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The enigma of “entropy” is reconsidered from the viewpoint of generalized information theory on
a lattice generated from measurements that define the system. A small (incomplete) set of natural
axioms for a global information measure is developed sufficiently to deduce as a special case a
generalization of Segal’s entropy on a W *-algebra (classical and quantum). A simple relationship
between monotonicity of entropy and a semigroup on [0, o ] (representing composibility of
information) is presented. Various extensions of information-theoretic results are incidentally
proven, including relations between regular composible informations (on an orthocomplemented
complete lattice) and measures (on o—ideals of the lattice).

PACS numbers: 05.70.Ce, 05.50. + q

I. INTRODUCTION

Although dating from the grimy dawn of the industrial
age, entropy has remained one of the most controversial,
esoteric, and enigmatic concepts of physics. Recently
Wehrl' has reviewed the properties of various entropy ex-
pressions useful in physics. In addition to the numerous “en-
tropies’ he has collected, one stumbles across other formu-
las which are also dubbed “entropy.”>~® This proliferation of
“entropies” suggests the need for a comprehensive approach
to the basic issue, namely: “What is entropy?”’

Rather than dismiss all expressions that do not conform
to“—Zp, In p,,” " —Trp Inp,” or even Boltzmann’s
*“ — kInW—assomereviewers would happily have us do—
we prefer to seek a fundamental meaning and axiomatic for-
mulation of a quantity which, when suitably constrained,
reduces to such special formulas. Indeed, the need for such
an approach is evident from the difficulty of reconciling the
second law of thermodynamics with Hamiltonian motion.
This problem has led to various approaches to nonequilibri-
um statistical physics, including different forms of “coarse-
graining”' (which effectively reject the second law for the
true system *‘state,” and only work for infinite systems in
general'), “master equations” (e.g., those based on projec-
tions of “relevant” data®), semigroups,” and modifications of
entropy itself.®

Of course, all concepts of “‘entropy” are ultimately re-
lated to probabilities (or “states”). This relationship in fact
unites the mystery of entropy to the enigma of “probability.”
Good’ has distinguished at least five different concepts of
‘“‘probability.” More recently, Fine'® has compared the var-
ious concepts and ultimately concluded with the doubt that
*‘probability” is even necessary for scientific endeavors.
Most physicists are familiar only with the so-called “objecti-
ve’'probabilities—relative frequencies over infinite ensem-
bles which, though by definition unmeasurable, are never-
theless considered to represent a physical property (“‘state”).
Rayski'' has shown how quantum mechanics paradoxes
vanish if one relinquishes this interpretation. Elsewhere'? we
have argued how certain arguments against theories of “hid-
den variables” depend implicitly on the interpretation of
probability, and thus cannot be convincing.
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An extremely successful step in explaining both enig-
mas—"‘entropy” and “probability”—has been made by
Jaynes.'® In essence, Jaynes interpreted “entropy” as the
“expected self-information” of a class of mutually exclusive
and exhaustive “events,” or propositions. Although the as-
sociation of “entropy”” with “information” (negative uncer-
tainty) is neither original with Jaynes'* nor without opposi-
tion,'® it nevertheless provides an explanation for this
hitherto misunderstood quantity. Simultaneously, Jaynes
interpreted “probability” to mean the rational “‘degree of
belief’!® we assign to events (on a zero to one scale) based on
available evidence, generally of the form of expectation val-
ues of observables. The choice of data used effectively defines
the total evidence assumed relevant to the properties being
estimated with the degree of belief. This condition is quanti-
fied by taking as degree of belief that measure which maxi-
mizes the “entropy”, i.e., the average uncertainty, subject to
the chosen evidence. In a single blow, Jaynes not only ex-
plained, simplified (no ensembles!), and generalized statisti-
cal thermodynamics, but also provided scientists and engi-
neers with a new, (more or less) consistent technique of
inference which has been successfully employed in many
areas.'’

Despite these successes, and in part because of them, we
again find a need for an axiomatic explication of “entropy.”
For one thing, Jaynes’s program is strictly constrained by
the choice of entropy formula'® most generally, the Gibbs
formula classically, and the von Neumann expression in
quantum mechanics). Although Shore and Johnson'® have
recently given an axiomatic derivation of the classical entro-
py in terms of inductive inference, there is no reason to assert
that this specialized “entropy” is appropriate or even correct
in general. Indeed, as we will elaborate below, most “‘real-
life” situations do not admit the requisite idealizations for
Borel algebras, and thus probability-related information
measures. It thus may be not only desirable but essential to
eliminate probability altogether. Because of this and certain
other difficulties,*® the MEF (maximum entropy formalism)
has not been exploited as thoroughly as is possibie.

Inorder toarrive at a fundamental understanding of the
significance of “entropy” in physics, we believe it necessary
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to reexamine the essence of physics as distilled in its lattice-
theoretic formulation. It is convenient to visualize a physical
theory as a data-processing algorithm: Empirical data are
digested by the theory and predictions result. This is consis-
tent with the view that theories model reality: They are not
“explanatory” in the sense of being in one-to-one correspon-
dence with aspects of reality.>' The model is constructed by
first postulating an ‘“‘operational definition” of the objects
under study in terms of the set of all “relevant” empirical
relations that can be defined on the objects. This definition is
then naturally imbedded in a complete lattice—the “the-
ory,” which is the mathematical context for calculations. We
review these ideas in Sec. II, extending our earlier work.?>%
Also, we present certain new results concerning composible
informations.

Our approach to “entropy” is based on the idea of “lo-
cal” informations on a lattice (of **propositions”) first stud-
ied by Sallantin.?* In Sec. III we define “entropy” to be a
global measure of information associated with possibly sev-
eral “local” informations on the “theory.” We do not at-
tempt to characterize our “entropies,”* but rather consider
certain special cases that ultimately reduce, as desired, to the
usual “entropies.” In Sec. IV we provide an interpretation of
certain qualitatively novel features of our “entropies,”
which appears to have bearing on irreversible dynamics. Fi-
nally, we conclude in Sec. V with a general commentary and
some open problems.

Il. ABSTRACT THEORIES AND INFORMATIONS

The essence of physics is generally considered to be one
or the other of various logico-algebraic models®® based on
abstract lattice theory.?” While physicists are concerned spe-
cifically with deriving quantum and classical physics, we
have found a broader viewpoint to be more enlightening. In
Refs. 22 and 23 we have proposed a somewhat unusual ap-
proach which we describe and extend below. Our approach
is reminiscent of the constructive descriptions of logic and
language by-Watanabe®® and Sallantin®; however, we do not
attempt to derive specific theories, but rather describe uni-
versal properties. We assume the reader to be familiar with
standard terminology of lattice theory.

Our starting point is the obvious one: How do we define
an object about which we wish to “talk” {i.e., discuss in a
literal sense, or scientifically study)? This question is by no
means trivial or metaphysical, since practical problems of
computer recognition are involved. It is natural to define an
object (actually, the class 4 of all such objects) by a complete
list of its properties. Although for real-life objects such a list
may not be possible, one can effectively define varying de-
grees of approximation to “real-life” by a judicious choice of
the relevant properties. To account for the intrinsic “fuzzi-
ness” of “real-life”” descriptions®**' we assert that the prop-
erties consist of relations R:4 "*—Q, where Q is a quasior-
dered set of “truth values.” (This generalizes slightly the
work of Goguen** and DeLuca and Termini.** Ali and Pru-
govecki** have applied “fuzzy” set theory directly to quan-
tum physics, but not in the “logical” context.) To be oper-
ationally consistent we must insist that the order #; of the
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relations be finite. The set of all “‘relevant” relations is denot-
ed by F:{(4,0Q,F) constitutes an empirical relational system.
Note that the relations are essentially generalized character-
istic functions.

The relations in F'are naturally ordered by an “implica-
tion,” =, defined in terms of the quasi-ordering of the truth
set Q. This binary (classical) relation induces a quasi-order in
F; we denote by P the partially ordered set obtained from F
by associating “=—equivalent” relations. Thus, P represents
a minimal set of relations defining an object class 4, with a
built-in partial order. See Ref. 23 for details.

At this point we wish to clarify the above “abstract defi-
nition” by a further condition on P. Essentially, if R is a
relation relevant to an object, it has a quasi-ordered range
ZR(R) = {R (a)ed "*] C Q. If we reverse the order of #(R }—
which corresponds in the simplest case to interchanging bi-
nary (yes-no) responses on an elementary experimental appa-
ratus**—we have a new relation, R ', whose range is the dual of
Z (R ). It is natural to allow for each ReP that R 'eP as well,
since the same apparatus or operation that defines R also
defines R '. The map R—R 'is an involution by construction:

R" =R; R<S=S'<R’. (1)

Notice, however, that there exists no meaningful relation in
P which can in any sense “imply” both R and R’. That is

(SeP: S<R and S<R'} =6 . 2)

In this axiom, we diverge from the custom of introducing an
“absurd” relation @eP such that R AR ' = @. Thus the “log-
ic” of measurements is not assumed at this level.

So far the objects have been abstractly defined by the
poset P with involution; this structure, constructively ob-
tained, corresponds to the rational numbers. It is essential
for further progress to introduce idealized elements—analo-
gous to real numbers. We do this in the corresponding man-
ner; we imbed Pin a complete lattice L ( P )by the “cut proce-
dure.”? (This method is not alien to quantum mechanics®’;
however, the construction and properties of P used by pre-
vious authors are less general than ours.)

Theorem 1: If Pis a poset with involution satisfying (2,
then L ( P) is a complete orthocomplemented lattice.

Proof: Recall*’ that E = {ReP: R<Sfor all §>T for
all TeE } defines the closure of EC P,and that L ( P)isjustthe
set of closed subsets of P, a complete lattice under set inclu-
sion (C). For EcL ( P) define

E'={ReP.R<S' for all SeE} . (3)

Then, (E')' = {ReP:R<S ' forall S'>T forall TeE | = E;
EC Fimplies F*CE* since ReF ' implies R<S"’ for all SeF
implies R<S’ for all SeE, and thus ReE *. Finally, (3) defines

an involution since E ‘eL ( P): E* = {ReP:R<S for all
S>Tforall T< W 'forall WeE | = {ReP:R<SforallS'<T",
for all T'> W for all WeE } = {ReP: R<Sforall
S'eE = E |} = E*.Now EnE " = {ReP:R<S and R<S’, for
all SeE | = ¢ by (2). Thus, E—~E ' is an
orthocomplement.*® Q.E.D.
The importance of the universality of orthocomple-
mented completelattices (L { P))as “theories” liesin theabili-
ty we obtain to construct partitions. If 4eL ( P), a(finite) par-
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tition of A is the set

mA)=(E,eL(P)4d = VY_ E, E,\E, } (ELAffECF").
(4)

We denote by /7 the set of all (finite) partitions of P, and

7{ P) = 7 for short. The set /7 is partially ordered by the
relation

m(E)Cm,. (5)
If 7, < ,, then 7, is a “finer”” partition; note that 7y, = {4,P |
is the universal lower bound, and that unless L ( P)is finite, /7
has no upper bound in general.

We digress briefly to interpret L { P)and /1. Since RePis
arelation, § (R)= {R] = {SeP:S<R |(closureof {R })is
the “proposition” or idealization consisting of all (nonequi-
valent) relations in P that “imply” R. Since E=Y.0(R)
(see Ref. 22), E is a set of relations plus their antecedents. The
elements of L ( P) thus effectively summarize sets of proper-
ties. This ability is desirable in a theory—i.e., to combine
consistently large numbers of experimental features. A parti-
tion e/l is asubdivision of L ( P)into a finite set of “orthogo-
nal” sets. It is natural to consider such a partition as an
experiment whose outcomes are manifestations of the prop-
erty. Each manifestation is a summary of more “‘elemen-
tary” measurements that “imply”’ relations comprising the
manifestation. Such an interpretation does not disagree with
typical physics usage, especially in regard to observables in
physics (countable partitions!).>* One may look upon the ele-
ments of P as “outcomes” and the elements of L ( P) as
“events” in the language of probability theory.

Recall’’ that.7 C L ( P)isaco—idealif(a) Ec.5", XeL ( P)
and XC E implies Xe.7; and (b) E, €7, n = 1,2,..., implies
Vr_,E,e7 . Notethatif E Fe7, EnF'ec.7 as well, which
suggests that any o—ideal is analogous to a o—-ideal in Bool-
ean set theory.*® We thus are led to define a generalized mea-

T, < 7, iff for each Eerm|,

sure as a mapping .7 — R* = [0,c0] such that.7 isa o—
ideal, u(é ) = 0, u(E ) = p(F) = 0 implies (EV F} = 0 and

/'L( v:~ lEn) = i /“{En )’ En‘LEm . (6)

n=1
This definition is a natural extension of Piron’s* definition
4.38, the distinction being that Piron defines 2 on a “tribe””:
.7 such that E€7 implies £*c7 and.7 countably closed.
In special cases of interest, the o—ideals reduce to tribes, and
the concepts coincide.

Viewing the lattice L ( P) as an ordered set of proposi-
tions,*" one naturally discovers certain minimal require-
ments for a local information measure*' on L { P). First, it is
natural to demand that no proposition have negative
information:

J. L(P)> R* =[0,00]. (7a)

Next, if ECF, then proposition E is more specific than £ in
that it contains fewer relations (from 2). Thus, as one ex-
pects, the more specific proposition have the more informa-
tive value:

ECFimplies J (E)>J (F). (7b)

Finally, as P is maximally unspecific, it should have the
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minimal information value, while ¢ (being absurdly specific)
should have undefined value:

J{@)=o; J(P)=0. (7c)
We have studied properties of such information—defined by
(7)—in Ref. 22. In this paper we will restrict attention to the
subclass of informations which are (weakly) o—composible.

An information is said to be composible*' (weakly) if there
exists a real-valued function F such that

JAVB)=F[J(4)J(B)], whenALlB. (8)
We are motivated largely by the consequences to consider
informations which are composed by ROC’s:

Definition 1**:

A regular operation of composition (ROC)is a function F
satisfying:

F R* > R* is continuous,, (9a)
Fixy)=Flyx), {9b)
Flx.F(yz2)] = F[F(xy)2], (¢)
F(x,00)=x, (9d)
x <y implies F (x,z)<F (y,z) . (9e)

In fact, any composition map must satisfy (9b), (9c), (9d),
and (9e) on the set of values defined by
. (J)={{x,X,..x,):A,As,..A, €L ( P),A,14;,x; = J (A, )}

(10)

for the appropriate n> 1. Condition (9a) extends the domain
of Ffrom I',(J)toall R*? and furthermore makes Fa
topological semigroupon R* . Since J(V?_ E,)
=1lim,__Fy [J(E,),J(E),...., J(E\)] exists, (Where
F\x)=xand Fy(x,,...x5) =F [Fy_ 1 (XpeesXn_ 1 X 1)
is o~composible under F. Incidentally, (9) implies that

Fxp)<inflx,p) . (11)

Among the remarkable properties of ROC’s is the fol-
lowing characterization theorem**:

Theorem 2: Let A be a closed subset of R* so

R* — A =uy, (a,,b,)—I = ¢, is finite, or countable. Let
2:€00,0],8,:[0,a; ]—[a,,b; ] be strictly decreasing, continu-
ous with 6,(0) = b,, 6.{/z,) = a,. Then

Fuyk={hmxyh (eyle R™Z —ula,b,) 12

é; [07 l(x) +6. l(y)]» (an’)e[airbi ]2
is a ROC with A = A (F) = {xe R* :F(x,x) = x|. Here
= P el0]

e x>z
Conversely, any ROC is of form (12) with A = A (F).
Perhaps yet more remarkable is the intimate associ-
ation of ROC—composible informations with certain ideals
and measures onideals. Because L ( P)lacks the essential dis-
tributivity properties of a Borel algebra, the beautiful results
of Ref. 42 apparently do not survive intact. For this reason

we extend these results (as best we can) in the following
somewhat unaesthethic theorems:

(13)
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Theorem 3: Let AC R™ be closed with 0, 0€A,

R* — A ={,{a,b,) To each xeA, associate a o—ideal .7~
such that for all x > 0, 7" is proper, 7, = L ( P), andx<y
implies .77, 2.77,. On each T, t€l, assume a generalized
measure u;:.7 i—»[O,,u, ] such that fz,€(0, 0] and
u:[.7 N7, 1 = 0. Let 6,:[0,2, ] —[a;,b; ] be any continu-
ous, strictly decreasing function with 6,(0) = b, and
6:,(f1;)=a;. Letz,{4 ) =sup{xeA: Ae7 .} and
2,(A) = inf{xed: AT ).

Then

Jd)= {ZI(A ) if zy(d) =2z,(4)
pi(pi(4), if z,{d)=a, <b, =2z,4)
is a o—composible information on L ( P).

Proof: Note thatJ (4 )e[z,(4 ),2,(4 )] by construction and
that (z,(4 ),z5(4 ))nA = ¢ ifz,(4 ) < 2,(4 ), since (@;,b,)nA = ¢.
Clearly J is defined on all A€L ( P). Since g7, for all xeA,
2,(¢) = 0 s0J(d)= wo;since Pes ,butforallx >0,PET ,,
thenz,(P)=2z,(P)=0and J(P)=0, orelse
J(P) = ol flo) =ay =0, if z,( P) <z,( P). Now for
allx <z,(B),Be.7 . and 4 C Bimplies4e.7 ,,s0z,(B)<z,(A).
IfJ(4)<J(B) z/{4)<z,(B), so
a; =2(4)=2(B)<J(4) <J(B) <z,(B) = z,(4 ) = b,. But
1,4 )<p1,(B ) implies &, p1,(4)>¢,(1,(B)), 50T (4)>J (B).

Now A4,Be7 _ (xeA )iff AV Be7 ,,sothatz 4V B)
= min{z,(4 ),z,(B)}<J (A V B)<min{J (4 ),J (B )}
<min{z,(4 ),z,(B)]. For the sake of definiteness, assume
z,(4)<z,(B) (A4LB) so the following cases are possible:

(14)

(Nzd)=z(B)=2z,d)=a,<2(B)=b,
2)z)d)=z(B)=2z,B)=a,<zld)=b;,
B)zid)=2z(B)=a,<z,4d)=2,B)=b,,
4)z,(4d)=a,<2,(B)=2,{4)=2z,(B)=b,,
(5)z,(d) =z\(B) =2z,4) = z,(B),
(6) 2,(4 )<2,(4 )<z,(B )<z,(B) -
In Case (1),J(4)=J(AVB)=a, J(B)>a,s0J(AVB)
= inf[/ (4 ),/ (B)]. In Case (2),J(B)=J(AVB)=a,J(4)

»a;,s0J{AV B)=1nflJ(4),J(B)]. In Case (3), J(4),J (B),
J(AV B)e[a,b,1;J(AVB) =4, i(4) + p,(B)] and
J(A)=0u;(4)),J(B)=6,(u;(B))(definition of 6, and ,),

soJ(AVB)=4,[6, 'J(A)+ 6, J(B)]InCase(4),J (4),
(AVB jela;,b,1,J(B)=b;,80J(AVB)=¢,[ n.{4) + 0]
—J4 mf‘[JA]JB)] In Case (5), x = J (4 V B)
=J(4 ) J(B) =inf[J (4),J (B)],wherexé(a,,b;).inCase(6),

J(A),J(AV B )e[z,(A 2,4 )1, J (B }>2,(4 ). Thus, either z,(4 )
=J(A)=J(AVB)~27( )or

JAVB)=¢[p(d4)+0] = Jifa, =z,(4)
<b, = 2,(4)<J (B). Thus, J (4 VB) FIJ(4)J (B)] where

Fis defined by (12). Since by Theorem 2 Fis a ROC, J is
o- composible. Q.E.D.

Comment:XfJ (A ) < X,,z,(A ) < x,implies4¢.7", . Thus,
Ae””, impliesJ (4 )>x,. If A€, andJ (4 Je[a;.b; ] by (14}
w,(A)=0;"J(A). Because u,(4 )<,u,, and 1, is o-additive,
Sy getan 00 JE,)<@, for every sequence of mutually or-
thogonal elements of .7 .
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Inthefollowing theorem, if L ( P }isorthomodular(15)is
satisfied, while if L ( P) is distributive (16) is unnecessary.

Theorem 4: Let L { P) be a complete orthocomplement-
ed lattice such that

A,BeL ( P)implies there exists DC A, EC B such that
AVB=EVD,ELD. (15)

Let I', = {AeL ( P): There exists a countable partition

7 (A)suchthatforall E, er_(4),J(E,)>x}, whereJis an
information on L ( P) o—composible under ROC F. Suppose
the ROC is defined by (12), where

fi,= o or else J(4)=aq, implies A¢I, icl. (16)
Then there exists a family of o~ideals .7, xeéA (F)such that

=L(P)DT,D7,2-D5 . (x<y (17

and on each .7, there exists a measurey;:7, — R™ . The
ideals and measures determine J by (14).

Proof: If xeA (F), define 7, = {AeL (P)J (4 )»x}. If
Ae7 ., XCA (XeL ( P)), then J (X )>J (4 )>x implies
Xe7 ..By(15)and (9),if4,Be7 ,,JAVB)=J(EVD)

= F[J(E)J(D}]>F (x,x) = x,sobyinduction, E,€7 , implie
J( V _+E,)»x for all N>1, and by o—continuity,
=_E, €7 ;507 ., x€A (F), are o—ideals and (17} is im-

mediate by construction

Define on .7, (i€l )

0, if J(4)>b,
pild)=140.J(4), if Ael’, and J{4)ela, b)), (18
w0, if del",, J(A)e[a,.b,)

By definition of .7, xeA {F), the upper line of (14) holds. In
the lower case, J (4 Je[a;,b; ) if Ael’",, , by (18)

=06, ud)] =¢, [ u:{4)], while if 4¢I",,
¢ [ nii4)] =a,. ButAéI“,,, means thatJ (4 ) = a,,for other-
wise (J(4)>a,),Ad=AN IV IV - (414 forall AL ( P))
implies Ael", . Thus, (14) holds.

Now u;(¢) =0, since J (¢ ) = oo 2b,, for all iel. If
EFe7, andy,(E) = u,(F) = 0, then by (18)J (E )./ (F)>b,;
(15) implies J(EV F) = J (4 V B)

= F[J{A4)J (B)]>F (b;,b;) = b; (b;€A (F)), sop EV F) =
also. LetA = V*_|E,, E,LE, Incase Aél, ,some E,

must satisfy J (E, ) = a,. Thus, u {4 )= oo = Z7_ u,(E,).
Ifdel’, and 4, = oo,
JAd)=a, =¢, [EJ(E,.be[a,,b,; 6, JIE, )]’

where the sum is >, = . But

z MI(EH) = ILLI(EH)

n=1 J(E,ela.b)
- S 6, VE)+ (o0) = o

E. el JE)e[a.b) E,4r, JE,ela,b)

sothat u,(VE,) = 2u,(E,) = «. If Adel’, and fi; < o0, by

assumption (16) J(4)>a,. Thus 2, (0000 T (E,)

=327 ulE,) <g;, and

¢.-[ S 6 ‘J(En)] X E0] =Iu).
J{E Jela.b) n=1

Thus, u,(4) =68, 'J(4)=2r_,u,(E,). Hence, (18) defines
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a generalized measure on 7, . Q.E.D.

These theorems indicate that there is a very deep rela-
tionship between ROC~composible informations and mea-
sures. We point out that these results may perhaps be
strengthened: However, they suffice for our present pur-
poses and we have not attempted to study further interesting
properties (such as uniqueness of the measures).

lil. GLOBAL INFORMATIONS

In this section we consider an explanation of “‘entropy”’
as the global information associated with L ( P} (complete,
orthocomplemented lattice) relative to a finite set of ““local”
informations, each ROC—composible. Although many of the
concepts we employ are well known (lattice informations,*!
entropies as functionals of informations on Borel algebras,**
measure-related entropies on lattices,?® entropies relative to
experiments’) our synthesis and generalization of these ideas
appear to be unique. In order to maintain universality we
seek only minimal (natural) properties of such “entropies”
and do not attempt to characterize the special cases we intro-
duce as examples. On the other hand, we sacrifice some gen-
erality by considering only ROC-composible informations
on L ( P). Webelieve nevertheless that the resultant compro-
mise is of considerable interest.

Let us denote by Z the set of all informations on L ( P)
which are ROC-composible. We do not specify any ROC,
however. We begin by considering properties of the informa-
tion content of an experiment (partition) 7el7 relative to a
finite vector, J = (J,J,,...,J ), Of informations, J,,€Z. We
denote by F the vector of corresponding ROC’s,

F = (F,F,,....,Fy,). Our first axiom is simply that the infor-
mation content of 7 be a real-valued functional of the local
informations:

Axiom 1:

HEYZM SR, zell.

Axiom 1 generalizes Ref. 44, which considers only Borel
algebras and the case M = 1. Other axioms from this paper
are meaningful in general. Indeed, the trivial proposition,
PeL ( P),satisfiesJ ( P) = Oforall JeZ, soitisnatural that the
global information of 7, = {@, P} be zero:

Axiom 2:

H 5": ZM{0}.
Our next axiom is not so widely accepted,** but we believe
that it is in fact most natural to assume that an information
on experiments not depend on the labels of the manifesta-

tion. Thus we assume
Axiom 3:

HYQ =% [{JE Y-, ];
DN ({x,:n= 1,2,.N}x,e R M]—»R,

where J(E, ) = (J|(E,), JL(E,),.... Jy,(E,)), E, €. That is, the
information of me/T relative to J depends only on the set of
respective informations of the manifestations of 7, and not

on their order (index n). This axiom defines “symmetry”** of
H ¥ (under permutationsofn = 1,2,....N ). Weassume as well
that the function @ §, has as domain all sets of N M—tuples of
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reals; we do this primarily for simplicity, but this hypothesis
also reflects the fact that the global information is a function-
al of the JeZ ™.
Recall that /7 is partially ordered under “refinement.”
It is natural to suppose that the more refined experiment has
greater global informative value:
Axiom 4:
7, <, implies HY ,<H7 .
Again, although the order < has varying definitions, the
essence of Axiom 4 is well accepted.>*¢
Now it is not inconceivable for some JeZ ™ that two
partitions be related as follows: 7y = {E,E,,....Ey |,
my = {F ,Fy...Fy 1}, HE,)=IF,), n=12,.,Nand
J(Fy, 1) =(0,0,..,00). In such a situation, since Fyy _ , is,
informationally speaking, impossible, it is natural to demand
that 7, and 7, possess the same information value. More
generally, expansibility** takes the form:
Axiom §:
Dn . x40 V{{0,m00)} =P % [{x, WY . lx,e RV ™
Finally, consider two experiments defined by
my = (E\,E,..Ey} and m, = {E|V E,,E,,...Ey}. Clearly
T, < 77; in general
HL Q) —H} () =A4% [JE)JE)NEVE),
but the F~composibility of the J,,’s means that
JIE,V E;) = F[J(E,|)J(E,)], where F(x,y) = (Filxipi)
Fy(x5,02),.0 F o (X4g,V 5 )J—a semigroup operationon R+ M

Then, branching** means
Axiom 6:

oLlix. 1N J—o%_, L{F(x o) olx, §7 -5 ]
=4 i’[{xhxz}] ’

where 4 §, is the information gain.*

The properties embodied in Axioms 1-6 are certainly
minimal, natural, and (excepting Axiom 3) generally accept-
ed. Other axioms involving algebraic independence*® do not
have a clear meaning in our general context, and will be
avoided. We define the global information of L  P) relative to

JeZ M by
Axiom 7:
HY= supHF .

well

Since /I generally has no upper bound, this is the next best
thing to taking a “finest partition” of L ( P). Even such an
axiom has appeared in at least one context.’

The following theorem cites sufficient conditions to re-
present a global information—henceforth “‘entropy.” The
conditions are probably necessary as well (in case M = 1 this
is known®), but we will not attempt to verify this very te-
dious result.

Theorem 5: For any F = (F,F.,....,F,,)—F, a ROC,

M < wo—Ilet

o' R* ¥ [0,x), (19a)
@ (00,00,.000) =0, (19b)
@*[F(x,y)]1 <o F(x) + @ Fly) . (19¢)
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Then, if J = (J,,J,...J ., =/, is F,,—composible.on L ( P)

HYJ) = —¢%(0,0,...0) + 33,9{ iw“[J(En)]] (20

n=1

is a global information of L ( P) relative to J.

Proof: Note that (20} is the 7—supremum of

HYY) = —9"0,.00+ Y ¢ [JE,)]. 21)

n=1
Thus we must show (21) satisfies Axioms 1-6, with ¢ de-
fined by (19). By (19a) it is clear the (21) satisfies Axiom
1—N, < «.Since J( P) = (0,...,0), by (19b), (21) satisfies Axi-
om 2. Certainly (21) satisfies Axiom 3, as the sum is commu-
tative. By {19b) Axiom 5 is immediate. Condition 6 is satis-
fied since

ATHIENIE)N] = | — @7(0,..0) + Z<P (J(E, )}

=00+ " WEVE) + 3 o "WIE,]

= @"[JE )] + "V (Ey)] — ¢ F[FI(E,)I(E)] - (22)
That is, the difference depends only on J(E,) and J(E,). By
(19c) we see that 4 ¥({ J(E,),J(E,)})>0. If 7, < m,, there exists
achain 7 <7, <7, < <7 <my, withN, =N_ +1,
N, =N, + 1,etc, sothat employing {22)and its non-nega-
tivity successively yields Axiom 4. Q.ED.

The next result essentially defines the effect of symme-
try on the “entropy.” Here Aut[L ( P)] is the group of all
automorphisms of L ( P }—these preserve orthogonality and
are complete (¢ — ) morphisms.

Corollary 1: Let & = {geAut[L ( P)]:g(P) =
HY is invariant under %

Proof: From Axiom 7 it is evident that any transforma-

P}. Then

onto

tion IT— IT leaves H Y invariant. If ge ¥,
gvVY_(E)=V1]_gE,)glE)gF)if ELFand asg( P)

= P, then g(m)ell for each rell. In addition, if 77/, for each
ge¥ thereexistsg ' and thus g[g ™ ‘()] = 7, showing that g
maps /T onto /1. Q.E.D.
Comment: If 7 is a subcomplete, orthocomplemented
lattice of L ( P) with maximum M,  then &
= { geAut[ I lgM ., } keeps invariant that portion
of H" that concerns only . This will be highly significant,
as we show in Sec. IV, Note that transformations other than
automorphisms may leave H  invariant, but these revise the
structure of the system and thus are eliminated.
___The next result indicates that the semigroup F on
R* “induces a potentially useful decomposition of H ¥.
___Corollary 2: Let A (F) = X, _ A (F,,), and let
R — A (F) =y [XY_ ,b ,,)]— where

l:(ll't"'"’lM)andI: Xf‘r’l’:llm’ R+ —A( m)

=, 1 (a; ,b, ). Define for ¢" satisfying (19)

= [EeL(P)J,(E)ela, b m=12...M}, (23a)
S=L(P)— 4TI, (23b)
1472 J. Math, Phys., Vol. 22, No. 7, July 1981

GmW)= 3 @"[IE], We2r. (23c)
Then the globnal information (20) can be written
H') = = ¢"(0..,0) + 3 sup G (a7 ()

+ sup G (mS) (24)

N.B. [EeL(P)J,(E)>a, m=12,..M}=c_ 7,
with 7", = {EeL{P}J,{E)>a, |. These are o-ideals.

Proof. Clearly (21) can be written as

HEJ)= —¢70,.0) + SG[mT ()] +G(mS).  (25)

iel
Thus, H7(J) is effectively the sum 2, G (m,), where 7 is at
most countable. The problem is therefore to show that

sup[EG#)] z[iggc(ﬁn)], (26)

well | ney nen

from which (24) follows. Trivially,

sup ZGF)] E[SUPGW)] {27)

mell | ney nen

For every € >0 and N> 1, choose 7}, in /T such that
€/N> sug G(m,) —Glmhy.). (28)

Then, it follows by ordering 7 naturally that

sup 3 Glm,)+e> 3 (Gl +e/N]

mell ne 1
N
> Y supG(m,)=Vy, for all N>1,e>0. (29)
n=1 meil

Clear]y Vyand W, = supE,, _, G (m,) are nondecreasing in

,as G (7,)>0, so that—remember 77 is at most countable—
Lim V, = Z sup G (7,)<€ + Lim W,
Nl nen mell Nl

= G| 30
€+ sup [ Z, (m )] (30)

As (30} holds for all € > 0, this proves the reverse inequality
to (27) and thus (26). Q.E.D.
The next result is helpful in expressing entropy on cer-
tain atomistic lattices.”®
Lemma: Let L ( P) be atomistic such that

for each EEL (P) there exists an at most countable set of
mutually 1 atoms A4, such that E = V 4,. (31)

Then, with IT * the class of all countable partitions of atoms
7* =1{4,:4,14, ,4, atoms, P=V7_,4,},
HFJ)< sup HE(J). (32)

If we also assume that

Lim H

N—oc
v = {4y Ay 3V
then equality holds in (32).

¢ (3)=H7.(J),myell such that

n;NAn}’ (33}
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Proof: If well, there exists w*€lT * such that 7 < 7* by
(31) defined by U7, {4,,:me# ,},E, = V ,.c ».A,,. Thus,
by axiom 4, H ¥ (J)<HE., (J) and (32) results. For each
m*ell *, consider the sequence 7y = {4,4,,..Ay _ 1,
V ,onA, A, em*}. Clearly wyell, wy <my . <m*. By (33)
and the fact that H % (J)<H "(J),

HE (N)<HFY(J), for all 7r*ell * (32')

so that equality in (32) is apparent. Q.E.D.
Let us first illustrate the above results in the case M = 1.
Assume @ (x) has the form:

_ -1
Flx) = [thf.-(X), X=0,(x),
0, otherwise,

xela,,b;), (34)

where ¢,:(0,2; ][0, o) is nonincreasing and ¢,( iz;) = 0. It
is trivial to verify that (34) satisfies (19a) and (19b), while (19c)
follows since, because ¥; is nonincreasing,
(X + Y)WlX + Y)<X¢,(X) + Yo (Y), X, Ye(Ou,)

with X + Ye(0,7,) . (35)
Assume the conditions of Theorem 3, soJ (E )e(a;,b;) implies
J(E)=0,[ u(E)] withp1;.7, —[0,2;] and y,(E ) = O for
all Ee7",n7, . We write (24) as

Sspl, S wEwlmEN]. 09
iel ™M | gemy,

Let us further suppose that M, = V {E€7 , }e7, and
that the supremum over 7.7, may be replaced by the su-
premum over well;, where II; consists of all (finite) parti-
tions of M, with components in .7, . In particular, let each
7, be an irreducible propositional system, .7, =~ 2 [#7]
(lattice isomorphic) the closed submanifolds of a Hilbert
space. Then .7, is atomistic and (31} holds; moreover, our
measure coincides with the CROC-measure of Piron,*’
which reduces to (we choose &, = 1,iel )

RIE)=TtWil, Ee7,, Eelge?[#1,  (37)

where ﬁ’, is a density operator on . Hence, (36) becomes

H'J)= 3 sup

el mrell*

H"J)=

S T [l T P )1] 09

where E, em* are atoms. Let p/, (7*) = Tr, V?’,ﬁ £, Then,
each i—term in (38} is essentially the supremum over all
“measurements” of a generalized “Ingarden~Urbanik en-
tropy.” To see this, let ¢,(z) = — Inz. Then clearly
#,:(0,1]—[0, o) is nonincreasing with ,(1) = 0. Moreover,
(33) is satisfied since in fact for all /ef:

N1

Lim "; — T, (WAl Yn (Wl )
+ ( ~Tr, Wi, WTe Wil )]
n=N"" n>N""
= — STl MW, (33)
n=1
since for large enough N,
= TeW T , (T, war )
n>’\ n}l\ "

can be made arbltrarily small. Thus (38) becomes
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8

HFJ) = 3 sup [

el 1r‘el'l hd

AR ln(WIIE,]]

n=1
>3 (=T, Wini,). (39)
el
See Ref. 1, p. 255/.\
Expanding W, in terms of its eigenbasis (%),
) = Y p (w8,
m=1

=Tr 1l Il , F,end,E,em*.

Note that T, (7*) is a non-negative, doubly stochastic ma-
trix. If we assume I';(z) = zy,(2) is convex, then

#)=3 s S 1| 3 gt n(w*)]

iel mell} , m=1

<3 s | S5 Tl o)

ic. 1 mrell ¥

=3 > L{pn(m3). (40)

el m
. . o~ .
But since p,, (7§) are just the eigenvalues of W, and since
waell ¥, we have from (40)

HU)= 3 Tl W), (41)
el
For properties of Trl" ( V/I}), where I is concave, see Ref. 47.
Our next illustration is for the case M = 2. Again, with-
out any real justification, let us assume that @* has the form

#f(x,€)

_ {Wij(x7§ ) xE)= xeAzj = (ai’bi)x(aj’bj)’(i:j)dlxIZ
0, otherwise . (42)
If we specify that i <j implies @, < a;, the conditions (19) re-
duce to
(x)e[0,00) for all xed, (i jlel,X1,, (43)
V,(x) + ¥,ly)> ¥, (Fixy)]l xyed;, ()X, (44)
V(X)) + Y ly)> ¥, [Fiix )€ ]
J<kixed;, yed,, (Fixy)E)ed; ., (45a)
Wij(x) + ij(Y)? Wij [x,F,5(Em)]
i<kxed;, yed,, (xFy§ned, . (45b)
Note that F\(x,y)e[a,,b;), if x,pe(a; b;) in general (likewise for
F,).

! We further simplify matters as follows:
IL={0,0};6=0%0c) o0€0,), <, {46)
Yolx.£)

_ oY(X/0),X=06;"(x), xela,b,); o€0,5) )

0, otherwise .

Note that X€(0, i,)if x = 6,(X )e(a,,b,). The constraints (43)—
(45) become:

%,:(0,00)—[0,00), i€l (48)
o (X /o) + 1Y /T )20+ 7 WX + Y)/(o+ 7)),
X,Y.X + Ye(0, 1,); £,7.€ +1€(0,5), (49)
oYX /o) + (Y /7)

20+ 7WX /o + 7)) if i<y, X0, 4,),
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Ye(0, iZ));
A degree of justification for the arbitrariness of choices (42)
and (46) can be felt from the following results.

Lemma: i,(z) is a convex, continuous function ¢,:(0, )
—>[0, 0 ) and

a,7,0 + 7€(0,0) . (50)

inf ,(2)>4,(0%) = Lim y(e), i<j (51)

ze((), oo

if and only if ¥, satisfies (48)—(50), for each ief.

Proof: Clearly (48) means t;:(0, oo ) —[0, o0 }—bounded
everywhere. Condition (49) is equivalent to convexity of ¥,
which because ¢, is bounded, means continuity as well in
(0,0). (Ref. 48, p. 91.) First, for z, > z,, z,€(0, 0 }, choose
Xe(0, 2;/2) and 0€(0,6/2) such that z, = X /o—as X /o
ranges over all (0, « ) this is always possible. Let
Y = 0z, = (z,/2,)X€(0, 1;/2) and take = o in (49). Thus

Yz + ¥(z5)22¢, [(z, + 2,)/2] for all z,,2,6[0,) (49')

so that by Ref. 48 (page 70) ¢, is convex.
Conversely, if ¢; is convex, then for
2,,2,6(0, w0 ),0,7€(0, o ),

wle)+ e Tz + —z)]
o+T o+ T o+T o+T

so taking z, = X /o and z, = Y /7 we obtain (49) for
X, Y. X + Y€(0, &,) and o,7,0 + 7€(0,0 ).

We show that given ¢, are convex and continuous on
(0,0), (51) is equivalent to (50). In fact, we show that

,(07) = supflo + 7YX /o + 7)) — oY (X /o ):
Xe(0, i,), 0€(0,5 ) such that o + 7€(0,0)} . (52)

Let X€(0, i£,), Y€(0, z;), o,7,0 + 7€(0,5 ). Let
X =X'+ 6 where X', 6€(0, iz;). Then by convexity

o+ 7, [X/o+7)] — oy (X /o)<y, (X /o)
+1Y,(6/7) —o¥(X /o)
=0, (X —8)/c)—¢(X/o)] + 7¢,(6/7). (53)

Now |¢,((X — 8)/0 ) — ¢,(X /0 )| — 0 by continuity, so for
each €> 0, there exists 6€(0, iz;) SSC’}(')I that
—eo<o[Y((X —8)/0)— ¢, (X /o)]<eo
—er<r[Y;(07) — ¢, (6/7)]<€'T.
Take € = min (€,€’) for b.
(o + 7)1 [X/lo+7)] — oy [X/o]<e

SO

(o+7)+74,(0"),

(@ + T WX /o + 7)) —od,(X /o )<79,(07) . (54)

Since for X = 0™ equality holds in (54) we obtain (52).-Now
(50) is equivalent to

(Y /7)o + 7 WilX /o + 7)) — o, (X /o),
vXe(0, i;),Ye0, 1;),0,7,0 + 7€(0,5 )

if and only if

Y /727, (0%), 7€0F), Yel0,i,),
if and only if
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(Y /7)>¢4,(07), re(0,5), Ye(0,4),
if and only if

%(2)>¢,(0"), VzE0,0),
if and only if

inf{,(z):z€(0, 0 )] >4,(07) . Q.E.D.

The following function ¢, satisfies the Lemma’s
conditions:

Y,(z) = zlnz + (1 + i)/e, for all z€(0, ). (55)

Note that ¢,(07) = (1 + i)/e (0lnO = 0 convention).

Assume for J,,J, the conditions of Theorem 3, and that
M, =V {Ee7 6 }e7, andleto, =o|, (restrictionofoto
7 ,,)- Then, using (24) w1th IT, the set of partltlons of M, in
7, again replacing {mn.7", }

HY\ )= 3 ki, (56a)
i€l
E,)
h; = sup E, 1, [ (56b)
el [a.wgmm (En)
#AE(0, 1)

In order to discuss classical and quantum physics, we further
assume that each.7", is a CROC for which only discrete

superselection rules are present. We assume also that y, is a
stateon .7, (u,M,) =@, = 1) and u,;=o,. Each CROC is
associated with a W *—algebra ./, of observables on a Hilbert
space #; and “state” N, on.«/ . Indeed, there exists a homo-

onto

— L, = nAF ), where ¥ (F¢,) is
the lattice of projectorson %", so N, [v,(E )] = u,(E ) relates
the two types of “states.” If ¥, happens to be an isomor-
phism, then there is a complete algebraic representation of
... We henceforth assume this holds.*’

We also assume that the measure o, corresponds to a
faithful, normal, semifinite trace, m,, on ./ ;. [See Ref. 1, p.
258, and Ref. 50.] That is, m, [¥,(E )] = o,(E ) forall Ee7 " .
The main characteristic of such a trace (aside from certain
convergence propertles) 18 its umtary invariance:

m, (U*IIU) m(IT)for all unitary Ue.o, ,and alllle " ,. Of
the state V, we demand that there exist W >0in ., such

that N, (X) (WX) for all Xe. o/ .. We can now describe
h, in terms of partitions of projectors in .%";:

h;=sup! >
i L m(P)#0,

[Note that from o,=u,, o;(E) =0iff u,(E) =
wlE)= fi, < oo iff u,(EY)=0iff 0,(E') =0
iff 0,(E ) = 0, < . Thus we can eliminate the conditions on
w4, in (56b).] Finally, let us suppose that ¢, (W) is “m,—inte-
grable,” i.e., m, [¢;( W )1 < « . Under these many conditions
we have that &, = m, [¢;(W,}]. We prove this in the follow-
ing Lemma (dropping the 1ndex i for convenience.)

Lemma: Let m be a faithful, normal, semifinite trace for
a W *—algebra ./ with projection lattice .#” (a logic). Let 7 be
as normal state on .o/ such that there exists self-adjoint
We. 7, W> O such that n(X) {WX) for all Xe./. We as-
sume 1:(0, o0 (0, o0} is convex and continuous, and
m[Y(W)] < «. Then

morphism y,: 7

a;

m, (B, [m, (WP, )/m,-(ﬁ")]] L s7)

0, but
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m{fW)) = sup S mP)y[m(WP,)/mB,)]. (58)

7 m(P,)#0,0

Proof: l'/i}being positive and self-adjoint,
W= f dP(w)w (59)
0
is its spectral resolution; we define (') by

i) = [ dPo) v (60)
so that with m3(4 ) = §, dmP(w),AeB (R *):

mlY(#)] = f dm[P(w)] dlo) = f dmg da).  (6])

Since ¢ is convex and continuous, its domain decom-
poses into two disjoint parts: D, on which ¥ is monotonic
increasing, and D, on which ¢ is monotonic decreasing.
Thus, using (61) we obtain

A 2
mlyW) = ¥ dm g, )
S=1J% YD)

2

= sup my[4,nyp~ (D,
Jg:l fa,ny (D)} [m,,;[a,,mme,)]#o,m W[ ! '/’ ( j)]

X inf{ $(ew):wed ,ny~"(D;)} ] ) (62)
The restriction to elements of the partitions of R * with
my [4,0~ '(D;)]#0, » follows from the integrability of
$4 npydmy Ylw) while the supremum representation of the

integral is standard. (See, for example, Ref. 39, p. 115.) On
the other hand, for all AeB (R *) we have

m,;,[Aﬂz/ﬁ'(Dj)]inf{ngﬂzﬁ*'(Dj)}< L , I(D]dm,;, 5}
<my [Any~ (D)) ]sup{wedry (D))}, (63)

where m; [Any™'(D;)]5£0, . Exploiting the monotonicity
of ¥ on D; yields

inf{ Y(w):wedryp™ (D))}
<ol [ dmio/matans=0))]. (64)
and: (D)
Thus, by (64) in (62) we get

M) < 3 sup K [{4,00”(D))}]

j=1 {4.n¢ (D))
= sup 3% K (14,07 0))1], (63
where
K([{4,n¢y~'(D)}] = 2 my [4,n~'(D))]

my[d,ng (D)]5#0, 0

Xtﬁ[f dm,;a)/m,;(A,,mﬁ“(Dj))]
A,0¢ {Dy

and an argument as in Corollary 2 to Theorem 5 applies. But,
{4,0¢"(D;)} is a finer partition of R * than {4, }, and

{ Py 22y = Sapv 0,dP (@)} is among all projector parti-
tions {P,:n = 1,2,...,N_}ell, so that

myW)l<sup

m(PY#0,

m(P ) [m(P,W)/m(P,)]. (66)
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On the other hand, for any projector P'such that m(P)#0,

v i"g;?] = o [ am 1PPiwl10/miP)

< fdm [PP ()] iw)/m(P) = m[PYW))/m(P), (67)
using Jensen’s inequality. Employing (67) with (66) yields

mlgW)<sup 3 m[B,Jg[m(P, W)/m(P,)]

7ell (P )70, 00

<sup 3 mB ) ]<m[UW)] (68)

T miP)F£0,m
since 2,5 | 0, I/’\,, <[. Thus, we have (58). Q.E.D.

The above result is based on the proof of Theorem 1.1 of
Ref. 51, a classical version of the Lemma (without the re-
strictions 1>0 and integrable). Our “entropy” is thus given
by

HYW )= S m, [4,(W)]. (69)

iel,

In case 0;(M;) < « and ¥,(z) is given by (55), this becomes

HYUL) = 3 [m (W nW,) + (1 + im,(f,)/e]

iel,

= > [=S(W)+ (1 +im(I;)/e], (70)

iel,
where S ( I'/I\/,.) is the “Segal entropy,” which includes both the
{classical) Gibbs—-Boltzmann-Shannon entropy and the
(quantum) von Neumann entropies as cases.’” If, however,
0:(M,) = oo—our result fails since m, [¢;,(W,)] = o >h,. In
words, the *“global information” is essentially the ‘“neg-en-
tropy” plus the prior measure of the space.

Since our purpose in introducing these illustrations was
simply to indicate the relationship of the *“global informa-
tion” concept to typical “entropies,” we will not discuss fur-
ther properties or problems associated with expressions like
(70). Rather, we postpone such discussion until the axiom set
is completed by an appropriate description of the informa-
tion of compound systems.

IV. A TENTATIVE INTERPRETATION

In the preceeding sections we have established minimal
universal criteria for a “global measure of information on a
‘theory’ L P) relative to M (generalized) local information
measures”—a quantity which by the examples we consid-
ered, apparently relates to a generalization of the neg-entro-
pies of physics. We have purposely avoided questions of
characterization, as the universal structure of L ( P)is not yet
fixed. Nevertheless, a truly surprising result appears already,
namely, the introduction of a natural semigroup F (on

R~ M) and its natural segmentation of the “entropy.” In
keeping with our policy of specialization, let us consider the
case M = 1. (The arguments apply as well to the M = 2 case
considered in Sec. II1.)

With g, = 0 < by<a, < b,<a, ...by the construction of
Theorem 3, we may write (24) as

H"(J)= LimHfJ), (71)

>0
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where we assume for convenience that ¢*'(0) = 0 and define
forall 1> 0:

HIU)= 3 sup

ielt>a; medf { JIE,Jela,b)

¢F[J(E,,}]]

+ 3 sl ? VIEN |02
iel b, el J(E Je[b,min(t,a; , )}

Note that H F(J) is constant for all te(a,,b,) and is generally

increasing otherwise. The connection between this mono-

tonic nondecreasing “‘entropy” and dynamics—the “*Second

Law"”—comes about as follows.

Let us model time by the positive real line R *. This
corresponds to the usual “initial value” problem of physics,
but can also represent an operational model of a general rela-
tivistic cosmos because of the finite age of the universe. A
dynamical object is described*® by

P(T)= V&o, P P=LimP(T), (73)
T vec

where V * is the direct product of posets (the cartesian set
product ordered in the obvious way?’). According to our

model, each P,,ze R *, represents the abstract definition—
i.e., the ordered skeleton of defining relations—at the *‘in-
stant” z. The structure may endure over finite intervals, i.e.
P, = P for all ze{a,b ), whereas it may continuously change
over other intervals. Since L (V ®*P,) = V ® L( P,)* these
comments extend directly to the abstract “theory” of the
“objects.”

Note that the *“object” thus described is a “dynamical
object.” In fact, this description is analogous to the world-
line models in relativity. Let us define

S = [V;KD,T\(éz]V ‘*’[ViTL(PZ}]QL(IT). (74)

Clearly each.7 ", is a complete sublattice of L ( P }(and thus a
o-ideal). Moreover, if T, < T5, .7y, D.7 4, is evident. If we

imposeon R " the semigroup F with idempotents of A (F'),
the ideals.”",,zeA (F) correspond to distinct components in
L(P), while V5, .7, corresponds to V 3, ,,L (P.},
where L ( P,) is the same structure for all z in (a,,b;). [Com-
pare with the usual physical model of Ref. 35 where the

L ( P,) are related to the mutually isomorphic Hilbert
spaces.] Thus, intuitively each choice of F (a real-line semi-
group!) induces a world-line model that consists of (open)
segments with constant entropy (and reversible unitary dyn-
amics) and of (closed) segments of constantly increasing en-
tropy in which dynamics is irreversible in that the physical
structure of the object changes. The “entropy” H [(J) de-
fined by (72) is the total information about the system up to
“time ¢ "—i.e., the entropy of the “world-line” segment de-
fined by [0, ]. As more data about the “world-line” is ob-
tained, the information increases towards the maximum re-
presented by (71).

Each “dynamical object” can therefore be associated
with a semigroup ( R *,F }—not the usual physical
choice’—and F — g—composible informations on L { P}
which are related to unitarily evolving measureson.”", (that
vanishon.”", N7, ). In order to see more clearly the signifi-
cance of this model, consider the example of an atomic sys-

1476 J. Math. Phys., Vol. 22, No. 7, July 1981

tem which decays at time T This system can be described by
L ( P,)—the lattice of projections of a Hilbert space defining
the atomic system— and L ( P,,}—the lattice of projections
of the Hilbert space defining the decay products. Then

L(P)=[V&orL(P)IV[VEL(PY)] (75)

is the “‘dynamical object.” Note the dependence on T:
A (F} = {0,T, » } defines the corresponding information. We
have.%, = L(P)and.7 . =~ V %, L( P,). A measure 1, on
7y acts, in fact, solely on V g, L { P4} since
o7 NS +—0. Note that uyl &, = 1) is a joint measure on
wio,rL ( Pq) whose marginals on L ( P, ), define the dyna-
mically evolving “states” W, (¢ ) on /%" ,. The same remarks
apply toge, on.7 ;. It should be appreciated that the present
description in fact extends the ideas of Piron [see Ref. 35, pp.
117-119] and explains the lattice theoretic model for general
irreversible systems in terms of information theory.

The potentiality of the present viewpoint revolves about
the interpretation of (71) as an information measure. If one
knew precisely J, F, and L ( P), (71) would be fixed and there
would be complete knowledge of the “object.” In reality, we
canonly inferJ, F,and L | P) from generally inadequate evi-
dence (or hypotheses). Thus, the role of information theory
in the inductive process, described in the Introduction, can
be exploited in the present context to seek estimates of J and
A (F), e.g., if we fix 6, and the distinct L { P,)’s. We shall
consider these applications elsewhere.

V. CONCLUSION

In this paper we have attempted to provide a universal,
intuitively reasonable axiomatic description of “entropy.”
Our approach takes seriously the information-theoretic in-
terpretation of “entropy,” and explores the universal expli-
cation of this concept in the context of what might be called
“‘algebraic measurement theory.” Although we have not
characterized our “‘entropy” species, we have found that
with sufficient effort one can (more or less) recover the more
common entropy formulas as special cases of our definition.
Besides this encouraging result, we have discovered a sur-

prising relationship between semigroups on R * and Pir-
on’s model for irreversibility. This, in conjunction with in-
formation-theoretic inference procedures, suggests a new
(and relatively simple) way to devise models, etc. for irrevers-
ible processes.

While this paper represents a first toddle in hopefully
the right direction, it clearly leaves much work to be done.
Most urgent, perhaps, is the incorporation of an appropriate
“tensor product” in the scheme to describe compound ob-
jects whose components preserve a certain identity: The “en-
tropy” of such a compound system will evidently suffer re-
strictions similar to the usual (sub-)additivity that favors the
logarithmic function in a central entropic role. Beyond this,
one can establish a “communication theory” between such
abstract “languages” which (among interesting social poten-
tials} could perhaps form the basis of a quantitative “meta-
theory™ to compare distinct mathematical theories or phys-
ical models. We have already spoken at length of the more
and more respectable techniques of information-theoretic
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inference which provide the means to use the full “data-pro-
cessing” potential of a theory to predict based on observa-
tions—as well as defining useful criteria for the relevance of
parameters within a theory. We anticipate that the “commu-
nication theory” envisioned will play a pivotal role in estab-
lishing the universal validity of a generalized MEF'” and in
removing the various difficulties it now suffers.

In closing, we note that our axioms already disqualify
certain candidates from the entropy zoo. In particular, we
have pointed out that the classical and quantal “entropies”
correspond to infinite global information (h; < s actually)
when the “prior” information corresponds to an infinite
measure. In fact, this illustrates the obvious: That in “real-
life” priors based on invariance over infinite spaces (Lebes-
gue measure classically, infinite Hilbert spaces quantally) re-
quire an infinite amount of information to specify. In reality,
one should account for the finite limits of the observable cos-
mos (operational view) by appropriately delimiting the
priors. Otherwise, one must apparently seck other formulas
for “entropy.”*

Noted added in Proof: We have discovered an omission
in conditions (43)-(45): Further consequences of Axioms 2
and 4 compel ¢,{z} in (47) to vanish. Deletion of these axioms
permits the representation (20) without — ¢ ¥(0,...,0), where
¢ ¥ has real range and (19¢) is not in force. In this case
¥,(z) = z Inzis admissable in (47) and, since non-negativity of
¥, is not essential in deriving (58) (see Ref. 51), we obtain
HY\J,)= —2,S(W,). If W2<W,,S(W,)>0[M.B. Rus-
kai, Ann. Inst. H. Poincaré 19, 357 (1973)] so that H ¥(J /)
is monotonic {(non-increasing) in *“time” (Sec. IV). The error
noted here does not effect any other result of this paper.
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