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The use of complex coordinates allows the possibility of treating resonances of many-electron sys-

tems based on a complex eigenvalue Schrodinger equation. A many-body analysis of this equation
has led to the establishment of convenient and systematic procedures for including electron correla-
tion and for computing partial and total widths, without and with interchannel coupling, in mul-

tichannel autoionization. This is done by computing the asymptotic-pair {AP) correlation functions
from an independent asymptotic-pair approximation {IAPA) and then mixing them (MAP, i.e., the

mixing of asymptotic pairs) from a diagonalization of the total non-Hermitian Hamiltonian matrix.
Nonorthonormality complications are resolved by straightforward computation. We report results
f'or Ne+ 1s2s 2p S, which decays into five one-electron channels: 1s-2p 'D, 1s-2p 'S, 1s-
2s2p P', 1s-2s2p 'P', and 1s-2s 'S. The corresponding partial-width values from MAP are (in

10 a.u.): 0.565, 0.040, 0.032, 0.165, and 0.043. The proximity of these results to the available ex-

perimental information as well as that to previous results from many-body calculations with real

coordinates offers a practical verification of this theory,

I. INTRODUCTION

The phenomenon of autoionization and the correspond-
ing existence of quasilocalized states in the continuous
spectrum of many-electron systems have intriguing
mathematical and physical properties. This is due mainly
to their forming part of the continuous spectrum and to
their possible strong deviations from the independent-
particle model description. An excellent recent review of
aspects of this field has been published by Aberg and Ho-
wat.

In a series of papers, ' we have published our find-
ings as regards the formalism, certain properties, the elec-
tronic structure, and the practical computation of reso-
nances and autoionizing states. Our emphasis has been on
general approaches suitable for multichannel resonances
of arbitrary structure and number of electrons.

In this paper we continue our investigations of autoion-
izing states as eigenfunctions of the nonrelativistic non-
Hermitian Hamiltonian with complex coordinates and
complex eigenvalues. The problem we have tackled in-
volves the multichannel decay of an inner hole state (Ne+
ls2s 2p S) with the object of computing its partial and
total widths, without and with interchannel coupling.

The emergence of the use of complex coordinates either
in the Hamiltonian or in the wave function, has presented,
in principle, an elegant alternative to the calculation of
resonant phenomena, via the application of square integr-
able function spaces only. ' ' However, even though
the theory is available —just as the X-particle Schrodinger
equation is available —its coarse implementation (i.e., re-
peated diagonalization of large matrices and search for
root stabilization) to real, many-electron systems is practi-
cally impossible. For example, the recent review by Ho'

contains numerical results for single chann-el, two- or
three-electron systems only. There, he, like many other
researchers in this field, emphasized the need for going
through the bottleneck of many-electron partial-width
computation for real systems. Some theoretical results
have been produced, but only for model systems. ' '

The approach introduced in Refs. 5 and 7 allows the
practical analysis and calculation of partial widths in real,
multichannel systems. In essence, this approach has in-
troduced into the field of the complex eigenvalue treat-
ment of resonances notions of many-body theory applied
before for bound states as well as proposals for separation
and choice and optimization of function spaces in the
complex energy-coordinate planes. The first numerical
application was published recently on the Ne+
1s 2s 2p 5 state. ' The work presented here incorporates
it and extends it.

II. REVIEW OF THEORY

H% =z%,
z =E —(i/2)I (2)

The many-electron theory of resonances in terms of
complex coordinates which we have used has been
presented in detail before. ' ' '" Here, we emphasize
some of its basic ideas and results which are relevant to
this application. Reference to other methods and to the
difficulties as regards the many-electron problem with
complex eigenvalues can be found in Refs. 5, 7, 13, 14,
and 16.

The aim is to solve the many-electron Schrodinger
equation with a complex eigenvalue z and an unnormaliz-
able resonance function %':
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E is the total energy and I is the total width due to in-
teractions in H. For the decay of one particle of coordi-
nate r, 4 has the following exact asymptotic form

1/2
2m

%(r;Kp) — —Va exp[i (Kpr +5)], (3)
&~ 00 Kp

H(p)P(p) =z+(p) . (4)

The square integrable %(p) contains components which
contribute to the stability of the state and components
which contribute to its decay. A physically and computa-
tionally motivated theory must differentiate between the
function spaces describing the two types and their optimi-
zation procedures (see also Ref. 23). According to Refs. 5
and 7, %(p) can correspondingly be separated into two
parts, the localized %0 and the asymptotic X parts,

+(p) =aiI'o(p)+bX(p)

with the following [(a)—(g)] properties.
(a) We have

&'Po(p) IH(p) I Po(p) & = &'Po(r)
I
H(r)

I
Po(r) & =Eo

(5)

where Ep is real and %p(r) is the exact square integrable
¹ lectron wave function describing the initially localized
state."

(b) We have

z =Eo+6 (i l2)I— (7)

where 6 is the energy shift and I is the width due to the
mixing of %'0 with X.

(c) On resonance,

I
IKp

I

(8)

(d) The terms in %'p(p) contain only hydrogenic or
Gaussian orbitals, while the terms in X(p) contain
Gamow orbitals ' as well, which enter into the asymptotic
correlation functions

(e) Relations (5)—(7) imply that, in solving for Eq. (4),
the calculation of %p can be done only once, on the real
axis. Given the nature of the decay phenomenon, the ef-
fect of the continuum is taken to act as a perturbation on

The calculations in the complex plane are thus much
smaller and feasible for any system and concern only the
optimization of few terms in X(p) and the mixing coeffi-
cients a and b.

(f) If 4'(p) is expanded in terms of a subshell cluster ex-
pansion, each decay channel in a multichannel autoioniza-
tion process is represented by an asymptotic-pair correla-
tion function II„(pip2) (for single-electron emission). By
introducing into the quantum mechanics of multichannel

where V is inversely proportional to the lifetime, a is the
weight of the localized component [see Eq. (5)], Ko is the
complex momentum of the emitted particle and 5 is the
phase shift.

Continuation into the complex coordinate plane,
p=re', results in normalizable wave functions and regu-
larized matrix elements and a new equation with a non-
Hermitian Hainiltonian (e.g., Refs. 20—22, 4, 5, 7):

resonances the independent asymptotic-pair approximation
(IAPA), we obtain the partial widths from the calculation
of each such asymptotic-pair correlation function. '

(g) The calculation of 0 p on the real axis is guided by
three basic criteria, introduced in Ref. 2 (see also Ref. 5).

(i) The criterion of an optimized zeroth-order represen-
tation based on the notion of localization (see below).

(ii) The criterion of orthogonality to lower states of the
same symmetry (see Refs. 2 and 5).

(iii) The criterion of analysis of electron-electron in-
teractions according to their energy and wave-function
importance (see, e.g., Refs. 2, 6, 13, and 25).

The first criterion is required for the identification of
4'0 with a resonance. The notion of localization is funda-
mental to the existence of resonances. The uirial theorem
and (for atoms) the number of nodes serve as guiding prin-
ciples. A computational scheme which satisfies both is
the Hartree-Pock (HF) or the multiconfigurational HF
(MCHF) approaches. Due to their self-consistent charac-
ter, dynamical screening, and essential correlation effects
can be incorporated into the resonance wave functions
rigorously, at the zeroth-order level.

Thus, the first aim is the calculation of a state-specific
HF or MCHF wave function which satisfies the virial
theorem and has converged well (not always easy for
negative-ion resonances). Unstable solutions suggest very

-broad or nonexistent resonances. ' The remaining local-
ized correlation, which contributes to the stability of the
state, is added variationally [e.g., (6)] and convergence to a
"stable root" is guaranteed.

~ g. l
~IAPA ~ UIAPA (10)

Each II'„consists of a fixed zeroth-order bound orbital
and a Garnow orbital carrying the decay information for
each channel. Within IAPA, the assumption is that inter-
channel coupling does not affect significantly the radial
characteristics of each II,'s. Thus, in the subsequent corn-
putation of interchannel coupling they are held fixed —a
fact which makes the last step of our theory computation-
ally economical.

III. PARTIAL WIDTHS AND INTERCHANNEL
COUPLING FROM THE MIXING

OF THE ASYMPTOTIC PAIRS (MAP)

It has already been demonstrated ' ' that, for one-
electron emission, the real process of autoionization for
each decay channel is described in terms of the symmetry
adapted asymptotic-pair correlation function, II„(pip2).
The form of each II is found by first analyzing %p in
terms of its HF or MCHF zeroth order and the various
correlation vectors. Each II„ is expressed in terms of
Slater (Gaussian) and Gamow orbitals whose nonlinear
parameters are optimized subject to the constraint of Eq.
(8) and the virial condition, for each II„separately.

Within this independent asymptotic-pair approximation
(IAPA) for each channel i there corresponds a II'„, a par-
tial width y«p~, and a partial energy shift 5I&p~,

' with
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This step concerns interchannel coupling and involves
the following: Having obtained each II'„, we reconstruct
the total non-Hermitian matrix with diagonal matrix ele-
ments Eo and ('II0 II'„~H

~
40 II,', ) for each channel i

and off-diagonal matrix elements (%o
~

H
~
%0 II'„) and

(%0 II'„
i
H

i
9'0 II'„) for channels i and j.

Due to the separate optiinization of the II'„, nonortho-
normality effects come up to the computation of the off-
diagonal matrix elements. This implies the appearance of
many new overlap, one- and two-electron integrals, which
are computed explicitly. The diagonalized resonance
function has the form:

Then, each partial complex eigenualue obtained from the
mixing of the asymptotic pairs (MAP), zMAP, is given by

(12)

bound-continuum orbital mixing and interchannel cou-
pling, ' and two from our work which involves the
many-body theory in the complex energy-coordinate
planes.

The ls2s 2p S state has five asymptotic-pair correla-
tion functions corresponding to the transitions ls-2p 'D,
1s-2p~ 'S, 1s-2s2p P', 1s-2s2p 'P', 1s-2s2 iS. These
functions were computed in Ref. 13 within the IAPA and
the approximation that, for Ne+, Vo is represented well

by its Hartree-Fock representation. [No Fermi-sea or
symmetric exchange of orbital symmetry (SEOS) correla-
tions are present. ]

The effect of interchannel coupling within our scheme
is not large. %'e note that AMAp= —0.08 eV while
b, iAPA ———0.09 eV (Ref. 13). Both for IAPA and MAP,
the trends of the partial widths follow those of the experi-
ment. ' For the strongest transitions 1s-2p 'D and 1s-
2s2p 'P; the agreement of MAP with experiment is very
good. For the total widths the discrepancy is 15%. How-
ever, the experimental value is given an error of 10%.

=5MAP —(i /2) YMAP . (13)
V. CONCLUSION

The mixed total width and energy shift are then given by

(14)

~MAP g ~MAP .

IV. APPLICATION TO THE Ne+ 1s 2s 2p S
AUTOIONIZING STATE

The choice of this state was already made in Ref. 7. It
is a nontrivial nine-electron system for which the standard
complex rotation methods (see Refs. 5, 7, 13, 14, 16, 18,
23, and references therein) have severe limitations.

Its energy has been measured to be 870.3 eV above the
ground state, in perfect agreement with theory. '

The information on the partial and total widths is given
in Table I. There we show the experimental values
and theoretical results from four types of many-electron
calculations: Two with real coordinates which involve

The present work on the partial and total widths of a
many-electron, multichannel autoionizing state has comp-
leted a series of analyses and results on the quantum
mechanics of resonances in terms of complex coordi-
nates. ' ' ' ' It has been shown how the seemingly large
and very complicated problem of obtaining reliable and
verifiable information on arbitrary resonances can be re-
duced to a transparent and manageable one whose solu-
tion includes relaxation, localized and asymptotic correla-
tion, and interchannel coupling effects.

We have chosen the Ne+ 1s2s 2p S Auger state as a
good test case for our theory. In order to appreciate this
better, we refer to the recent review by Ho (Ref. 16) where
the difficulties for partial-width calculations are stated ex-
plicitly and where results for only two- and three-electron,
single-channel systems are presented. Further under-
standing could come from examination of more systems
and from critical appraisal of the choice and optimization
of the function spaces for asymptotic correlation.

TABLE E. Auger widths (in 10 a.u. ) for the Ne 1s hole state.

Theory

Transition

Complex coordinates
IAPA MAP

(Ref. 13) (This work) Ref. 38
Hartree-Pock

Basis set

Real coordinates
Ref. 37

"Transition state"
Basis set

Experiment
Refs. 36 and 37

1s-2p 'D
1s-2p 'S
1s-2s2p 3P'
1s-2s2p 'P'
1s-2s 'S

0.560
0.048
0.029
0.154
0.044

0.565
0.040
0.032
0.165
0.043

0.493
0.077
0.049
0.137
0.049

0.606
0.095
0.101
0.195
0.060

0.550
0.083
0.070
0.150
0.045

0.604+0.06
0.089+0.009
0.063+0.006
0.174+0.017
0.060+0.006

Total 0.835 0.844 0.805 1.057 0.898 0.990+0.099
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