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Many-electron, many-photon theory of nonlinear
polarizabilities
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We present a many-electron, many-photon (MEMP) nonperturbative theory of nonlinear static and dynamic
polarizabilities of polyelectronic atoms and molecules. The time-dependent, dynamic polarization is treated as a
frequency-dependent problem with the Floquet assumption that the computed quantities are averaged over a cycle.
The MEMP theory defines a non-Hermitian problem whose efficient solution yields a complex eigenvalue to all
orders in the interelectronic and the electron ac or dc field interactions. When the real part is subtracted from the
unperturbed energy of the free state, we are left with the frequency-dependent total energy shift A(w). This is then
fitted to a polynomial expansion whose coefficients are the required polarizabilities representing the induced
polarization averaged over a cycle. Results are given for the a, a(w), and y, y(w) of H and of Li-. For Li-, only a had
been computed earlier by many-electron approaches. The dynamic a(w) was computed before in a quasi-classical
approximation with a simple wave function. Comparison shows a qualitative agreement but not a quantitative one.

1. INTRODUCTION

When an atomic or a molecular electronic state is placed in a
dc or an ac field, it suffers an energy shift (E) and has an
energy width () that is caused by its ionization either
through tunneling or through direct single-photon or multi-
photon ionization.

The physics of these phenomena is usually described in
terms of notions of perturbation theory. This leads to a
series expansion of AE or r as a function of field strength.
When such an expansion is made, the implicit expectation is
that the series can be computed term by term and that it
converges or that it can somehow be summed. (This is more
easily said than done, especially for polyelectronic systems.)
In practice, convergence of the series is not guaranteed, and
advanced methods have been devised for the study of such
expansions to high orders. Results of high numerical accu-
racy of related computations for the one-electron systems H
and H2+ can be found in Ref. 1 (for dc and ac field energy
shifts) and in Ref. 2 for dc field widths.

For systems with more than one electron, calculation of
the field-induced AE and r to high order through perturba-
tion-theory-based expansions has not been accomplished to
our knowledge. The existing variation-perturbation meth-
ods for the computation of the series coefficients for AE,
called linear and nonlinear, static, or dynamic polariza-
bilities,3-11 or the so-called lowest-order perturbation theory
for the computation of the multiphoton ionization rates (val-
id only for weak fields),1 2 have led to polyelectronic compu-
tations of only the first one or two terms and with varying
degress of accuracy with respect to the effects of interelec-
tronic interactions. A complete and reliable theory of dy-
namic linear and nonlinear atomic polarizabilities (i.e., of
the frequency-dependent coefficients in the expansion of
AE) ust b based on a general, as well as Implementable,
formalism, which permits the treatment of the many-elec-

tron, many-photon (MEMP) problem to all orders and with-
out any restrictions as regards subtleties of atomic structure.

The MEMP theory of dynamic polarizabilities that is pre-
sented below and its application to the four-electron anion,
Li- have been developed with the aforementioned desidera-
ta in mind. In particular, this is the first time to the authors'
knowledge that the nonlinear polarizability y(c) has been
computed rigorously for an atomic system with more than
two electrons.

2. LINEAR (a) AND NONLINEAR (y)
POLARIZABILITIES OF NEGATIVE IONS:
THEORETICAL ASPECTS AND PREVIOUS
APPROACHES AND RESULTS

For negative ions, even if one forgets the questions of conver-
gence of a perturbation expansion that arise much earlier
than in the case of neutrals, the accurate calculation of
properties such as dipole polarizabilities (a) and hyperpolar-
izabilities (y), whether static or dynamic, poses serious chal-
lenges to theory. This is because, apart from the general
problem of treating the atomic and molecular structure cor-
rectly, there are distinct differences between negative ions
and corresponding neutral or ionized species. From the
point of view of charge distribution and induced polariza-
tion, the linear and especially the nonlinear polarizabilities
are sensitive to small and diffuse components present in the
wave functions of negative ions. This sensitivity is signifi-
cantly reduced in the neutrals, for which the analogous com-
ponents as well as the various polarizabilities are much
smaller. The implication of this fact is that for closed-shell
atoms and molecules calculations at the coupled Hartree-
Fock (CHF) (or, equivalently, at the time-dependent Har-
tree-Fock or the random-phase) approximation, which do
not include correlation corrections, yield reasonable results;
for negative ions, however, such predictions are unreliable.
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For example, consider the situation with the a of H- and of
He.9 1 3 For H-, a (CHF) = 93 a.u. and a (exact) = 206 a.u.
On the other hand, for He, a (CHF) = 1.32 a.u. and a (exact)
= 1.38 a.u.14

Looking at the problem from a different angle, we see that
the negative ions have all their oscillator strength in the
continuous spectrum, and theory must account for this fact
consistently. For example, now the decoupling from higher-
order effects, implied in all the theories that compute the
coefficients of the AE series [see Eq. (1) below] to the corre-
sponding order of perturbation theory in the field, need not
be complete. On the contrary, for many neutral or ionized
atoms, such as the alkalis and the alkaline earths, most of the
oscillator strength comes from the first two or three excited
states, whose good wave-function representation, in addi-
tion to that of the ground state, secures reasonably accurate
linear polarizability calculations.'6

The theory that is presented and applied here to the com-
putation of linear and nonlinear polarizabilities of Li- incor-
porates the important effects of electron-electron and elec-
tron-field interactions to all orders and yields both AE and
r.

With respect to the width, the first results from advanced
calculations on negative ions were presented elsewhere.' 7"18

What is the situation regarding the available theories and
computations for atoms and especially negative ions?

Being two-electron systems, and therefore treatable with
rij-dependent (Hylleraas) basis sets, H- and its isoelectronic
closed shell He have been subjected to a plethora of compu-
tational investigations, which include electron correlation
(see Tables 1 and 2). The reliability of such computations
for the static a is high.9 However, for -y only one value exists
(see Ref. 5 and Table 2). Even though a 150-term Hylleraas
wave function was employed in the variation-perturbation
scheme of computing linear and nonlinear polarizabilities,
the result was considered unreliable by the authors, a fact
that indicates the sensitivity of calculations of nonlinear
quantities in negative ions to function spaces.

For systems with more than two electrons, a theory must
be developed along directions that can analyze and compute
the general many-electron-field interaction problem.

Recently, 21 24 3038 results from extensive calculations on
static a and y of Li-,24 F-,21,30 and Cl- (Ref. 38) were pub-
lished. Accurate knowledge of these quantities is essential
for the reliable construction of ion-atom interaction poten-
tials2 ' 37 or of crystal properties. 39 The calculations of Refs.
21, 24, 30, and 38 have employed powerful methods of the
type by which much of the computational quantum chemis-
try of the past two decades is being carried out. Such meth-
ods are the many-body perturbation theory to order n
[MBPT(n)], full configuration interaction, coupled cluster,
and Green's-function-type expansions. The underlying
characteristic of these approaches is the use of large ortho-
normal basis sets of Gaussian- or Slater-type orbitals, which
are common to the zeroth-order function (often restricted by
the computational algorithms to be a single determinant)
and to the function space describing correlation- or field-
induced effects. Aspects of the problem of reliably comput-
ing the electric properties of polyelectronic systems in the
framework of the aforementioned theories can be found in
Refs. 11, 22, 26, and 32.
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Table 2. Static Hyperpolarizabilities y (a.u.)a

CI-Hyll. MEMPT
Atom CHF MBPT(4) CCD+ST(CCD) VP Exper. FCI (This Work)

H- 1.74 X 107

(Ref. 5)

He 35.3 42.05 42.8
(Ref. 21) (Ref. 21) (Ref. 5)
35.8 41.9 51.6 + 8 43.7

(Ref. 29) (Ref. 34) (Ref. 35) (Ref. 22)
43.1

(Ref. 36)

Li- 41900 5.1 X 108
(Ref. 20)

Be 39900 33260 31480
(Ref. 29) (Ref. 32) (Ref. 32)

38760
(Ref. 32)

F- 11400 78000
(Ref. 21) (Ref. 21)

Ne 70.0 104.6 113.9 + 9.1 116 + 2
(Refs. 32, 29) (Ref. 31) (Ref. 32) (Ref. 37)

' Note that the research of Ref. 5 on H- and He used 150-term Hylleraas wave functions. However, the authors consider their y value for H- unreliable.

One interesting feature of the content of Refs. 11, 21, 24,
30, and 34 and of the research to which they refer is the
apparent expectation that MBPT(4), whenever it is applica-
ble, is a convenient procedure for the reliable computation of
static a and y (dynamic a and y are not reported for these
negative ions). The extent to which this assertion is valid
can be deduced from Tables 1 and 2, where we have collected
results from various theories on H-, Li-, and F- as well as on
isoelectronic He, Be, and Ne. It can be seen that when
zeroth-order correlation is strong or when it is applied to
negative ions, MBPT(4) is not accurate. Within the con-
ventional computational approaches, the theory must then
go to higher orders in the hierarchy of algorithms (e.g., mul-
tireference coupled cluster or full configuration interaction).
In fact, this is also the conclusion of Kucharski et al.30 How-
ever, going beyond MBPT(4) is rather cumbersome.

The brief considerations above may serve as a justification
for the need to have a practical polyelectronic theory of
polarizabilities that is nonperturbative and that pays atten-
tion to electronic structure characteristics and to suitably
adjusted function spaces. The possibility of efficient calcu-
lations of polarizabilities is indicated by our variation-per-
turbation results on the a of Be.'0 This alternative approach
emphasized the optimized representation of the important
correlation effects in the spirit of the state-specific theory40

and resulted in a much smaller overall calculation while
yielding a value that is in essential agreement with that of
the accurate calculation of Sims and Rumble 7 (Table 1).41

3. THEORY

The energy shift A, which is induced in the atomic state by
an external dc field of strength F0 or a linearly polarized ac
field, F0 cos at, can be expanded in a Taylor series as

A(static) = -2 aFo2 4! F46! (1)

and

t) =--a(w) (F cos t)2 - y() (Fo cost) 4 -.Ac)= 2! 4!

(2)

=2! (w)(2)Fo2 4! 8

-6C -.... (3)

Equation (1) is the well-known definition of the linear (a)
and the nonlinear (-y, etc.) static polarizabilities of atoms
and of symmetric molecules.3

The dynamic energy shift, A(w), is expanded in an analo-
gous form. As written, a(w) and y(w) represent the induced
polarization averaged over an optical cycle.42

For perturbation-theory-dependent theories, the linear
and nonlinear coefficients of the series of Eqs. (1)-(3) are
obtained (in principle) individually from corresponding ex-
pressions. On the other hand, the present nonperturbative
MEMP theory incorporates the interelectronic and field-
induced effects to all orders, and the related calculation
yields directly A and A(w). These quantities may then be
computed for small field values and fitted to a polynomial of
a high degree so as to produce stable results for a and y.

Let us consider the (more difficult) ac field problem. We
obtain A from the solution of the time-independent, com-
plex-eigenvalued, non-Hermitian equation 7"18 43

(H - z),J! = 0, (4)

where

H Ho + F N electron
H = Hatom + hcoaa, Z zj(a,+ a") (5)
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for linear polarization along the z axis, where a+ and ar are
photon creation and annihilation operators, respectively, or

N electron

H = Htom -Fo Zi, (6)

for a static field along the z axis,

zO(Fo, w) = Eo + A(Fo, w) - i/2r(FO, w). (7)

The eigenvalue zo(Fo, ) represents an average over a
cycle, in line with the definition of Eq. (2). is the nonnor-
malizable resonance function, which emerges naturally as a
result of the perturbation-induced mixing of a bare, N-elec-
tron discrete level (o, Eo) with the continuum of the ionized
states U(E)." It consists of localized as well as of asymptot-
ic components, which are made square integrable by the use
of complex coordinates, p = rei0.43-48

In analogy with the problem of autoionization, the solu-
tion of Eq. (4) can be effected, in principle, by the diagonal-
ization of the rotated Hamiltonian in a complete Hilbert
space of orthonormal basis.4 5 46 However, the conceptual as
well as computational limitations of the conventional com-
plex coordinate rotation method, which are known from the
field of multichannel resonances in N-electron systems,4 8 49

are also present-even more severely-in the study of atoms
perturbed by external fields.

The present MEMP theory avoids the complex coordinate
rotation bottleneck and unsuitability for computing A by
isolating in the complex plane the important correlation
effects that contribute to the initial bound states from the
contribution of the scattering functions that interact with
the bound states by means of the external field and cause the
energy shift and width. Formally, having changed the as-
ymptotic boundary condition of Eq. (4) through p = rei°, we
express the square-integrable solution '(p) which is con-
nected adiabatically to the unperturbed atomic Io) as

4o(p)) = E ai,(O)IlTi(p); n) + E bjn(O)IXj(p); n), (8)
i,n j,n

where Ti denotes bound states, Xj denotes the L2 scattering
states, and n denotes the photon states. When the basis set
of Eq. (8) is used, the eigenvalue Eq. (4) takes the MEMP
matrix form50

HX = zoX, (9)

where

A+2AI V
V A+ I V

V A
V

V
A-WI

V
V

A- 2w

(9a)

where A is the free-atom Hamiltonian matrix in terms of the
basis set of Eq. (8), within the same photon number n, and V
is the interaction Hamiltonian matrix.

The useful properties of the bound matrix elements are

(''i(p); nIHA(p) + hoaw+asj'Fj(p); n') = (i(r), nIHA(r)

+ hwcea,,+a,,IPj(r), n')
= (nhw + Eibij)bnn',

(10)

KTi(p); n -2 zeL(a,,+ + a,) Tj(p); n + I

= Ti(r) - z z Ti(r) -

Equation (10) implies that, for Ti = To, the contribution of
its energy Eo to the complex energy z0 is indeed taken into
account in the complex plane.

Each L2 scattering state, denoted by Xj(p), is a vector-
coupled product of a bound correlated core and a Gamow
orbital (as yet unspecified) corresponding to each decay
channel:

X 3(P) = Xf'(p) 0 el(o). (11)

The rotated, square-integrable Gamow orbital El(0) is ex-
panded in terms of a square-integrable basis set with real
coordinates <k(r):

(12)El(o) = E Ck0pk(r).
k

Then the various matrix elements of the Hamiltonian where
Xi appear are given by

(Xi(p); nIH(p)IXj(p); n) = xic(p) E ckp k(r); n!H(p)1Xjc(p)
k

0 E Cn,°m(r); n
m

= nhwb6 i + KXic(r) 0 ckpk(re-i°)
\k

X HA(r)IXjc(r) 0 E cmsom(re-io)

(13)

(1Oa)
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(Xi(p); nIH(p)1Xj(p); n + 1) = xiC(p) 0 ckPk(r); nIH(p)I
k

X xic(p) ( Ad' cnsp(r); n +1

m

= \X(r) chqy(reLi) - 2

X X,"(r) 0 E cmcom(reiO)j

(13a)
2 k /~~~~~~~

(*j(p); nH(p)jXj(p); n 1)

= (i(r) - 2c ZXic(r) di s Ck(pk(re iO) (13b)

Equations (10)-(13b), which result from the separation [Eq.
(8)], show that two types of computation are needed. The
first is the calculation of state-specific, correlated functions
for the bound states,4 0 and the second is the optimization of
the Gamow orbitals in terms of the coefficients ck for each
Xjc(r) and photon occupation number n. The elements of
the matrices A and V [see Eqs. (9) and (9a)] involve func-
tions of real coordinates-obtained either analytically or
numerically-that represent numerical multiconfigura-
tional Hartree-Fock zeroth-order and analytic correlation
vectors for the bound-state wave functions [j(r)] (Ref. 40)
as well as for the core wave functions [Xjc(r)] and rotated
basis sets 4Pk(r) in the inverse direction, sok(re-i), which must
remain square integrable.

The 0 dependence in (Pk implies the construction of a 0-
dependent MEMP matrix. On the other hand, the exact
eigenvalue z0 [Eqs. (4) and (7)] is 6 independent. A good
calculation should thus yield a reasonably large range of
complex eigenvalues, corresponding to the initial bound-
state t 0 wave function, which are essentially 0 independent.

In summary, the choice of the N-electron basis set of Eq.
(8) contains the following advantages, which make the solu-
tion of the MEMP problem tractable: The bulk of the
many-electron calculations are carried out only once, on the
real coordinate axis.'7"8'4 8 For the determination of the
energy shift and width, the computations in the complex
plane involve only small matrices with matrix elements for
which only the continuum orbitals are rotated by p = re- 0.
In this way, the dimensions of the A and V matrices are
reduced to the point at which rigorous calculations on polye-
lectronic atoms are possible without the use of supercom-
puters. Finally, the physically motivated choice of the func-
tion spaces of Eq. (8) leads naturally to the easy identifica-
tion of the solution vector, i.e., the one whose overlap with
the unperturbed initial-state wave function is adiabatically
the largest.

Solution of Eq. (9) by direct diagonalization is inconve-
nient, especially when the field strength is large. Instead,
we have developed a self-consistent iterative method that
uses the appropriate recurrence relations and solves Eq. (9)

efficiently (see Refs. 17 and 43 and Appendix A). In the case
of a 2 X 2 matrix, this approach reduces to the theory of
Autler and Townes.5 2

RESULTS

The MEMP theory was applied to two atoms, H and Li-.
Hydrogen was chosen as a test case since it is computable
accurately by more-conventional methods. Our results are
presented in Table 3, together with those obtained by appli-
cation of perturbation theory. 85 3 The agreement is excel-
lent except for the y(cw) at = 0.0430 a.u., where a small
discrepancy is observed. For the Gamow orbital, angular
momenta up to = 4 were included [Eq. (11)].

Tables 1, 2, and 4 contain our results for the Lia, a(w), y,
and -y(co). The Li- ground-state wave function contains 43
terms, of which the zeroth order was obtained numerically at
the multiconfigurational Hartree-Fock level:

'Po MCHF = 0.9328(1S22S2) + 0.3605(1s 2 2p2
),

whereas the remaining correlation vectors were obtained by
minimizing the total energy.40 The resulting energy is E0 =
-7.455364 a.u. and compares well with the configuration
interaction result of Weiss,54 E = -7.4553 a.u. (Our Li-
function is better than the one used before.'8)

Two Li thresholds were included in the MEMP matrix,
the 1s22s and the 1s22p configurations, with El = -7.432726
a.u. and E2 = -7.36507 a.u., respectively. The coupling of
the ground state o through the dipole field was as follows:

Fz
'to - ls2 2sel, 1 = 0, 1,..., 10, El = r exp(-areO),

-r/2 < 0 < 0,
Fz
-' s22pEs po, s22pEp 'S, 'P, 1D, jS22pEd Po, Do, lFo.

We have already mentioned the importance of including
many angular momenta for the free electron in the final
state, 7 8 a necessity that our MEMP theory can handle.
For example, in the present Li- case, when the expansion is
truncated to S and 1Po symmetries only, with s and p
orbitals (i.e., V'0, s22ses, p, 1s22pEs, p), the static polariza-
bilities become a = 585.3 a.u. and y = 2.8 X 108 a.u. Note
that this value of a is close to the coupled-cluster singles
and doubled polarization propagator approximation
(CCSDPPA) result of Canuto et al.24

Table 3. Linear and Nonlinear Polarizabilities of the
Hydrogen Atom (a.u.)

ca (a.u.) a () ()

0.00 4.500a 1331.3a
4. 50 0 b 1 3 3 3 .1 2 5b

0.0430 4.550a 2151.9a
4.550c 2264.2C

0.0656 4.618a 2380.3a
4.618c 2381.6c

a MEMP theory, this work.
b Group theoretic implementation of perturbation theory.5 2

Perturbation theory in the quasi-energy formalism.8
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Table 4. Linear and Nonlinear Polarizabilities of Li- (a.u.) from the Present MEMP Theorya

w (a.u.) a (X) w (a.u) a () c (a.u.) y () w (a.u) y ()

0.000 748.5 0.052 -196.3 0.000 5.1(8) 0.056 -1.8(7)
0.002 750.6 0.054 -219.4 0.002 5.3(8) 0.058 -1.7(7)
0.004 756.8 0.056 -236.7 0.004 5.8(8) 0.060 -1.1(7)
0.006 767.6 0.058 -249.5 0.006 6.7(8) 0.062 -1.2(7)
0.008 783.3 0.060 -258.7 0.008 8.7(8) 0.064 -9.3(6)
0.010 805.0 0.062 -265.0 0.010 1.5(9) 0.066 -7.3(6)
0.012 833.9 0.064 -269.2 0.012 1.7(9) 0.068 -4.8(6)
0.014 872.1 0.066 -271.7 0.014 -1.5(8) 0.082 5.1(6)
0.016 923.3 0.068 -272.9 0.016 -8.7(8) 0.086 4.2(6)
0.018 994.1 0.070 -273.1 0.018 -1.4(9) 0.088 8.0(6)
0.020 1098.5 0.072 -272.8 0.020 -1.9(9) 0.090 -2.3(7)
0.022 1281.8 0.074 -272.2 0.022 -3.1(9) 0.092 -2.7(7)
0.024 1658.4 0.076 -271.6 0.024 -2.7(9) 0.094 6.1(6)
0.026 1654.7 0.078 -271.3 0.028 1.0(9) 0.096 1.1(7)
0.028 1438.7 0.080 -271.7 0.030 1.1(9) 0.098 1.2(7)
0.030 1160.9 0.082 -273.5 0.032 8.7(8) 0.100 8.7(6)
0.032 891.9 0.084 -277.4 0.034 5.7(8) 0.102 8.7(6)
0.034 657.1 0.086 -285.3 0.036 3.6(8)
0.036 460.4 0.088 -301.4 0.038 2.2(8)
0.038 299.9 0.090 -351.1 0.040 1.3(8)
0.040 171.0 0.092 -426.6 0.042 6.7(7)
0.042 68.3 0.094 -407.9 0.044 2.7(7)
0.044 -13.1 0.096 -383.2 0.048 -1.2(7)
0.046 -77.0 0.098 -358.6 0.050 -1.6(7)
0.048 -127.1 0.100 -335.5 0.052 -1.9(7)
0.050 -166.1 0.102 -314.2 0.054 -1.7(7)

a The numbers in parentheses indicate powers of 10.

It is obvious from Table 4 that a(X) goes through a maxi-
mum and a minimum (the one-photon ionization starts at t
= 0.0224 a.u.). Its shape is similar to the one computed by
Delone et al.

5 5 from a quasi-classical model with a simple
wave function, but the absolute numbers differ (for example,
the maxima differ by a factor of 2). Such qualitative agree-
ment between the MEMP theory and previous models of
negative ions exposed in an ac field was also obtained for the
ionization cross sections.'8

Finally, with respect to yy(w), this is the first prediction to
our knowledge for a polyelectronic (N > 2) negative ion. It
is interesting to observe that now there are two maxima.

SYNOPSIS

The possibility of theoretical prediction of the dynamic non-
linear polarization of atoms and molecules is a serious chal-
lenge to the quantum theory of many-electron systems in
ground or excited states. The significance of this statement
can be deduced from the discussion in Sections 1 and 2,
where a large number of references were made to the ad-
vanced methods of treating this problem, with emphasis on
the highly polarizable negative ions.

We have presented and applied a MEMP theory for the
reliable computation of nonlinear static and dynamic polar-
izabilities. The theory goes beyond the lowest order of per-
turbation expansion in the external field as well as in the
interelectronic interaction. Thus the polarizabilities of in-
terest are obtained as coefficients of the time-averaged Tay-
lor series of the induced total energy shift A(w). A(w) is
deduced from a complex eigenvalue that is the solution of an

appropriately constructed and efficiently solved non-Her-
mitian MEMP matrix.

The first application of the MEMP theory was made to a
negative ion, Li-. This system offers the opportunity for a
good test of any advanced theory, since its number of elec-
trons is small and yet its structure and spectrum are not
simple. For the static, linear polarizability a, our result
agrees well with a recent full Cl calculation (see Ref. 24 and
Table 1). Also, our a(w) values verify the qualitative behav-
ior predicted earlier from a semiclassical theory.18 5 5 With
respect to the nonlinear polarizabilities, y and y(w), which
are much more cumbersome to compute, the present results
constitute the first predictions of which we are aware.

APPENDIX A

In the text we state that the solution of the eigenvalue Eq.
(9) by direct diagonalization is intractable, especially when
the field strength is large, since it is necessary to diagonalize
a large portion of the infinite MEMP matrix ft,(O) in order to
include all significant5 6 large-order contributions to the en-
ergy shift [see Eqs. (1) and (3)]. This bottleneck is avoided
by transforming the eigenvalue Eq. (9) into an infinite set of
equations:

VX'X-0 (O) + (A + nw1)X(O) + VXn+i(O) = z0X(O), (Al)

where n runs from - to + -, I is the unit matrix, z is the
desired eigenvalue, and Xn(O) is the part of the complexified
eigenvector corresponding to photon number n.

The next step is the introduction of the shift matrices Pn
and Qn with the properties
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Xn = PnXn+l, Xn = QnXn, (A2)

which are used in Eq. (Al) to obtain the following recurrence
relations for Pn and On

A + nI-z 0I + VPn.1

A + ncoI - zoI + VQn+ (A3)

At this point, the eigenvalue problem of Eq. (9) is reduced
to the solution of the finite-dimension eigenvalue equation
[Eq. (Al), n = 0]:

VX. 1 + AX0 + VX 1 = z0X 0 (A4)

or

(A + V¶Tl + VQ 1)Xo = z0X. (A5)

The matrices P-1 and Q, are infinite continued fractions,
as can be seen from Eq. (A3), with n extended to -x and +,
respectively.

Now the problem is focused on the self-consistent solution
of Eq. (A5) since the matrices P-1 and Q, depend on the
eigenvalue zo. The infinite continued fractions of P-1 and
Q1 are truncated at some large value of N, for which practi-
cally

PINI-1 = QINI+1 = 0 (A6)

and after which the final results remain stable.
The above method for solving the MEMP complex eigen-

value matrix thus has the significant advantage that, at the
end, the required diagonalizations involve only the small A
and V matrices, into which all the the essential information
is incorporated.

Note added in proof: In a recent publication,5 7 Agren et
al. presented results on a and a(w) for Li- from multiconfig-
uration linear response theory and exact full configuration
interaction calculations. Their results go up to w = 0.023
a.u. and are in agreement with ours.
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