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It is known that one-dimensional potentials, V�R�, with a local minimum and a finite barrier towards
tunneling to a free particle continuum, can support a finite number of shape resonance states.
Recently, we reported a formal derivation of the semiclassical Green’s function, GSC�E�, for such
V�R�, with one and two local minima, which was carried out in the framework of the theory of path
integrals �Th. G. Douvropoulos and C. A. Nicolaides, J. Phys. B 35, 4453 �2002�; J. Chem. Phys.
119, 8235 �2003��. The complex poles of GSC�E� represent the energies and the tunneling rates of
the unstable states of V�R�. By analyzing the structure of GSC�E�, here it is shown how one can
compute the energy, E�, and the radiationless width, ��, of each resonance state beyond the
Wentzel-Kramers-Brillouin approximation. In addition, the energy shift, ��, due to the interaction
with the continuum, is given explicitly and computed numerically. The dependence of the accuracy
of the semiclassical calculation of E� and of �� on the distance from the top of the barrier is
demonstrated explicitly. As an application to a real system, we computed the vibrational energies,
E�, and the lifetimes, ��, of the 4He2

++, �=0, 1, 2, 3, 4, and 4He3He++ �=0, 1, 2, 3, 1�g
+ states, which

autodissociate to the He++He+ continuum. We employed the V�R� that was computed by
Wolniewicz �J. Phys. B 32, 2257 �1999��, which was reported as being accurate, over a large range
of values of R, to a fraction of cm−1. For example, for J=0, the results for the lowest and highest
vibrational levels for the 4He2

+ 1�g
+ state are �=0 level, E0=10 309 cm−1 below the barrier top,

�0=6400 s; �=4 level, E4=96.6 cm−1 below the barrier top, �4=31�10−11 s. A brief presentation is
also given of the quantal methods �and their results� that were applied previously for these shape
resonances, such as the amplitude, the exterior complex scaling, and the lifetime matrix methods.
© 2005 American Institute of Physics. �DOI: 10.1063/1.1961487�

I. MOLECULES WITH AUTODISSOCIATING
GROUND STATES

There are unusual ground molecular states whose geo-
metrical equilibrium corresponds to a local minimum of the
potential-energy surface �PES� that lies higher than the en-
ergy of the asymptotic region, which is repulsive. This fact
implies that the vibrational energy spectrum consists of only
a small number of quasidiscrete levels. Depending on the
system, all or some of these levels have a finite lifetime �in a
practical sense� towards autodissociation, i.e., they are vibra-
tional shape resonances.

In our opinion, the two-electron He2
++ 1�g

+ state consti-
tutes the characteristic example of such systems. Its poten-
tial, V�R�, and five vibrational levels for the 4He isotope are
shown in Fig. 1.

This figure shows clearly that the He2
++ 1�g

+ state must
autodissociate via tunneling into the He+2S+He+2S con-

tinuum. The volcanolike shape was first computed and ex-
plained by Pauling1 in terms of covalent-ionic wave-function
mixing. Energetically, this V�R� is the ionization threshold of
the 1�g

2n�g, n=2,3 , . . ., Rydberg series of the He2
+ 2�g

+

spectrum.2

The first observation of this molecule was achieved in
1984 via charge stripping of He2

+.3 In 1989, as part of the
proposal of using such ground states for the storage and the
release of considerable amounts of energy per molecule,4 the
He2

++ 1�g
+ system �4He2

++ and 4He3He++ 1�g
+ states� was iden-

tified and studied4 as a favorable, in principle, case of a
possible propulsion fuel, due to its small mass. �See subse-
quent work on such metastable states, whose interesting
property relates to the possibility of storing and releasing an
amount of energy, �ED, which is larger than the amount
stored ���EB�, see Fig. 1.�

Crucial to this proposal4,5 is the degree of stability of the
intrinsically unstable �due to tunneling� ground state. Hence,
the analysis and calculations of Ref. 4 focused on establish-
ing accurate energies and autodissociation lifetimes for the
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vibrational levels—assuming cold molecules with zero rota-
tional energy—which at the time were not known.

The calculations of the lifetimes in Ref. 4 employed the
Wentzel-Kramers-Brillouin �WKB� formula of Eq. �1�,
which, as derived by Connor and Smith,6 includes a correc-
tion valid for narrow levels �this correction is not significant
quantitatively for the V�R� of the He2

++ 1�g
+ state�. The WKB

calculation of the widths is economic and, as it turns out,
rather reliable for relatively narrow levels, if the vibrational
energies that are employed are accurate.

Subsequent to the publication of Ref. 4, a number of
calculations of the energies and widths of the vibrational
resonance levels were published, using either the formula of
the WKB approximation7 or various quantal methods.8–11 A
short discussion on their results is given in Sec. II.

For the purpose of computing accurate tunneling rates, it
is imperative that the volcanolike PESs �of one or of many
dimensions� are known precisely over a large geometrical
domain. This is evident from the WKB one-dimensional for-
mula, where the dependence of the tunneling rate on the
V�R� and on the energy of the unstable level appears in the
exponential. In the case of the He2

++ 1�g
+ state, its V�R� was

recently computed to a very high level of accuracy, for many
values of R up to 5 a.u., by Wolniewicz12 who carried out a

thorough configuration-interaction �CI� calculation with 372
explicitly correlated variational functions. It is this V�R� that
we have used in this work.

From the form of this V�R� and from the corresponding
theory of tunneling it follows that as energy increases, the
lifetime decreases rapidly. This was determined numerically
in Ref. 4, for four vibrational levels of the 4He2

++ and
4He3He++ 1�g

+ ground states �Table I�.
�Due to the different reduced masses, 3647.15 a.u. for

4He2
++ and 3134.33 a.u. for 4He3He++, the vibrational spectra

of the 4He2
++ and 4He3He++ 1�g

+ ground states are different. In
fact, there are five levels for the 4He2

++ state and only four for
the 4He3He++ 1�g

+ state.�
In the quantum-mechanical stationary-state formalism,

the tunneling process is described in terms of mixing be-
tween bound and scattering components in the vibrational
wave functions, whose magnitude and consequences depend
on the level of excitation. As the top of the barrier is ap-
proached, the vibrational eigenfunction leaks into the adja-
cent continuum more easily. For example, this characteristic
can be seen explicitly in the results of quantal calculations of
the eight vibrational quasidiscrete wave functions of the
BeH++ 2�+ ground state, and in the concomitant phenom-
enon of multiphoton molecular dissociation below
threshold.13 �Given the nature of the problem in Ref. 13,
rather than separating the full space into bound and scatter-
ing components and then computing the results of their in-
teraction, the system was placed in a large box and the levels
were obtained by diagonalization in a basis of trigonometric
functions.�

Regarding volcanolike potentials, the intrinsic param-
eters that both theory and experiment aim at determining �as
for any unstable state� are the energies and widths of the
quasidiscrete levels supported by such potentials. In the case
of the He2

++ 1�g
+ ground state, the widths are due to one-

dimensional tunneling. It is the purpose of this paper to
present new results on these properties, as an application of a
semiclassical path-integral theory that goes beyond the WKB
approximation.

Specifically, we have implemented the theory of path
integrals to obtain the semiclassical Green’s function,
GSC�E�, of the system defined by a potential of the form of

TABLE I. Comparison of the calculated tunneling widths, ��, in a.u., for the vibrational shape resonances of the
4He2

++ �first line� and 4He3He++ �second line� 1�g
+ ground states, published since 1989. In a.u., ��=1/��, where

�� is the lifetime. 1 a.u. of time=2.4189�10−17 s.

�
Ref. 4
�1989�

Ref. 9
�1990�

Ref. 8
�1990�

Ref. 7
�1992�

Ref. 10
�1999�

Ref. 11
�2002�

0 0.182 �−20� 0.157 �−20� 0.134 �−20� 0.279 �−20�
0 0.672 �−19� 0.618 �−19� 0.896 �−19� 0.640 �−19�
1 0.899 �−15� 0.24 �−14� 0.895 �−15� 0.143 �−14�
1 0.281 �−13� 0.288 �−13� 0.286 �−13�
2 0.600 �−10� 0.128 �−09� 0.631 �−10� 0.889 �−10�
2 0.142 �−08� 0.149 �−08� 0.149 �−08�
3 0.699 �−06� 1.18 �−06� 0.662 �−06� 0.841 �−06�
3 0.967 �−05� 0.925 �−05� 0.922 �−05�
4 ¯ 0.473 �−03� 0.423 �−03�
4 ¯ ¯

FIG. 1. The potential-energy curve, V�R�, of the He2
++ 1�g

+ state, in a.u., with
the five vibrational levels computed in this work for the 4He isotope, see
text. The accurate calculations of Wolniewicz �see Ref. 12� produced �EB

=1.486 06 eV and �ED=8.667 90 eV.
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Fig. 1. Given an accurate V�R�, as is the case of the He2
++ 1�g

+

state, a first-principles reliable calculation of the energies and
of the lifetimes towards autodissociation of the unstable vi-
brational levels of the 4He2

++ and 4He3He++ 1�g
+ states is pos-

sible. The energy-dependent GSC�E� contains the contribu-
tion from the complete set of states to the decay dynamics of
each level. Its analysis shows how the basic WKB approxi-
mation looses accuracy as one moves upwards toward the
top of the barrier. The essentials of the formalism leading to
the GSC�E� that was computed and analyzed here have been
published and justified in Ref. 14.

Since the results of the theory are in an analytic form,
calculations of energies and tunneling rates such as the ones
reported here can be carried out for resonances of all states,
ground or excited, whose V�R� along a reaction coordinate is
volcanolike.

II. PREVIOUS RESULTS ON THE AUTODISSOCIATION
LIFETIMES OF THE VIBRATIONAL LEVELS OF
THE 4He2

++ AND 4He3He++ 1�g
+ GROUND STATES

To the best of our knowledge, the only piece of experi-
mental information regarding the stability of the He2

++ 1�g
+

state comes from the 1989 work of Belkacem et al.,15 who
applied the method of “Coulomb-explosion imaging.” They
“determined the lifetime to be longer than 5 �s.” However,
no identification was reported as to the vibrational level cor-
responding to this lifetime estimate. It is clear that the ex-
perimental spectroscopic information on this simple system
is hard to obtain.

Also in 1989, the first systematic calculations of the life-
times of the J=0 and �=0, 1, 2, 3 vibrational levels of the
4He2

++ and 4He3He++ 1�g
+ ground states were published.4 For

example, it was reported that the metastable �=0 level of
4He2

++ has a lifetime of about 220 min, while the lifetime of
the �=1 level is about six orders of magnitude shorter
�0.027 s�. Levels with rotational energy were of no immedi-
ate interest since the aim of the study was to establish
magnitudes of lifetimes under optimal conditions for
stability.

The problem was tackled in the following way. First,
using the simple WKB tunneling formula, an understanding
was pursued of the sensitivity of the lifetimes to the accuracy
of the V�R� and to the corresponding vibrational energies, E�,
�=0, 1, 2, 3, by examining five different V�R�, from earlier
calculations16,17 or from large linear combination of atomic
orbitals molecular-orbital �LCAO-MO� CI ones carried out
for this purpose.4 In this respect, the smallness of the He2

++

molecule is favorable to systematic computational treatments
of high to very high accuracy.

The results of the LCAO-MO CI calculation of Ref. 4
with normally used atomic-orbital basis sets had a suffi-
ciently uniform accuracy out to the large R region. Neverthe-
less, since Yagisawa, Sato, and Watanabe16 �YSW� used
r12-dependent basis sets that are expected to provide higher
accuracy at small distances, it was decided that the YSW
potential is more appropriate for the accuracy requirements
of the project, which had to do with the reliable determina-
tion of the stability of cold �J=0, �=0, or �=1 levels� He2

++

1�g
+. �The energy difference from the bottom of the well to

the top of the barrier was found to be 0.055 15 a.u.
�1.5007 eV�, in Ref. 16 and 0.054 03 a.u. �1.4702 eV� in
Ref. 4, and, consequently, the lifetime of the �=0 level
when using the YSW V�R� was longer by an order of mag-
nitude.�

The second important choice in the work of Ref. 4 had to
do with the method for computing the sought-after widths,
��. It was decided that, for this V�R�, the single-level WKB
approach was both economic and pertinent. Furthermore, in
the final computations, instead of the standard Gamow ex-
pression, the WKB formula with a correction that was pro-
posed by Connor and Smith6 for resonances of small widths
was implemented:

�� =
	

2

��E��exp�2
���E�� + X��
�E��



�	 . �1�

��E�� is the frequency of vibration, 
���E�� is the phase
integral for the barrier, and X��
�E�� /
� is a quantum cor-
rection which depends on the phase integral for the well,

�E��.6 �Because of the relatively large distance between the
turning points of this V�R�, this correction is small—see
Table III.�

Following the initial calculations of ��,4 a number of
studies by various groups were devoted to the calculation of
these quantities, and of the corresponding E�, with publica-
tions beginning in 1990.7–11 Their results are collected in
Table I, together with those of Ref. 4. In the next few para-
graphs, we comment on each one of them.

Babb and Du8 implemented a real-space amplitude
method, whose foundations can be found in the work of Breit
and Wigner.18 Accordingly, by choosing two points, xo and
xu, inside the classically allowed region, the energy distribu-
tion of each resonance �we write their Eqs. �5� and �6��,

p�E� = 

xo

xu

�E
2�x�dx , �2�

is fitted to a Lorentzian form

p�E� =
�




�/2

��/2�2 + �E − Er�2 . �3�

The issues about the choice of the constant � and of the
limits of integration in �2�, and about the search for the reso-
nance energy, Er, are discussed by the authors.8 The assump-
tions �2� and �3� are reliable for narrow resonances, as dem-
onstrated by the calculations of Ref. 8 on the He2

++ 1�g
+ state.

They probably require additional justification when the reso-
nance state is broad, with an energy-dependent width
function.

Babb and Du8 published energies and widths for two
potential-energy curves. One was the V�R� of Ref. 16 and
another one was a hybrid potential that was constructed from
the values of Ref. 16 inside the well and of Ref. 17 for large
R. The results of these quantal calculations are in harmony
with the semiclassical ones.4

Also in 1990, another quantum-mechanical method was
implemented. Nicolaides et al.9 treated the quasidiscrete vi-
brational levels as isolated resonance states with complex
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energies, satisfying the complex eigenvalue Schrödinger
equation �CESE� for each rovibrational resonance level, m
��� ,J�,

d2�m

dR2 +
2�

	2 �Wm − �V�R� +
J�J + 1�	2

2�R2 �	�m = 0. �4�

For J = 0, ���0� = 0, ���R�R→� − ei�2W�R,

�4a�

W� = E� −
i

2
��.

The integration of Eq. �4� under proper boundary conditions
was achieved numerically, by implementing the exterior
complex scaling �ECS� procedure proposed in Ref. 19,
whereby, for practical reasons, integration in the interaction
�inner� region is done on the real coordinate axis and the
regularization of the resonance eigenfunction is effected by
following a contour path, C, for a complex coordinate of the
free particle in the asymptotic region. Thus, the norm is de-
fined by19



all space

�m
2 d� = 


0

Rex

�m
2 dR + 


C

�m
2 ds . �5�

According to Ref. 19, Rex is a point on the real axis at the
edge of the inner region and R�Re s��. In the case of the
He2

++1�g
+ calculation, J was zero and Rex was chosen as

10 a.u. �Ref. 9�.
As was already stated in Ref. 4, the approach of con-

structing and solving the problem in terms of the CESE is
numerically extremely demanding for the accurate computa-
tion of very narrow widths. �Widths as small as
10−14–10−15 a.u. were computed in Ref. 9, but the accuracy
deteriorates around this limit. Improvement of the accuracy
could, in principle, be achieved by extending the order of the
Numerov integration scheme implemented in Ref. 9.� There-
fore, only three �� ,�=1, 2, and 3, were obtained,9 with the
V�R� that was computed in Ref. 4 in order to include more
points for large values of R. Those results are also collected
in Table I.

The results of the 1990 papers8,9 indicated that, for this
problem, the predictions of the work of Ref. 4, which imple-
mented the WKB approximation, were physically meaning-
ful. The WKB approach was soon after employed by Acker-
mann and Hogreve7 in conjunction with a V�R� computed by
them via LCAO-MO CI with large basis sets and special
corrections. Given the use of different V�R�, the results of
Ref. 7 are in essential agreement with those of the previous
calculations4,8,9 �Table I�.

More recently, Sidky and Ben-Itzhak10 implemented a
phase-amplitude method,20–23 modified so as to account for
barrier penetration. Accordingly, they computed numerically
the Milne phase, ��rout ,E�, and its energy derivative,
���rout ,E� /�E, for the resonance wave functions of
3He4He++, using the V�R� of Refs. 7 and 16. The determina-
tion of the widths in Ref. 10 was done by fitting
���rout ,E� /�E to a Lorentzian form plus a constant �we write
their Eq. �12��,

���rout,E�
�E

=
�/2

��/2�2 + �E − Er�2 + C . �6�

The results of Ref. 10 �from their list of Table Ia� are in-
cluded in Table I.

Finally, Orlikowski11 carried out scattering calculations
and applied the lifetime matrix method of Smith,24 in con-
junction with the V�R� computed by Wolniewicz.12 He con-
cluded that the agreement with the results of Babb and Du8

and of Nicolaides4 is only fair and attributed this discrepancy
to the different potentials with different zero-point energies
that were used in the calculations �p. 1190 of Ref. 11�. Al-
though it is a fact that such widths are sensitive to small
changes in the potential, it is also useful to have information
as to the possible differences that are due exclusively to dif-
ferent approaches to the calculation of such shape reso-
nances. Since the present calculations are also based on the
Wolniewicz V�R�, any discrepancies between the results of
Ref. 11 and of this work can be attributed to the differences
in the two theories and their methodologies.

III. THE He2
++ 1�g

+ MOLECULE AS A MULTILEVEL
SYSTEM OF SHAPE RESONANCES

Even if the nonadiabatic coupling to the excited 1�g
+

states is neglected, the solution to the problem of computing
the intrinsic properties of the shape resonances of the He2

++

1�g
+ ground state must, in principle, account for the multi-

level nature of the vibrational �J=0� spectrum. This means
that any isolated level approach must carry a certain inaccu-
racy, caused by the neglect of indirect interlevel coupling via
the continuum. In other words, the position and width of
each level are, from a rigorous point of view, a product of a
collective spectral contribution, even though the vibrational
levels are well separated. Such coupling is expected to show
certain differences from the isolated resonance methodology,
especially when the levels are near the top of the barrier.
Therefore, it is worth implementing methods that incorporate
the information from the whole spectrum. For example, for
systems with coupling among electronic states, ab initio re-
sults from close-coupling scattering calculations on the pre-
dissociation partial and total widths of rovibrational levels of
the C and D 2�+ states indicate significant deviations from
the two-state level approximation.25

Also, as regards the properties of dications with volca-
nolike potentials, an alternative possibility exists for multi-
state couplings. For example, this is represented by the spec-
trum of NO++, where the lowest two electronic states, the
X 2�+ and the A 2�, exist in the local minima with their
vibrational levels embedded into each other.26 Ab initio
calculations of multiphoton dissociation probabilities
showed that the coupling of the two states enhances the dis-
sociation through the X 2�+ channel by six orders of
magnitude.27

For the case of interest here, which is concerned with an
isolated ground-state V�R�, the S-matrix formalism applied in
Ref. 11 is certainly general enough to account for the multi-
level problem. The same is true of the present semiclassical
theory and computations. Their fundamental objective is the
analytic derivation and use of a practical form of the semi-
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classical Green’s function, GSC�E�, from which the sought
after resonance energies �including energy shifts� and widths
is obtained. These quantities, for each level, then contain the
collective effects of the whole spectrum.

IV. SEMICLASSICAL PATH-INTEGRAL CALCULATION
OF GSC„E… FOR THE POTENTIAL OF FIG. 1

From the general theory of spectra, given a Hamiltonian,
H, the resolvent operator is defined by R�z�=1/ �z−H�, with
z complex, z=E± i�, �→0. The time evolution operator,
e�i/	�Ht, is related via Fourier transform with R�z�, and in-
versely. In the space of the complete set of states of H, R�z�
turns into the Green’s function of the system. Its poles and
residues on the real energy axis correspond to the discrete
stationary states for E�0, while its cut for E�0 corresponds
to the continuous spectrum of scattering stationary states.
There are also complex poles for E�0, which, for t�0,
decaying states must be placed on the second Riemann sheet
below the real energy axis, since R�z� is analytic on the first
sheet. For physical potentials, these poles represent the reso-
nance states of the system, e.g., Ref. 28.

When, instead of the wave-function formalism, the
Feynman theory of path integrals is adopted in its semiclas-
sical version, corresponding to the quantum-mechanical re-
tarded Green’s function, �t�0�, there is also a semiclassical
one, GSC�E�, which, for certain potentials, can be obtained
either numerically, as a Fourier transform of the propagator,
or directly. Out of the large number of articles which have
been published on path integrals and on semiclassical theory,
covering topics such as imaginary quantities associated with
tunneling, Morse and Maslov indices, WKB and higher ap-
proximations, etc. �e.g., see papers and books cited in Ref.
14�, we have found the ones by Holstein and Swift29,30 and
by Holstein31 on barrier penetration and on the connection to
the WKB approximation, very lucid and instructive in devel-
oping a formalism with practical analytic formulas suitable
for general one-dimensional volcanolike potentials and for
double wells with and without a finite barrier.14 The present
discussion and computational implementation is a follow-up
of the work in Ref. 14.

In the framework of path integrals, given two points in
configuration space, x1 and x2, the Green’s function is written
as

G�x2,x1;E� =
1

2
	



0

�

dteiEt
x2�e−�i/	�Ht�x1�

=
1

2


x2�

i

E − H + i�
�x1� . �7�

The plus sign in front of i� relates to the fact that t�0. In
semiclassical mechanics, the G�x2 ,x1 ;E� is obtained in the
stationary phase approximation, i.e., the approximation
whereby the quantity �i /	�S �S is the action� is expanded
about the extrema of S up to quadratic terms. �The action is

stationary on classical paths.� Following Refs. 29–31, we
write GSC�E� in the form,

GSC�x2,x1;E� =
1

2
�k�x1�k�x2�
�
j=1

� ��
i=1

N�j�

f ij� , �8�

where x1�t1� and x2�t2�, t2� t1, are two points in the allowed
region, and

k�x� = �2�E − V�x�� �in a.u.,	 = m = e = 1� . �9�

The index j refers to a particular path, which consists of
N�j� i events, each of which contributes the amplitude f ij to
the total propagation between the time-space points x1 and
x2. The form of each f ij depends on the kind of event,
namely, propagation or reflection, as well as on the nature of
the region of motion, namely, allowed or forbidden. Thus, if
propagation is in an allowed region, this factor is given by
exp�i�a

bk�x�dx�, while if propagation is in a forbidden region,
it is given by exp�−��a

bu�x�dx��, where u�x�=�2�V�x�−E�.
In Refs. 29–31 it is shown that the results from the nor-

mal WKB techniques of connection formulas can be replaced
by simple rules expressing the phase changes of the wave
function at turning points. By applying these rules to the
potential of the form of Fig. 1, we showed that the corre-
sponding GSC�E� has the transparent form14

GSC�E� = C�x1,x2;E��Sregular�E� + Spole�E�� . �10�

Sregular represents a smooth background for propagation and
Spole represents the energy-dependent presence of poles
dominating propagation. The quantities in �10� are given by

C�x1,x2� = −
i

�2


sin���x1� + 
/4�
�E − V�x1��1/4�E − V�x2��1/4 , �11�

Sregular = cos���x2� +



4
	 , �12�

Spole = sin���x2� +



4
	

�
sin ���� + i/4 exp�− 2��cos ����
cos ���� − i/4 exp�− 2��sin ����

, �13�

with

��r� = �2

��E�

r

�E − V�x�dx , �14�

� = �2

��E�


�E�
�V�x� − E dx . �15�

The above formulas allow the systematic computation of
GSC�E� for any system with a known V�x�, given either ana-
lytically or numerically. Obviously, the important informa-
tion regarding the system’s properties comes from the poles
of Spole�E�. Below we will proceed in two steps. In the first
one, we will focus on the denominator of �13� and extract
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from it forms for the energy width, �n�E� and shift, �n�E�. In
the second one, we will go further by examining the energy
dependence of the numerator as well, thereby obtaining more
accurate general formulas for �n�E� and �n�E�.

The quantity exp�−2�� takes a very small value, and so
the denominator of �13� becomes zero when

cos ����E�� = 0, �16a�

or, equivalently, when

����E�� = n
 +



2
, n = 0,1,2,3, . . . . �16b�

�Here we use the symbol n as the index for the quantized
levels. In the other sections we use the symbol � for the
vibrational levels.� ����E�� depends on energy not only
through its direct connection to it �Eq. �14��, but also through
its dependence on the limits of the integral. Therefore, by
expanding the denominator of Eq. �13� around those values
of energy, En, that satisfy Eq. �16�, we obtain

� � − ��d�

dE
�

En

+ i� exp�− 2��En��
2

� d�

dE
�

En

��

��E −�En

� exp�− 2��En��
2

� d�

dE
�

En

�
4

exp�− 2��En��

��d�

dE
�

En

�2

+ � exp�− 2��En��
2

� d�

dE
�

En

�2� +
i

2

��d�

dE
�

En

�exp�− 2��En��

2���d�

dE
�

En

�2

+ � exp�− 2��En��
2

� d�

dE
�

En

�2�� . �17�

It follows from Eq. �17� that the width is given by the posi-
tive quantity

��En� � �n

=

��d�

dE
�

En

�exp�− 2��En��

2���d�

dE
�

En

�2

+ � exp�− 2��En��
2

� d�

dE
�

En

�2� .

�18�

At the same time, we also recognize the presence in �17� of
the semiclassical version of the energy shift of a resonance
state, which results from the interaction of the bound part
with the continuum. It is given by

��En� � �n

= −

�exp�− 2��En��� d�

dE
�

En

�
4

exp�− 2��En��

��d�

dE
�

En

�2

+ � exp�− 2��En��
2

� d�

dE
�

En

�2 .

�19�

Since the numerator is the product of two small quantities,
�n is a very small quantity. In fact, it becomes zero if one
assumes that �d� /dE�En

=0, which is a condition expected to
hold to a very good approximation for the lowest-energy
levels. At the same time, Eqs. �18� and �19� show that the
magnitude of �n�E� and �n�E� increases as the levels ap-
proach the barrier maximum, since the quantity � is a de-
creasing function of the energy.

A further improvement toward accuracy is obtained when the numerator is expanded as well. The results are

�n =

� exp�− 2��En��
1 + exp�− 2��En��/4	��d�

dE
�

En

�−1�2 −
exp�− 2��En��

1 − exp�− 2��En��/4	
1

4��d�

dE
�

En

�−2�4�� d�

dE
�

En

�2

exp�− 4��En��

�1 + exp�− 2��En��/4�4 � + �2 −
exp�− 2��En��

1 + exp�− 2��En��/4�2

,
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�n =

� d�

dE
�

En

exp�− 2��En���1 − exp�− 4��En��/16�−1�2 −
exp�− 2��En��

1 + exp�− 2��En��/4	
1

4��d�

dE
�

En

�−2� 4�� d�

dE
�

En

�2

�1 + exp�− 2��En��/4�4� + �2 −
exp�− 2��En��

1 + exp�− 2��En��/4�2

. �20�

Now we observe that, as regards the denominator of Eq.
�13�, the condition �16�, namely, cos ����E��=0, does not
secure that the denominator is nullified for those levels for
which the quantity exp�−2�� is not negligible �i.e., the bar-
rier is not relatively large�. In order to correct systematically
for this case, we start by assuming that the physically correct
condition

exp�− 2�0� � 1 �21�

holds for the lowest level, �=0. We then accept that for the
following level, i.e., for �=1, the condition �21� does
not hold, and proceed to compute the ratio �=�0 /�1. Evi-
dently, exp�−2�0�=exp�−2��1�. We then let the quantity
exp�−m�1� be defined by

exp�− m�1�exp�− 2�1� = exp�− 2�0� . �22�

This means that

m = 2�� − 1� . �23�

The above is applied as follows: By multiplying the de-
nominator of Spole with exp�−m�1�, the imaginary part be-
comes proportional to 1

4 exp�−2�0�. Therefore, because of
�21�, it can be set equal to zero.

The real part is exp�−m�1�cos��1���E���. This tends to
zero more accurately for those values of energy which are
close to the roots of the cosine. We now require that this term
remain stationary for small variations of the energy around
these values. Hence, we require

d

dE
�exp�− m�E��1�E��cos �1���E��� = 0. �24�

The result of Eq. �24� is the condition

tan �1���E�� =
d��2���E� − 1��1��

d�1
, �25�

which contains a correction to the energy of the level.
Equation �25� connects the classically allowed with the

forbidden region, via the derivative d�1 /d�1 of the corre-
sponding phase integrals. This connection is physically rel-
evant to the case of resonance states, since these are products
of motion in both regions. In other words, Eq. �25� takes into
account motion in the allowed region via the term
cos ����E�� and in the forbidden region via the term
exp�−m�E��1�E��. This results in a correction to the WKB
approximation which comes from the additional terms re-
garding the barrier as well as the energy corrections already
discussed.

Therefore, with respect to the WKB formula

�n�WKB� =
�n

2

exp�− 2��En�� , �26�

the relation �20� in conjunction with condition �25� provide a
more accurate semiclassical description of the width. In fact,
as the energy approaches the top of the barrier these correc-
tions become more important. This is due to the presence of
energy derivatives of quantities that relate to the barrier.

V. RESULTS

As already stated in the Introduction, the V�R� that we
used in this work is the one calculated by Wolniewicz.12

Additional points were calculated by polynomial interpola-
tion in the regions surrounding the vibrational energies. Ac-
cording to Wolniewicz, the calculated energies are accurate
to a fraction of a wave number. The energy features of this
V�R� are the following:12 The minimum energy is Emin

=−3.681 455 875 a.u. at Rmin=1.3281 a.u., and the maxi-
mum of the barrier is Emax=−3.626 843 250 a.u. at Rmax

=2.172 a.u. The barrier height, �EB, is 1.486 06 eV and the
dissociation energy, �ED, is −8.667 90 eV. For easy com-
parison, we note that, for the potentials that were previously
used in the calculations of the vibrational resonances, �EB

�Yagisawa et al.16� =1.5007 eV, �EB �Nicolaides4 and
Nicolaides et al.9� =1.470 eV, and �EB �Ackermann and
Hogreve7� =1.488 eV.

A. Vibrational energies

Wolniewicz calculated vibrational energies by imposing
Dirichlet boundary conditions on the solution of the real-
eigenvalue Schrödinger equation. He reported that only the
three lowest resonances could be determined unambiguously
for both the 4He2

++ and the 4He3He++ molecules �p. 2265 and
Table VIII of Ref. 12�. Using the same V�R�, Orlikowski11

calculated five levels, with which our results are compared in
Table II. The agreement for the energies is very good.

The energies computed in this work emerge basically
from the satisfaction of the condition �16�. To these solutions
we then add the �important for better accuracy� correction of
Eq. �25�. The whole procedure was considered satisfactory
when the convergence error in the iterative search was less
than 10−8.
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B. Autodissociation widths and energy shifts

The autodissociation widths calculated via the present
approach are presented in Table II. They are also contained
in Table III, where they are compared with the WKB results
and with those from formula �1�, which was proposed by
Connor and Smith.6 The present WKB calculation obtained
the energy from the satisfaction of Eqs. �16�, cos ����E��
=0 and ����E��=�
+
 /2, �=0,1 ,2 ,3. Under this condi-
tion, there is no WKB solution for the �=4 level, which, in
fact, exists just 96.6 cm−1 below the top of the barrier, ac-
cording to the full semiclassical path-integral calculation. As
an example of the energy difference between the WKB and
the full calculation, we refer to the �=3 level of
4He3He++ 1�g

+. The WKB energy is EWKB=−3.633 48 a.u.,
while the energy obtained from the semiclassical Green’s-
function method described above is EG=−3.632 07 a.u.

On the other hand, for the �=0 level there is no differ-
ence between the results of the WKB approximation and the
full Green’s-function computation. A similar agreement is
expected for other potentials in which the widths of the low-
est levels are very narrow.

As regards the calculation of �� in the WKB approxima-
tion, the relation �26� is used, which is the result of the fol-
lowing reduction from Eq. �20�. The quantity � is equal to
�=
E /����E��, i.e., it is the frequency of classical vibra-
tions. Also, from the numerator of Eq. �20� we keep only the
term �exp�−2��En�� /1+ . . . ���d� /dE�En

�−1�2− . . . �, and from
the denominator we keep �2�2=4. In this way, by omitting
terms of magnitude much smaller than unity, as well as terms
related to energy derivatives of quantities involving the bar-
rier, we obtain the WKB approximation. As in the case of
energies, for the �=0 level the WKB approximation yields
the same results with those of the semiclassical Green’s func-
tion for both 4He2

++ and 4He3He++ 1�g
+.

Finally, Table III also contains the energy shifts, ��, that
are calculated from Eq. �20�. It is seen that they are smaller
by orders of magnitude than the widths, and negligible for
this problem. On the other hand, it is clearly established that
as the barrier top is approached, the magnitude of �� in-
creases rapidly. It is noteworthy that this semiclassical for-

malism leads to formulas that can be computed numerically
very accurately, for values of �� or of �� ranging over very
many orders of magnitude.

VI. CONCLUSION

The object of this work was the computation of the in-
trinsic properties of the shape resonances of one-dimensional
volcanolike potentials, as in Fig. 1, in the framework of
semiclassical mechanics.

In our previous work,14 using a methodology of path
integrals, we obtained the semiclassical Green’s function for
the V�R� of Fig. 1 in the general form of Eq. �10�. Here, by
analyzing the term Spole�E�, whose complex poles represent
the energies and widths of the shape resonances of Fig. 1, we
obtained the results for the energies and the widths, �� �Eq.
�20��, which were applied, in conjunction with the very ac-
curate V�R� of Wolniewicz,12 for the ab initio calculation of
the energies and autodissociation widths of the vibrational
levels of the 4He2

++ and the 4He3He++ 1�g
+ ground states. For

4He2
++, these results were compared with those reported by

Orlikowski,11 who used the same V�R� and implemented the
quantum-mechanical scattering method of the lifetime matrix
�Table II�. The energies are in very good agreement. How-
ever, for the widths a certain discrepancy is observed, up to
factors of 2–3 for the two levels near the top of the barrier.

The formal results for E�, ��, and �� that were derived
and discussed in this paper go beyond the WKB approxima-
tion, while they are computationally practical and allow very
accurate numerical implementation. A useful numerical re-
sult is the fact that, for the V�R� of He2

++ 1�g
+, for the �=0

level the values of the energy and the width from the WKB
approximation are the same as those from the more advanced
Green’s-function treatment �Table III�. This results from the
narrowness of the resonance, which eliminates the correc-
tions to the WKB treatment, and may characterize other po-
tentials as well.

TABLE II. Energies and widths, in a.u., of the 4He2
++1�g

+, �=0,1 ,2 ,3 ,4,
vibrational shape resonances. Comparison of the results of Orlikowski �see
Ref. 11�, who implemented the lifetime matrix method of Smith �see Ref.
24�, with those of the present semiclassical path-integral theory for the cal-
culation of the Green’s function. The numbers in parentheses denote powers
of ten. Both calculations used the V�R� computed by Wolniewicz �see Ref.
12�. In a.u., ��=1/��, where �� is the lifetime. 1 a.u. of time=2.4189
�10−17 s.

�

Ref. 11 This work

E� �� E� ��

0 −3.673 65 0.2790 �−20� −3.673 81 0.3785 �−20�
1 −3.659 74 0.1434 �−14� −3.660 68 0.1113 �−14�
2 −3.647 05 0.8889 �−10� −3.647 74 0.7323 �−10�
3 −3.635 87 0.8408 �−06� −3.635 46 0.3227 �−06�
4 −3.627 09 0.4228 �−03� −3.627 28 0.2246 �−03�

TABLE III. Results for tunneling widths, ��, and energy shifts, ��, of the
shape resonances of the 4He2

++1�g
+, �=0,1 ,2 ,3 ,4, and 4He3He++1�g

+, �
=0,1 ,2 ,3 vibrational shape resonances, in a.u., from the present work. The
V�R� is that computed by Wolniewicz �see Ref. 12�. The �=4 level does not
exist for the 4He3He++1�g

+ state. Also, the WKB approximation does not
predict a fifth vibrational level ��=4� for either system. The numbers in
parentheses denote powers of ten.

�
WKB

��

WKB+
Correction �Eq. �1��

��

Semiclassical Green’s function
Eq. �20�, see text

�� ��

0 0.378 �−20� 0.407 �−20� 0.378 �−20� 0.933 �−38�
0 1.551 �−19� 1.6667 �−19� 1.551 �−19� 0.580 �−35�
1 0.651 �−14� 0.111 �−14� 0.353 �−27�
1 0.709 �−12� 0.735 �−13� 0.870 �−24�
2 1.674 �−10� 0.732 �−10� 0.133 �−17�
2 0.989 �−08� 0.549 �−08� 0.183 �−13�
3 0.490 �−06� 0.323 �−06� 0.194 �−09�
3 1.973 �−05� 0.600 �−04� 0.470 �−06�
4 — 0.225 �−03� 0.140 �−04�
4 —
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We suggest that there are at least two challenging open
issues for such semiclassical methodologies. First is the
question of handling the multichannel problem when more
than one electronic states are involved, as in the case of
NO++.27 Second is the question of the determination of shape
resonances of multidimensional potentials.

In any case, we emphasize that the accurate computation
of the properties of rovibrational resonance states in real
molecules �i.e., not in model potentials� is very sensitive to
the degree of precision with which the potential-energy sur-
face is known. Otherwise, the computed tunneling widths
may be wrong by orders of magnitude. The physically rel-
evant fact concerning ground-state diatomics with a V�R� of
Fig. 1 is that they offer a concrete opportunity for the inter-
action between experiment and the theory of structure and of
tunneling dynamics, since the autodissociation lifetimes, i.e.,
the inverse of the rates of tunneling through the barrier, are,
in principle, measurable, e.g., Refs. 15 and 32–34.
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