals close
to t<0, before the onset of ED, this range is mainly a source
for discussions which, thus far, assume observability at the
instant of preparation, notwithstanding the constraints of the
uncertainty principle. For example, such a discussion is the
one connected to the phrase “Zeno paradox,” e.g., Ref.[4],
and references therein. A related study of the question of
observability “of early-time departures from Fermi’s golden
rule” using a model within the framework of first order per-
turbarion theory and field-induced ionization was published
in Ref. [5]. The issue of NED att<0 is also discussed in this
paper.

The NED in the limit oft→` is related in a fundamental
way to the degree of proximity of the resonance state to the
fragmentation threshold, see Refs.[1,6] and this work. It is
enhanced, in principle, when the interaction betweenuC0l
and the scattering states is such that the width function is
strongly energy dependent(see below).

In order to compute the propagator(amplitude) Gstd of
Eq. (1), it is necessary to know the solutionCstd of the
TDSE. For real systems, where the physically significant in-
terparticle interactions are included, the calculation of the
appropriateCstd constitutes a difficult many-particle prob-
lem. Results onPstd of polyelectronic atomic resonance
states which were obtained by first computingCstd from first
principles, are described in Ref.[3], and references therein.
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An alternative approach, which has dominated the field
for decades in the framework of models, is to assume a form
for the energy distribution of the unstable state and then
study analytically the amplitudeGstd via Fourier-Laplace
transforms, e.g., Refs.[4,6–9]. (The reader can find other
references on such calculations from the papers cited here.)
As was stressed in Refs.[1,6], there are two types of distri-
butions that have been assumed as being physically relevant.
For example, the distributions adopted by Khalfin[7] and
Fonda, Ghirardi, and Rimini[9], and by many other re-
searchers, are real functions. If, however, the formalism of
the sectionally analytic resolvent operator is applied[8] and,
according to the restriction oft.0, only one of the resulting
two Green’s function is kept, the distribution is complex
[6,8]. Regarding the understanding of irreversibility at the
quantum level, this difference might become significant if
NED is observed in detail[1,2]. It is worth noting that if the
t.0 treatment of decaying states follows the route of the
differential equation rather than that of the integral equation,
the solution of the TDSE must account, in principle, for a
idstd inhomogeneity att=0 [1,6].

The present discussion follows the integral equation ap-
proach. It employs real and complex energy distributions,
where the width function is assumed to be either independent
of the energy(Lorentz distribution) or to depend on it asE1/2,
a density-of-states dependence which becomes important for
s waves asE→0 [8].

II. REAL AND COMPLEX ENERGY DISTRIBUTIONS
OF AN ISOLATED DECAYING STATE

If the Hermitian unit operatorI =e0
`dEuElkEu, where uEl

are the stationary scattering states of the continuous spec-
trum into which the nonstationary state decays, is inserted in
uCstdl=e−iHtuC0l, then the amplitudeGstd of Eq. (1) becomes

Gstd =E
0

`

dEe−iEt/"ukC0uElu2 ; E
0

`

dEe−iEt/"gsEd. s2d

It is seen that, in this framework, the energy distribution
functiongsEd, is real because of the use of the projectionI in
the first step of the theoretical development. The lower limit
of the integral, which represents the threshold of the continu-
ous spectrum, is set at zero, and this is equivalent to setting
gsEd=0 for Eø0. Given the formation att=0 of uC0l, it
follows from decaying state theory or from Fano’sf10g Her-
mitian, standing-wave theory of wave function mixing in the
continuous spectrum, that the general form ofgsEd is
f1,6,10g

gsEd =
1

2p

GsEd

fE − E0 − DsEdg2 +
G2sEd

4

, s3ad

with

E gsEddE= 1. s3bd

The width functionGsEd must go to zero asE→0 and as

E→`. However, because of the quadratic energy depen-
dence of the denominator, regarding the question of NED for
physical states the integral overgsEd is dominated by the
region whereE is close toE0.

As emphasized in Refs.[1,6], real energy distributions are
the result of Hermitian frameworks. However, strict consid-
eration of the physics of decaying states suggests that time
reversibility must be broken by a singularity att=0 in the
solution of the TDSE. In turn, this suggests that, provided no
memory of the formation is incorporated into the concept of
an excited state, in order to follow the arrow of time one
must exclude the contribution of time-reversed states,
thereby engaging a formalism which is nonHermitian. This
can be achieved if the realgsEd, which, as we saw, results
from the insertion of the Hermitian unit operator, is split into
the two complex Green’s functionsG.sE+ i0d for t.0 and
G,sE− i0d for t,0, and the amplitudeGstd of Eq. (2) is
expressed in terms ofG.sE+ i0d. In this way, two physical
constraints are taken into account, namely,E.0 and t.0
[1,2,6,11]. Obviously, exact knowledge ofPstd demands the
exact knowledge ofgsEd or of G.sE+ i0d, and an accurate
integration of the truncatedsEù0d Fourier transform. For an
isolated nonstationary state, both energy functionsgsEd and
G.sE+ i0d, contain the same physically relevant simple com-
plex pole just below the real energy axis, which is the source
of the ED and of the identity of the unstable state. It is in
terms of this pole that the resonance state is normally defined
in the complex energy plane. However, the magnitude of
long-time NED does depend on whether a real or a complex
energy distribution drives the decay[1,2,6]. The analogous to
the present investigation case of a complex energy distribu-
tion will be discussed in detail in a separate paper. Here we
present and discuss only certain of the basic results.

Given the difficulty of the many-body problem for real
systems, the computation from first principles of the exact
gsEd of each nonstationary state(in full detail, especially at
the wings) remains a desideratum, even for an isolated state.
(For overlapping resonances, this task is harder even in mod-
els.) Therefore, in most papers on the subject, the problem of
obtainingPstd from Eq. (2) has been tackled within an ap-
proximate framework suitable for understanding the phe-
nomenology, i.e., by assuming analytic forms ofgsEd. The
work of this paper employs two real and one complex energy
distribution, whose choice is based on the exact form, Eq.
(3a), and on the correspondingG.sE+ i0d for t.0.

The first is the truncated Lorentzian function

gLsEd = N
1

2p

G

sE − Erd2 +
G2

4

for E . 0, s4d

=0 for E ø 0.

Equations4d results from Eq.s3ad by assuming a weak in-
teraction and concomitant first order expressions for the en-
ergy width functionGsEd and the energy shift functionDsEd,
which are then energy independent and are given by their
value at E0, or at the exact resonance positionEr =E0
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+DsErd. N is the normalization coefficientfsee Eq.s48dg. The
Lorentzian distribution, or extensions thereof, have been
used before in studies of NED, e.g., Refs.f1,6,7,9,12,13g.

The second choice for the form ofgsEd takes into account
the possible small energy dependence of the functionGsEd,
by multiplying the numerator ofgLsEd by E1/2, which is the
s-wave density of states that was used by Goldberger and
Watson[8]. In other words, we take

GsEd = gLsEdE1/2 s5d

for all E.0. In fact, such a dependence acquires its impor-
tance in the region close to threshold.

The third distribution is complex:

gc
LsEd = −

N

2pi

1

E − Er + i
G

2

, E . 0, s6d

where N is the normalization constant so that the energy
integral equals 1fEq. s3bdg.

The aim of the present work is to diversify and enrich our
understanding of irreversible decay for short and long times,
when an isolated decaying state is characterized by the above
three energy distributions. One of the main results is the
demonstration that it is possible to identify a propagator de-
scribing NED and a differential equation satisfied by it. For
the real and complex Lorentzian distributions, we show that
this differential equation has the same form as the classical
Langevin equation. Consequently, their terms have been in-
terpreted accordingly. On the other hand, when the modified
Lorentzian of Eq.(5) is considered, the presence of the en-
ergy factor leads to results that are less transparent. This
result is reasonable, given the fact that the Langevin equation
is also subject to restrictions in classical physics as regards
general applicability. Sections III–VI below deal with the
gLsEd of Eq. (4) and Sec. VI deals with theGsEd of Eq. (5).

III. THE CASE OF gL
„E…: CONDITION FOR

EXPONENTIAL DECAY AND THE ANALYTIC
FORM OF THE NED CONTRIBUTION

TO THE AMPLITUDE G„t…

The energy integral over the distribution must be equal to
1, sinceGst=0d=1. This requirement leads to a normaliza-
tion coefficientN for gLsEd of

N = F1

2
+

1

p
tan−1S2Er

G
DG−1

. s48d

Using Eqs.s4d and s48d in Eq. s2d, it is possible to obtain
useful analytic expressions forGstd. These show that the
magnitude of NED depends on the relative magnitude ofEr
and G and, especially, on the distance ofEr from threshold
f3,6g. If Er @G, the decay is essentially exponential for allt.
This can be seen from the following computation ofGstd.
We have

Gstd =
NG

2p
E

0

` expf− iEt/"g
sE − Erd2 + G2/4

dE, t . 0. s7d

This integral can be obtained analytically using relation
s3.723d of Ref. f14g:

Gstd =
N

p
expf− iErt/"gLstd +

N

2
expf− iErt/"gexpf− Gt/2"g

−
iN

2p
expf− iErt/"gHexpf− Gt/2"gEiS G

2"
tD

− expfGt/2"gEiS−
G

2"
tDJ , s8d

where

Lstd ; E
tan−1s−2bd

0

expF−
i

"
Gtstan udGdu. s9ad

The symbolEi stands for the exponential integral function
and we have set

Er

G
; b. s9bd

From Eqs.s8d ands9ad one can understand why NED has not
yet been observed in a time-dependent measurement of an
isolated decaying state. It is because, in most cases of real
nonstationary states, the conditionEr @G holds andEr is far
above threshold.

Let us see how this follows from the above results. If
Er .G, then tan−1s−2bd tends to −p /2, and so

Lstd → E
−p/2

0

expF−
i

"
Gtstan udGdu

=E
0

p/2

expF i

"
Gtstan udGdu. s10d

Using Eq.s3.716d of Ref. f14g, Eq. s10d becomes

Lstd =
p

2
expf− Gt/2"g +

i

2
Hexpf− Gt/2"gEiS G

2"
tD

− expfGt/2"gEiS−
G

2"
tDJ, t . 0. s11d

Therefore, ifEr @G

Gstd = N expf− iErt/"gexpf− Gt/2"g, Er @ G. s12d

If b is @1, then the distribution is already normalized, since
N=1.

One must then expect that NED is enhanced to some de-
gree in states where the conditionEr @G is not satisfied. We
suppose that this is the case and we letutan−1s−2bdu,p /2.
Then,
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Lstd =E
tan−1s−2bd

−p/2

expF−
i

2"
Gtstan udGdu

+E
−p/2

0

expF−
i

2"
Gtstan udGdu. s13d

The second integral has already been evaluated. When it is
combined with the other terms, it gives the ED form. So we
concentrate on the first term, which represents the NED con-
tribution. Including the coefficientsN/pdexps−iErt /"d we
have the quantitys14ad which we call the “NED propaga-
tor” for the Lorentzian distribution

IL
NEDsb,td ;

N

p
expf− iErt/"g

3E
p/2

tan−1s2bd
expF i

"
Gtstan udGdu, t . 0.

s14ad

IV. BEHAVIOR OF THE PROPAGATOR I L
NED

„b ,t…
FOR SHORT AND LONG TIMES

The lower limit of the integral in Eq.(14a), i.e., p /2, has
its origin in the lower limit of energy in the Fourier trans-
form, which is normally set equal to −̀. It is a property of
the Lorentzian distribution. However, even for a weak inter-
action, the exact distribution must have some—albeit very
small—energy dependence at the wings, especially for states
near the threshold. We then allow the absolute value of the
lower limit to be a very large, but finite, number. Conse-
quently, in the rest of the discussion we replace the lower
limit of the integration over the angle withd, whered is a
value very close top /2. So we write

IL
NEDsb,td =

N

p
expf− iErt/"gE

d

tan−12b

expF i

2"
Gt tan uGdu

s14bd

holding for short and long times.
We will now show that the above substitution does not

cause any significant change toIL
NEDsb ,td. Let us define a

correctionDsb ,td as follows:

Dsb,td =
N

p
expf− iErt/"gE

p/2

d

expF iGt

2"
tan uGdu,

s14cd

whered is an angle very close top /2. We let tanu=z,dz
=dstan ud=s1/cos2 uddu, and so

du = cos2 u dz⇒ du =
dz

z2 + 1
.

Therefore,

Dsb,td =
N

p
expf− iErt/"gÈM expF iGt

2"
zG

z2 + 1
dz, s14dd

where M is a large number, tending to infinity. Since the
integral covers the region of very large values ofz, the de-
nominator can be taken out. So we have

Dsb,td .
N

p
expf− iErt/"gS 1

z2 + 1
D

z→`

ÈM

expF iGt

2"
zGdz

=
N

p
expf− iErt/"gS 1

z2 + 1
D

z→`

2"

iGt
HexpF iGt

2"
MG

− expF iGt

2"
`GJ . s14ed

The expression in curly brackets gives a finite number, while
the term 1/sz2+1d tends to zero. Therefore, the contribution
of Dsb ,td is negligible. It follows that the form of the propa-
gator can be taken as in Eq.s14bd.

Let

Ssb,td ;
N

p
E

d

tan−12b

expF i

2"
Gtstan udGdu. s15d

By letting y=Gt /2" tan u and by taking the time derivative
of Eq. s15d, we have

] Ssb,td
] t

=
NG

2p"
E

T tan d

2Tb

i
yeiy

y2 + T2dy, whereT =
Gt

2"
.

s16d

Equations16d is the starting point for the calculation of the
following results.

A. Limit of very long times

We recall that we are looking at the condition ofb
=Os1d and not ofEr @G, the latter guaranteeing exponential
decay. Also, we note that the limits tend to infinity but at
different rates. Specifically, the upper limit goes to` as T
whereas the lower limit goes to it asT2. After some algebra
we find that

] Ssb,td
] t

. − i
NG"

2p
H expfiErt/"g

sG2/4 + Er
2dtJ8

−
NG

2p"

G2/4

G2/4 + Er
2expfiG2t2/4"2g. s17d

The prime means the time derivative. The last term can be
ignored because of the strong oscillations of the phase factor.
We therefore obtain

IL
NEDsb,td > − i

NG"

2p
H expfiErt/"g

sG2/4 + Er
2dtJexpf− iErt/"g,
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uIL
NEDsb,tdu2 >

N2G2

4p2

"2

sG2/4 + Er
2d2t2

. s18d

The result(18) is the same as the one first derived implicitly
by Khalfin [7] [Eq. (3.20)] and explicitly by Nicolaides and
Beck [6] [Eq. (8.54)—corrected for a misprint]. See also
Refs.[1,11,12].

B. Limit of very short times

We start again from Eq.(16), and consider times so short
that it is safe to assume thatTs2bd=0. The producty
=sG /2"dt tan d gives a term of order 1. Therefore, asT tends
to zero, we have thaty2+T2>y2 and we can write

] Ssb,td
] t

= −
NG

2p"
E

0

sG/2"dt tan d

i
eiy

y
dy. s19d

Focusing on the productsG /2"dt tan d for t→0, we look
for a functionzstd that can describe it. This is chosen as
follows: Let a very small interval of time, witht0 its cen-
tral value. We define the function

zstd =
G

2"

1

dst − t0d
for t ù t0. s20d

The value t0 is the moment at which the product
sG /2"dt tan d becomes almost zero. For timestù t0 this
product is dominated by the tangent, and becomes infinite.
Indeed, it is easy to see that

sid for t = t0, zst0d =
G

2"

1

dst0 − t0d
=

G

2

1

`
= 0, s21ad

sii d for t . t0, zstd =
G

2"

1

dst − t0d
=

G

2

1

0
= `. s21bd

Based on the above, we write

] Zsb,td
] t

. −E
0

zstd ieiy

y
dy, s22d

where

Ssb,td =
NG

2p"
Zsb,td. s23d

Then,

]2Zsb,td
] z ] t

. − i
expfizstdg

zstd
. s24d

It is also true that

]2Zsb,td
] t2

=
]

] z
F ] Zsb,td

] t
Gdz

dt
. − i

expfizstdg
zstd

dz

dt
. s25d

However, from Eq.s20d we can define the differentiation

dz

dt
= −

G

2"

1

d2st − t0d
d

dt
dst − t0d s26d

and, therefore,

]2Zsb,td
] t2

= − i
2"

G
expFi

G

2"

1

dst − t0dG
3

dst − t0d
d2st − t0dS−

G

2"
D d

dt
fdst − t0dg s27d

or

]2Zsb,td
] t2

dst − t0dexpF− i
G

2"

1

dst − t0dG = i
d

dt
fdst − t0dg.

s28d

Formal integration of Eq.s28d leads to

E
0

t8 ]2Zsb,td
] t2

dst − t0dexpF− i
G

2"

1

dst − t0dGdt

= iE
0

t8 d

dt
hdst − t0djdt. s29d

We assume thatt8 is very small but still larger thant0. It
follows that

U ]2Zsb,td
] t2

U
t=t0

expF− i
G

2"

1

`
G = ihdst8 − t0d − ds− t0dj

s30ad

or

U ]2Zsb,td
] t2

U
t=t0

= ihdst8 − t0d − ds− t0dj, s30bd

where t8. t0. So the second derivative is a function oft0,
which is very close to zero. Let two arbitrary values of time
t1,t2, with t1,t2, t8. Allowing now t0 to be a variable, we
have

E
t1

t2 U ]2Zsb,td
] t2

U
t=t0

dt0 = iE
t1

t2

hdst8 − t0d − ds− t0djdt0

s31ad

or

U ] Zsb,td
] t

U
t=t2

− U ] Zsb,td
] t

U
t=t1

=0. s31bd

However, the timest1,t2 are arbitrary. Consequently, in
the region of short times the time derivative of this propaga-
tor is constant. Therefore, the form of the propagator isct.
The additive constant is zero, since fort=0 the requirement
that the probability be unity must be satisfied exclusively by
the exponential propagator. Keeping this form, we observe
that the time derivative ofuIL

NEDsb ,tdu2 tends to zero fort
→0. Hence, by itself, this propagator shows the “Zeno para-
dox” and therefore, taken together with the exponential
propagator, it must contribute to a delay in the decay, in the
limit of short times.

In conclusion, the previous paragraphs were concerned
with the time development aroundt<0 in the following se-
quence. We first examined the behavior of the system around

NONEXPONENTIAL DECAY PROPAGATOR AND ITS… PHYSICAL REVIEW A 69, 032105(2004)

032105-5



a value t0, very close to zero. Then we let time run, with
t8. t0. Finally, we integrated with respect tot0 in an arbitrary
region of timesft1,t2g close to zero. Additional analysis of
the t<0 dynamics is presented in Sec. VII.

V. DIFFERENTIAL EQUATION FOR THE NED
PROPAGATOR

Having at our disposal Eq.(14b), it is instructive to estab-
lish a differential equation for the NED propagator, the aim
being to uncover various terms and their possible physical
significance. The calculation of the first derivative of Eq.
(14b) leads, after some algebra, to

] IL
NEDsb,td

] t
= −

i

"
ErIL

NEDsb,td +
iGN

2p"
expf− iErt/"g

3E
d

tan−1s2bd
tan u expF i

2
Gtstan ud/"Gdu.

s32d

Using the identity

tan2 u du =
1

cos2 u
du − du = dstan ud − du,

we end up with

]2IL
NEDsb,td
] t2

=
1

"2SEr
2 +

G2

4
DIL

NEDsb,td −
2i

"
Er

] IL
NEDsb,td

] t

+
iGN

2p"t
H1 − expF−

it

"
SEr −

G

2
tan dDGJ .

s33d

Equation s33d is the differential equation satisfied by the
Lorentzian NED propagator. The right-hand side consists of
three terms, to which we have given the following interpre-
tation.

The first term is 1/"2sEr
2+G2/4dIL

NEDsb ,td. Given the fact
thatEr andG are real and positive quantities, if this were the
only term in the differential equation it would represent
exponential decrease as well as increase, in the form
c1expf−gt /"g+c2expf+gt /"g, where g=ÎEr

2+G2/4. For
physical reasons we discard the growing exponential. Ifb
=Os1d, then

g < ÎG2/4 + G2/4 = G/Î2 .
G

2
. s34d

Since g is larger thanG /2, the exponential decrease de-
scribed by this part is larger than the one of the purely ED
propagator, namely, ofIstd=N expf−iErt /"gexpf−Gt /2"g.
This property is enhanced asb increases and finally, when
b@1, the contribution of this part of NED is eliminated,
in harmony with the conclusion of Sec. III. We stress that
this part of the NED propagator allows both directions of
time, not differentiating betweent.0 and t,0.

The second term is −s2i /"dErf]IL
NEDsb ,td /]tg, i.e., a first

time derivative. Therefore, we interpret it as being a friction-

like term, with a coefficient that is purely imaginary and that
depends on energyb=2iEr. If this were the only term, we
would have

]2IL
NEDsb,td
] t2

+
2i

"
Er

] IL
NEDsb,td

] t
= 0. s35d

The differential equations35d is equivalent to the following
two equations:

y =
] IL

NEDsb,td
] t

,
] y

] t
= −

2i

"
Ery s36d

from which it follows that

IL
NEDsb,td = ci"

expf− 2iErt/"g
2Er

+ d. s37d

Equations37d brings out the contribution of the second term
to the dissipation of the state, if this term were to appear in
Eq. s33d by itself. It follows that the friction which is intrin-
sic to the NED propagator depends only on the energy posi-
tion of the unstable state inside the continuous spectrum. As
Er increases, friction diminishes.

The two constants in Eq.(37) can be determined from
initial conditions. Thus, sinceIL

NEDsb ,0d=0, then

d = − i
c

2Er
. s38d

The expansion of Eq.s37d in series aroundt=0, gives

IL
NEDsb,td . ci"

1 − 2iErt/"

2Er
+ d = ct. s39d

The physical significance of this result will be discussed later
on. It suffices here to observe that, given conditions38d at
t=0, the frictionsdelayingd term, alone, would give an NED
with a quadratic dependence on time.

When the first two terms of the right part of Eq.(33) are
combined, it is seen that the correct exponential decay
with the appropriate time phase factor is obtained:
expf−iErt /"gexpfGt /2"g and expf−iErt /"gexpf−Gt /2"g.
Since we are interested in the description of decay fort.0,
only the second term has relevance.

The third term is siGN/2p"tdh1−exp(−sit /"dfEr

−sG /2dtan dg)j. We attribute to it the concept of “force” that
can be associated with the NED part of the full propagator,
and we will connect it to a measuring process.

This function consists of two parts, both inversely propor-
tional to time. The second part is strongly oscillatory. The
oscillation is executed with a frequencyv`=fEr

−sG /2dtan dg /", that tends to infinity. We observe the fol-
lowing.

(i) For very long times, the “force” term tends to zero
because of the presence oft in the denominator. The term
exps−iv`td is averaged out.

(ii ) For very short times, the productv`t is assumed to be
again small—withG not large. Then,
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Fstd .
iGN

2p"t
f1 − 1 − iv`tg ⇒ Fstdlim t → 0 .

NGv`

2p"
.

s40d

So, in the limitt→0, this “force” is almost infinite.
If we divide time in an infinite number of portions and

consider that the force is periodic(its constant value is re-
peated), the conclusion is that the period tends to zero and
therefore the frequency tends to infinity. This is a basic con-
dition for the argument in favor of the formal appearance of
the “Zeno paradox”[4], meaning that one has to measure the
unstable state, att→0, with infinite frequency in order to
block its decay. The fact that this “force” becomes infinite is
in harmony with the fundamental problem of defining rigor-
ously the preparation time oft=0 through the measuring
process.

(iii ) If it holds that b@1, then we may assume thatv`

→D«, whereD«→0. In this case

uFstdulim t→0 . U iGN

2p"t
s− itD«dU =

GN

2p"
uD«u, s41d

and so the “force” tends to zero. This is in accordance with
the discussion above, since forb@1 the decay has to be
exponential and therefore the NED propagator has to tend to
zero. We should stress that the argument is based on the
assumption of proper limits ofv`t for t→0, implying that in
the initial integralIL

NEDsb ,td, the region around the value of
p /2 sand not exactlyp /2d is acceptable, since it does not
produce infinity.

VI. THE DIFFERENTIAL EQUATION FOR I L
NED

„b ,t…
AS A LANGEVIN-TYPE EQUATION

In this section we interpret the terms in the differential
equation forIL

NEDsb ,td by making a connection with the clas-
sical Langevin equation. The classical Langevin differential
equation describes the behavior of a particle in a bath of
temperatureT, having an infinite number of degrees of free-
dom. The particle may or may not be subject to external
forces. The form of the equation is, e.g., Ref.[15],

m
du

dt
= fexstd − austd + Fflstd. s42d

The functionustd represents the velocity of the particle. The
term fexstd represents the external force, if it exists. The
two other terms describe the interaction of the particle
with the bath. The first one, which is proportional to ve-
locity, is friction, and expresses the slowly changing in-
fluence of the particle on the bath. The other termFflstd is
a fluctuating force, whose average over a period is larger
than the correlation time is zero. This force expresses the
fact that if the particle is in a stable position there is no
preferential direction in space, the force becoming posi-
tive and negative very fast. In view of the statistical nature
of the Langevin equation, we attempt to make a connec-
tion with the results of the previous sections.

We recall the differential equation forIL
NEDsb ,td, Eq. (33),

and we rewrite it as

]2IL
NEDsb,td
] t2

=
1

"2sEr
2 + G2/4dIL

NEDsb,td +
iGN

2p"t

−
2i

"
Er

] IL
NEDsb,td

] t
−

iGN

2p"t
exps− iv`td.

s43d

The correspondence with the form of the Langevin equation
is evident. Only now, Eq.s43d is obeyed by a time-dependent
amplitude, which is characterized by the parameterb
;Er /G. The “external force” is recognized as the term

fexstd ;
1

"2sEr
2 + G2/4dIL

NEDsb,td +
iGN

2p"t
. s44d

This quantity has two parts, each with its physical meaning.
The first one is a dissipation term, since, if it is present by
itself, the solution of the differential equation expresses ex-
ponential decay, albeit with a different rate than the one con-
nected to the original complex pole. This force could be seen
formally as a harmonic oscillator force with a constantk«

=s−iw /"ds−iw* /"d, where the quantityw and its complex
conjugate are the two conjugate poles of the energy distribu-
tion function gsEd. This constant contains the quantitiesD
and G, that are products of the interaction of the localized
wavepacket with the continuum. Using the language of the
potential, such an interaction is possible when an external
field is imposed on the system, thereby creating a potential
barrier through which tunneling takes place.

The second term of the external force shows a singularity
at t=0. It can be interpreted as an interaction of measure-
ment, if we assume an external cause that is canceling it.(In
which case only the ED term remains, which is, in principle,
measurable.) Thus interpreted, this singularity expresses the
impossibility of defining rigorously the measurement of the
system at the preparation instant oft=0.

The next pair of corresponding quantities is

− austd = −
2i

"
Er

] IL
NEDsb,td

] t
. s45d

This is a frictional force, coming from the interaction with
the continuum. The identification is justified by the fact that
we have already shown that if only this term were present,
we would have a linear time dependence att<0 for the
propagator, and a delay of the onset of ED. In the case of a
complex energy distributionsSec. VIIId, we show that this
term owes its presence to the symmetry in time when the
energy distribution is real—in which case the contribution of
time-reversed states are included. In other words, the system
is initially influenced by the opposite arrow of time, with the
result of a momentary increase of the degree of its stationar-
ity.

The last term stands for a rapidly fluctuating force

Fflstd ; −
iGN

2p"t
exps− iv`td s46d

that comes from the interaction of the system with the bath
sthe continuumd.
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VII. OBSERVABILITY OF NED IN THE LIMIT
OF VERY SHORT TIME

In Sec. IV, attention was paid to the limit of very short
time, starting with the functionzstd [Eq. (20)], which carries
information from the limits of the energy spectrum at each
point of time.[As noted in Ref.[6], p. 488, the asymmetry in
the Fourier transform of Eq.(2) implies that ast<0 the
depletion of the initial state that is caused by high-energy
components cannot be balanced by similar depletion from
below and, therefore, NED is inevitable.] Focusing now on
the differential equation satisfied by the NED propagator, Eq.
(33), we note the following. The first term and the term of
the strongly oscillating force may be ignored, each for a
different reason. The first one because att=0 we assume that
the contribution to propagation is dominated by the exponen-
tial propagator, which will give the total propability equal to
one. The second one averages to zero even for very short
times, since the correlation time coupling the state to the
continuum(bath) can always be considered as being smaller.
Therefore, if one can apply, in principle, a measuring proce-
dure whereby a external “force” neutralizes the term
iGN/2p"t, then the solution of the differential equation
would be the result described by Eq.(39), which is equiva-
lent to the quantum “Zeno effect.” However, the term that
must be neutralized is characterized, on the one hand, by an
infinite frequency and on the other by an infinite measure in
the limit of t→0. The infinite frequency of repetition that
accompanies this term is indeed the main feature of the
“Zeno effect.”

Let us now examine the origin of this term. It must be the
second time derivative of a quantity with the same dimen-
sions as those of the propagator. Let the corresponding ma-
trix elementMstd be defined bykC0umstduC0l, wheremstd is
the perturbation effected by the measurement. It is easy to
see thatMstd must have the form

Mstd=Sa1 −
iGN

2p"
Dt +

iGN

2p"
t ln t + a2. s47d

In the limit of t→0, thisMstd gives a finite result, implying
that the measuring process is in principle realizable. How-
ever, both the first and the second derivatives ofMstd be-
come infinite att=0. Therefore, the variation of this force
close tot0 is discontinuous. This means that there is no mea-
suring procedure that can follow the system in this limit. At
the same time, the “force” is finite, sincet=0 is not a singu-
larity point for Mstd. It follows that, although it appears that
NED is possible ast→0, this cannot be observed, the uncer-
tainty principle regarding the preparation ofC0 notwith-
standing.

VIII. QUANTUM IRREVERSIBILITY AND NED:
RESULTS FROM THE COMPLEX ENERGY

DISTRIBUTION OF EQ. (6)

When time symmetry is broken, the pointt=0 is a singu-
larity for the solution of the TDSE. The rigorous result is that
the corresponding energy distribution must be complex[1,2].
In this work, we chose the form of Eq.(6), representing the

Green’s function fort.0. The difference in the NED as
derived from the Lorentzian(4), and the complex Lorentzian
(6), is related to the subtleties of irreversible decay as dic-
tated by the flow of time.

Without going through the details of derivation, here
we give the result for the NED propagator corresponding
to Eq. (6):

]2Osb,td
] t2

= −
1

"2SEr − i
G

2
D2

Osb,td −
N

2p"t
SEr − i

G

2
D

3h1 − exps− iv`tdj −
N

2pit2h1 − exps− iv`tdj

+
N

2pt
v`exps− iv`td. s48d

This differential equation shows only the correct energy
pole, namely, the one with the negative imaginary part, and
differs from the one obtained for the real distribution in two
substantial features. The first is that the term of friction is
absent. The second is that the terms which were related to the
measuring procedure have a different time dependence.

The first difference is directly related to aspects of irre-
versibility. Friction is connected with some type of delay in
decay, as compared with the case where this term would be
absent. The backward direction of time acts as a kind of
memory for the decaying state, which follows its time evo-
lution and eventually slows it down. It is noteworthy that, in
the case of the real distribution, where two poles enter in the
contribution of NED, if only the friction term were kept in
the differential equation, the nature of the solution would be
the same as the one for the Zeno effect.

The terms that are connected to the measuring procedure
have the dependence oft−1 (the term sN/2p"tdfEr − iG /2g
and t−2 (the termN/2pit2)). The first term was already dis-
cussed for the real energy distribution. Because of the second
derivative, the presence of the second term implies that att
=0 the measuring force becomes infinite. This is in accor-
dance with the fact that, as already mentioned, the solution is
characterized by a singularity.

We now can observe the following. If we keep in Eq.(48)
only the first term of the right-hand side, the solution is a
pure exponential decay. Similarly, if we keep in Eq.(33)
only the first two terms of the right-hand side, again the
solution is exponential decay. Therefore, we argue that there
is an intrinsic difference between the results of the two types
of distribution (real and complex) that can be distinguished
by an external measuring procedure. Specifically, if in the
case of a real distribution the force is such that it cancels the
aforementioned two terms, then only exponential decay
should be observed. However, in the case of the complex
distribution, a different force is needed to produce exponen-
tial decay, namely a force that cancels only the first term of
the right-hand side of Eq.(48).
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IX. RESULTS FOR THE ENERGY-DEPENDENT
DISTRIBUTION G„E… OF EQ. (5)

The quantity that must be evaluated is

Gstd =
KG

2p
E

0

` expf− iEt/"gÎE

sE − Erd2 + G2/4
dE. s49d

This integral is part of the following contour integral on the
complex energy plane

The complex pole fort.0 is at Er − iG /2. Evaluation of
the integral produces

KG

2p
E

0

` expf− iEt/"gÎE

sE − Erd2 + G2/4
dE+ i

KG

2p
e−ip/4

3E
0

` expf− Et/"gÎE

siE + Erd2 + G2/4
dE

= KÎEr − iG/2 expf− isEr − iG/2dt/"g. s50d

Therefore,Gstd is given by

Gstd ; GEDstd + GNEDstd

= KÎEr − iG/2e−iErt/"e−Gt/2" − i
KG

2p

3e−ip/4E
0

` expf− Et/"gÎE

siE + Erd2 + G2/4
dE. s51d

The integral in Eq.s51d is evaluated by first lettingx=ÎE.
Then,

GNEDstd = i
K

p
e−ip/4HE

0

` expf− x2t/"gx2

x2 − G/2 − iEr
dx

−E
0

` expf− x2t/"gx2

x2 + G/2 − iEr
dxJ s52d

and, after some algebra,

GNEDstd = − iKe−ip/4hAstd + Bstdj, s53d

where

Astd = −
z

p
E

0

` expf− x2t/"g
x2 − z

dx, s54ad

Bstd = −
z*

p
E

0

` expf− x2t/"g
x2 + z* dx, s54bd

and

z= G/2 + iEr, z* = G/2 − iEr . s54cd

Differential equation for GNEDstd. From Eqs.(54a) and
(54b), it is easy to show that the following differential equa-
tions hold:

dAstd
dt

=
1

2

z
Îp"t

−
z

"
Astd s55ad

and

dBstd
dt

=
1

2

z*

Îp"t
+

z*

"
Bstd. s55bd

Combining Eqs.s55ad and s55bd leads to

dGNEDstd
dt

= − iKe−ip/4H1

2

G

Îp"t
+

G

2"
fBstd − AstdgJ

−
iEr

"
GNEDstd. s56d

It follows that the second order differential equation that is
satisfied byGNEDstd is

d2GNEDstd
dt2

= −
1

"2sEr
2 + iErG/2dGNEDstd

+ s− iKe−ip/4d
G

2"

dGNEDstd
dt

+
1

"2Ke−ip/4ErGAstd

+
iKG

"
e−ip/4dAstd

dt
− Ke−ip/4 ErG

2"Îp"t

+ iKe−ip/4 G

4Îp"t3/2
. s57d

This equation resembles the one derived for the Lorentzian
function s33d. However, it is not possible to make the clear
distinctions made before. This is a result of the effect of the
energy factorE1/2 featured inGsEd of Eq. s5d.

Asymptotic behavior of the nonexponential propagator.
Using the relation 3.466(1) of Ref. [14], the quantitiesAstd
andBstd of Eqs.(54a) and (54b) become

Astd =
1

2
Î− iEr − G/2expfs− iEr − G/2dt/"g

3erfcÎs− iEr − G/2dt/", s58d

Bstd = −
1

2
Î− iEr + G/2expfs− iEr + G/2dt/"g

3erfcÎs− iEr + G/2dt/". s59d

The symbol erfc represents the complementary error func-
tion. The asymptotic behavior of this function dictates the
asymptotic behavior of this propagator. From Ref.f14g, Eq.
s8.254d, we obtain

NONEXPONENTIAL DECAY PROPAGATOR AND ITS… PHYSICAL REVIEW A 69, 032105(2004)

032105-9



Astd,t→` −
1

2
Î− iEr − G/2expfs− iEr − G/2dt/"g

3expfsiEr + G/2dt/"g
1

2Îpfs− iEr − G/2dt/"g3/2

s60d

or

Astd,t→` −
"3/2

4Îps− iEr − G/2dt3/2
. s61d

The same type of evaluation yields

Bstd,t→`

"3/2

4Îps− iEr + G/2dt3/2
. s62d

Therefore, the asymptotic form of this NED propagator is

GNEDstd,t→` − iKe−ip/4 "3/2

4Îpt3/2

3H 1

s− iEr + G/2d
−

1

s− iEr − G/2dJ
= − iKe−ip/4 "3/2

4Îpt3/2

G

sEr
2 + G2/4d

, s63d

where the normalization constantK is

K =
2

Î− iz + Îiz*
. s64d

X. SYNOPSIS

We examined the issue of nonexponential decay(NED) of
unstable isolated states by adopting three physically reason-

able energy distributions, namely, the Lorentzian function
(4), the modified Lorentzian(5), and the complex Lorentzian
(6). We analytically determined the corresponding ampli-
tudes for NED and showed that they satisfy second order
differential equations. The NED amplitudes may acquire
some physical significance only when the position of the
unstable stateEr is close to threshold andb;sEr /Gd is of
order 1. Analytic expressions were derived for the limits of
very long and very short times, where exponential decay
(ED) breaks down, and related conclusions were drawn. For
example, for the Lorentzian distribution, when the fact that
the time derivative ofuIL

NEDsb ,tdu2 is zero att=0 is combined
with the ED of the full propagator, the main characteristic of
the “Zeno paradox” is obtained, namely, the initial delay in
the onset of ED.

In order to extract further insight into the process of quan-
tum dissipation outside the region of ED, we provided inter-
pretations of the terms ofIL

NEDsb ,td [Eq. (33)] and of the
corresponding propagator for the complex distribution
Osb ,td [Eq. (48)], via concepts of force. We showed that it is
possible to make analogies with the terms of the Langevin
equation, using the continuum as the classical bath. For both
propagators there is a term for the external field acting as a
spring and driving the system to the continuum, as well as
terms representing strong fluctuations as a consequence of
the lower limit in the energy spectrum. On the other hand,
only in the case of the real distribution is there a term for
friction, causing time delay due to the existence of both di-
rections of time.

Finally, when the distribution deviates from the Lorentz-
ian due to additional energy-dependent factors, such asE1/2

coming from the density of states of thes-particle continuum
[Eq. (5)], the good correspondence with the terms of the
Langevin equation is lost. Here one must be reminded of the
fact that in classical physics as well, the Langevin equation
has limits of applicability.
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