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Nonperturbative theory and computation of the nonlinear response of He to dc and ac fields
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We have nonperturbatively computed dc-field tunneling rates, linear and nonlinear dynamic polarizabilities,
and two-, three-, four-, and five-photon ionization rates for He, for frequenciesv in the range\v54.9–26.4 eV
and for intensities in the range 3.531012– 1.71531014 W/cm2. The calculations systematically incorporated
electronic structure and electron correlation effects in the discrete and continuous spectra, while the two-
electron state symmetries were1S, 1P, 1D, 1F, 1G, and 1H of even and odd parities. The calculations were
made by implementing a time-independent many-electron, many-photon theory which obtains cycle-averaged
energy shiftsD(v,F) and energy widthsG(v,F) nonperturbatively, whereF is the field strength. These
quantities are the real and imaginary parts of a complex eigenvaluez0 ~the result of the overall calculation!,
after the subtraction of the unperturbed real energyE0 .

PACS number~s!: 32.80.Rm, 32.80.Fb, 32.10.Dk, 42.65.An
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I. INTRODUCTION

In this paper we consider the many-electron problem
ab initio calculating the response~linear or nonlinear! of an
atomic state to an external dc or ac field in the dipole
proximation. The formalism is time independent. The cor
sponding form of the Hamiltonian is known~see Sec. II!,
while the observables are averages over an optical cycle
depend on the strength, frequency, and polarization of
field, which is supposed to have been turned on adiabatic
and to interact with the atom at constant intensity. The ato
field interaction causes the mixing of atomic states, with c
comitant observable phenomena and properties assoc
with energy shifts and transitions to, from, and within t
discrete and continuous spectra. The number of publicat
on the theory of such properties is large, ranging from p
formalism and phenomenology to calculations based
models, or on empirical imput or on first principles, witho
or with significant approximations, depending on the num
of active electrons~one or many! and on the order of pertur
bation theory with which a property is connected, or which
deemed necessary by the strength of the interaction. Fo
views the reader is referred to@1–8#. The terms in the atom
field Hamiltonian describing the interactions~nonrelativistic
or relativistic! which characterize quantitatively the me
sured quantities can be classified as follows:~A! The one-
electron atomic structure operators. The strength parame
that of the nuclear charge.~F! The one-electron atom-field
interaction operators. The strength parameter for the fi
photon frequency is the field strength.~C! The two-electron
atomic structure operators.~Coulomb or Breit-Pauli.! For
N-electron atomic bound, autoionizing, and scattering sta
of the Hamiltonian composed ofA and C, computing their
wave functions and properties constitutes the essence o
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many-electron problem. WhenF is added to such a state,
new and more complex problem arises, in general; the tim
independentmany-electron, many-photon~MEMP! problem.
Its quantitative solution allows a determination of cycl
averaged observables, such as energy shifts~ES’s!, rates of
tunneling~T! and partial and total rates of multiphoton ion
ization ~MPI!, which are calculated in this paper.

The computational and interpretative challenge of
MEMP problem is created by two factors:~1! the diversity
and complexity of the structures of the discrete states an
the multichannel continua~with resonances!; and ~2! their
interplay with the field characteristics, especially for stro
fields. One drastic reduction of the related formal and co
putational difficulties is achieved by resorting to models
even one dimensional. However, given the now availa
computer power, it is much more appropriate to treat
physics ofN-electron atoms and molecules in terms of t
N-electron Hamiltonian and wave functions, whereupon
ductions can be made depending on the state~s! and property
under consideration. The prerequisites for a reliable qua
tative treatment include the capacity of theory to implem
in a tractable way advanced methods of computing electro
structure and scattering, just as this is necessary with o
nary spectroscopic properties~e.g., one-photon absorptio
oscillator strengths or fine and hyperfine structure!.

As regards~2!, it is customary to distinguish two regimes
the weak and strong-field regimes. A rough distinction is
obtained by comparing the field-strength~in a.u.! with the
binding energy~in a.u.! of the outer electron~s! which are
active during the response of the state to the external fi
When the field strength is orders of magnitude smaller, o
may expect to deal with a weak-field regime, a situati
which is formally understood in terms of the expressions
lowest-order perturbation theory~LOPT! in the series expan
sion of the field strength. This last statement may serve
definition of theweak fieldfor the quantitative interpretation
of a quantity associated with ann-photon process: when th
measured~meaning accurate! quantity is produced exactly by
the corresponding expression from LOPT,~assuming the cal-
©1999 The American Physical Society07-1
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culation can be done!, the weak-field regime holds. How
ever, even in this case, the many-electron aspects introd
by C, and the requirement of computing explicitly~sum over
states! or implicitly ~inhomogeneous differential equation!
the contribution of the complete set of states of the disc
and the continuous spectra, makes the calculation of non
ear ionization rates and polarizabilities for polyelectron
states quite cumbersome even at the LOPT level, espec
when the desired order of perturbation is high.

In support of the above comment, we refer to Refs.@1–8#
and@9–13# for work on the ground and excited states of t
H atom and to Refs.@14#, @15# for work on the He ground
state. For the latter, which is the state investigated in
paper, Liu’s @15# recent LOPT calculations up to the 15
order have provided benchmark data for frequen
dependent nonlinear susceptibilities at four frequency valu

If the measured~accurate! quantity does not agree wit
that which is computed from the LOPT formulation, the fie
can be defined asstrong. This implies that higher-orde
terms contribute and that there is no exact equivalence
tween the order of the physical process~e.g., n-photon ab-
sorption! and the LOPT expression. In principle, there a
two possible remedies. One is to compute terms bey
LOPT, until good convergence is obtained. This has not
been done for a polyelectronic state. The other is to des
the whole calculation within a nonperturbative~variational!
framework, where ES’s and the rates ofT and MPI are com-
puted to all orders. In this case, provided the formalism
suitable and generally applicable, the accuracy of the ca
lation is subject only to the quality and the physical r
evance of the function spaces used to represent the stat
the discrete and the continuous spectra when calculating
matrix elements involving operatorsA, F, andC.

The work presented here deals with the theory and c
putation of strong field properties of He1S. It was carried
out by implementing the nonperturbative MEMP theo
~MEMPT! that was formulated in the mid-1980s@16–20#.
The end result of the computation using the MEMPT is
complex eigenvalue whose real part is connected directl
the field-induced energy shift and to concomitant linear a
nonlinear polarizabilities, and whose imaginary part is
cycle-averaged rate of the ionization of the state under inv
tigation. This approach, which is explained in Sec. II, w
first applied to the H2 and Li2 ground states@16–20#, which
were treated as many-electron systems and not as
electron models. A number of conclusions were reached
lowing the analysis of the results. For example, it was
ported for the first time that the then existing qualitati
discrepancy between calculations based on models of
negative ions and onab initio theory should be resolved i
favor of calculations using models, and that much of
essential physics of negative ions in strong ac and dc field
caused by final-state effects@17,18#. In the case of low-lying
excitation of Li2 studied for the first time in Ref.@17#, ~up to
and including Li 1s22p 2Po threshold!, these effects were
identified as ‘‘even or odd shape resonances, interchan
mixing and field-perturbed free electron orbitals,’’ ~Ref.
@17#, p. 49!. Further analysis of the effects on MPI rates
Li2 from the interplay between field intensity and electron
01340
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structure and interchannel coupling were later reported fr
calculations based on the time-dependent Schro¨dinger equa-
tion @21#.

In addition to calculations and analyses of MPI rates wi
out and with the presence of a dc field, and of dynamic lin
and nonlinear polarizabilities of the ground states of H2 and
Li2 @16–20#, applications of the MEMPT with correlate
wave functions have demonstrated the effects of abo
threshold detachment without and with a dc field@22#, of the
polarization of doubly excited states~DES’s! @23#, of transfer
of the frequency-dependent polarization, of the autoioni
tion rate and of stabilization through state mixing in DES
@23,24# and of magnetic fields interacting with DES’s@25#.
Furthermore, fundamental aspects of this theory were a
adopted to the formulation of a quantum-mechanical
proach to the calculation of pair correlations in the contin
ous spectrum, in connection with the problem of comput
single or MPI rates of double-electron ejection at and n
the ionization threshold@26#.

Here it is to be noted that in more recent years the inc
poration of electron correlation and atomic structure in
nonperturbative, time-independent calculations of rates
MPI of the ground states of H2 and of Li2 was also achieved
by the collaboration of a few groups@27–29# via a Floquet
formalism combining the complex coordinate rotation~CCR!
method~see Sec. II! with R-matrix scattering theory for the
treatment of the asymptotic functions. The same appro
was applied by Purviset al. @27# to the calculation of MPI
rates in He, quantities which are also calculated here, al
for a different and broader combination of frequencies a
intensities.

In many cases, the results of state-specific MEMPT c
culations on field-induced properties of H2, He, and Li2 are
verified quantitatively by conventional calculations of mu
larger scale. For example, consider the dynamic polariza
ity a~v!, of H2. Kutzner, Felton, and Winn@30~a!# used the
accurate photoabsorption cross section previously obta
by Geltman and the dispersion relation between the real
imaginary parts ofa~v! to computea~v! ~real! for v below
as well as above threshold. The agreement between
MEMPT results@20# and those of Ref.@30~a!# is very good
over the whole range ofv values@see Fig. 1 of Ref.@30~a!##.
Comparisons can also be made for the static hyperpola
abilities g. For He, Nicolaides and Themelis@31# reported
g542.78 a.u. The earlier full configuration interaction~CI!
result of Jaszunski and Roos@32# is 43.7 a.u., while the
LOPT calculation with a large number ofr 12 basis sets by
Bishop and Pipin@14~b!# gave 43.104 a.u. An earlier suc
calculation by Bishop and Lam@14~a!#, wherepp-type con-
figurations had not been included, gave 41.90 a.u. For H2,
the authors of Ref.@20# obtainedg57.63107 a.u., a value
which was confirmed within 5% by Pipin and Bishop@30~b!#
who obtained 8.023107 a.u. Finally, for Li2, the authors of
Ref. @19# reportedg55.13108 a.u., while at the same time
Archibong and Thakkar@33# obtained 12.73108 a.u. from a
coupled-cluster calculation. A more recent calculation
Sauer@34# at the full CI level gave 5.653108 a.u. in very
good agreement with the MEMPT result.

Although theab initio treatment of a state of an atom
7-2
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negative ion requires a careful consideration of the detail
the radials of the zero order and of the correlation functio
when computing nonlinear response properties, the com
tational advantage from the point of view of economy is t
fact that they lack an intermediate discrete spectrum. It is
this reason that only H2 and Li2 were chosen by us initially
at a time when our computational facilities were limited.
the meantime, much better such facilities have become a
able and calculations onneutral ground and singly and dou
bly excited states have been carried out regarding dc-fi
induced T rates and static linear and nonline
polarizabilities e.g.,~see, Refs.@30, 35–38#!.

In this paper, we present results of an extensive stud
the response of neutral He1S to weak and strong dc and a
fields over a broad range of intensities and photon frequ
cies below and above the ionization threshold. Specifica
for the dc-field case the strength range is 0.06–0.20 a.u.
the ac field, the intensity ranges from 3.531012 to 1.715
31014W/cm2, and the photon frequencies range from 4.9
26.4 eV.

The paper is organized as follows. In Sec. II we disc
the background and methodology of the MEMPT. In Sec.
we present our results for the nonlinear response of He
strong external dc and ac fields. Tunneling and MPI rates
provided for intensities up to 1.71531014W/cm2, while us-
ing the results on ES’s for low strengths, linear and nonlin
dynamic polarizabilities are obtained. Section IV summ
rizes the essence of the MEMPT and its present applica
to He.

II. THEORY

A. General

Assuming that the external ac field is turned on adiab
cally with respect to the atomic state with which it interac
the fact that it is periodic with time allows a formal descri
tion of its interaction with the atom to be done in a tim
independent framework, whereby the computed proper
are averages over a field cycle@2,3,39–41#. This description
goes under the generic name ‘‘Floquet theory.’’ In this ca
the total Hamiltonian for linearly polarized monochroma
light along thez axis in the dipole approximation with fre
quencyv is given by

Hac5Hatom1\vav
† av2 1

2 Facz~av
† 1av!, ~1!

whereav
† (av) are the photon creation~annihilation! opera-

tors, and Fac is the field strength in a.u. (1 a.u.55.14
3109 V/cm). In the case of the dc field, the total Ham
tonian is

Hdc5Hatom2 1
2 Fdcz, ~2!

whereFdc is the field strength in a.u.
Given the fact that the stationary state spectrum ofHATOM

contains square-integrable (L2) discrete as well as energy
normalized scattering states, it is clear that a rigorous tr
ment of the atom1field system, whose Hamiltonians a
given by Eqs.~1! and ~2!, involves the continuous spectrum
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as a function of field strength. As is well known, its explic
consideration complicates theory as well as computation
significant practical step in the possibility of including th
contribution of the continuous spectrum in a nonperturbat
calculation of field-induced ionization rates was made
1976–1978 by Reinhardt and co-workers@42,43#. They used
Hdc @Eq. ~2!# for the 1s state ofH, and applied the procedur
of CCR developed earlier by Doolen and co-workers@44,45#
for the calculation of atomic resonance states. Reinhardt
co-workers empirically found that the complex pole corr
sponding to the dc-field-induced resonance was identifia
although the original mathematical theory of Aquila
Balslev, and Combes@46# for the spectrum of the rotate
Coulomb Hamiltonian,H(u), r→reiu, did not apply. We
recall that the full spectrum ofH(u), including possible
resonances on the second Riemann sheet, is revealed
though onlyL2 basis sets and no energy-normalized scat
ing functions are employed.@The applicability of coordinate
transformations~rotation or translation! in the case of com-
plex energy resonances induced by electric fields has b
explained from the point of view of regularization of th
resonance eigenfunction@47#.# At the same time, Chu and
Reinhardt@40#, and later Maquet, Chu, and Reinhardt@41#,
noting the similarity between the Hamiltonians~1! and ~2!,
extended Floquet theory to include the continuous spect
by using the rotated HamiltonianHac(u) for hydrogen. From
the calculated complex eigenvalues ofHac(u), which was
diagonalized on a large basis of generalized orthonormal
guerre functions, they obtained frequency-dependent o
and two- photon ionization rates forFac ranging from 1024

to 0.20 a.u., and presented a thorough analysis of the me
and its results.~For extensive discussion and applications
the CCR Floquet theory, see the reviews by Chu@48# and
Potvliege and Shakeshaft@49#.!

In the CCR Floquet method, the coordinate transform
tion r→r5reiu is introduced in the HamiltoniansHdc and
Hac, which are then diagonalized on a large, single basis
of L2 functions. The method searches for the proper comp
eigenvalue, whose imaginary part gives the rate of fie
induced ionization~FII!. However, brute-force diagonaliza
tion of Hamiltonian matrices onN-electron function space
made up from a single one-electron basis set is very une
nomical even for the calculation of wave functions and e
ergies of free atoms, especially in correlated excited sta
The situation becomes much worse, not only for obtain
results but also for understanding them, if one wishes
diagonalizeHdc(u) and especiallyHac(u) in this way for
N-electron states, as a function of frequency and intens
The aforementioned bottleneck in dealing with polyele
tronic states, which essentially characterizes any many-b
problem for which the adopted approach depends on the
agonalization of large matrices constructed from single ba
sets, is bypassed in the approach to the MEMP probl
which is described in Sec. II B.

B. Many-electron, many-photon theory

FII in the time-independent picture can be conceptualiz
in terms of field-dressed states interacting with the c
7-3
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tinuum, in analogy with autoionization@50,51#. Accordingly,
the framework is that of one or more discrete states mix
with one or more continua~open channels!. In the case of
autoionization, the mixing is due to an effective interacti
intrinsic to the atomic~molecular! Hamiltonian, whereas in
the case of FII it is due to theHdc andHac. The type, num-
ber, and magnitude of interaction matrix elements involv
operatorsA, F, and C and containing the physics of thi
problem, depend on the initial bare state, on the spectrum
the system under consideration, and on the frequency, p
ization, and intensity of the external field.

As regards autoionization, a series of papers in the
1970s @52–54# provided the basis for the many-electro
analysis of resonances and for their computation in term
separately optimized functions spaces, reflecting the phy
of decay. The corresponding fundamental equation is
complex eigenvalue Schro¨dinger equation~CESE!

~H2z0!C~r ,z0!50, ~3!

wherez0 is complex,z05E2 iG/2, andC(r ,z0) obeys the
outgoing wave boundary condition

C~r ,z0!;b~z0!eiNR, R→`. ~4!

r stands for all the coordinates collectively,R is the radial
coordinate for the outgoing electron, the~complex! coeffi-
cient b(z0) is proportional to the outgoing flux, and th
~complex! constantN acquires its explicit form depending o
the potential ~e.g., Coulomb, short-range, linear, etc!
@47,54#.

By considering either the physics of a decaying st
@52,53# or the reduction from Fano’s stationary state form
ism @47,54#, two results relevant to the MEMP approach pe
tain to C(r ;z0). The first is that the coordinate transform
tion r→r5reiu, first proposed for short-range potentials
Dykhne and Chaplik@55#, regularizes the resonance functio
and makes itL2. This change in the asymptotic bounda
conditions allows the direct and unique connection betw
C0(r ), the L2 wave function of the ‘‘bare’’ state with en
ergyE05^C0uHatomuC0& on the real axis, andC(r), theL2

resonance function with complex energyz05^CuHatomuC&
on the second Riemann sheet, with Rez0'E0.

The second result pertains to the form ofC~r!. This form
consists of two parts. One represents the initial stateC0
before the effective interaction Veff5H2QHQ; Q
5uC0&^C0u, causes its decay. The other partsXas, which is
essentially a small but crucial addendum, represents the
tribution from the outgoing wave. This idea was expresse
Ref. @52# as a normalization procedure subsequently nam
‘‘exterior complex scaling,’’ and in Refs.@53, 54# in terms of
forms such as~Ref. @53#, Sec. 7!

C5C01(
n

anun , ~5!

where un are trial complex basis functions. In fact, whe
actually constructing the Hamiltonian matrix, invarian
properties such as ^C0(r)uH(r)uC0(r)&
5^C0(r )uH(r )uC0(r )&5E0 allow the back rotationr
01340
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→r*5re2iu, so that only one set of orbitals inun , represent-
ing the outgoing ‘‘Gamow’’ orbital, has its coordinates ro
tated bye2 iu. The optimization ofC of Eq. ~5! is thus done
in two steps.

The first step involves the calculation ofC0 of Eq. ~5!
with functions of real coordinates with a real energyE0 , as
was emphasized in the 1978 papers@52,53#. This is a many-
electron problem with particularities, since it involves e
cited electronic structures representing autoionizing sta
For a two- or three-electron atom, one can in principle tac
it by direct diagonalization using very largeL2 basis sets and
selection criteria for the relevant roots. However, it is mo
reliable, efficient, and general to apply state-specific meth
suitable for arbitrary excited states ofN-electron atoms~see
Ref. @56#, and references therein!. The second step involve
the construction of the complex Hamiltonian matrix usi
Eq. ~5! and its repeated diagonalization by varyingu and/or
nonlinear parameters inun for each expansion length, unt
an acceptable stability for the complex energyz0 is found,
subject to conditions

Rez0'E0 and u^CuC0&u5max. ~6!

The above concepts and procedures have been ada
directly to the FII-MEMP problem by us, usingHdc andHac
@16–20,24,47# as well as the quadratic Zeeman operator@25#.
Now, however, the construction and solution of the relev
matrix equations is much more demanding in practice.
regards the size of the calculation, the nature of the elec
magnetic perturbing operators forces a consideration and
culation of many more state-specificN-electron ‘‘real’’ and
‘‘complex’’ functions. For example, in the case of the a
field, the dipole approximation requires the inclusion in
sequential manner of ‘‘Floquet blocks’’ of increasing angu
momentum symmetry, until convergence is achieved fo
given v andFac.

The methodology of the MEMPT is as follows: upon pe
turbation by the external field, the initial bare stateC0 ac-
quires the form

C0~r !→C~r!5(
i ,n

a i ,n~u!uC i~r!;n&

1(
j ,n

bj ,n~u!uXj~r!;n&, ~7!

whereC i denotes bound states~including the initial one! and
localized parts of autoionizing states,Xj denotes theL2

‘‘scattering’’ states of one or two electrons in the continuu
andn denotes the photon states. According to the discuss
above, theL2 C(r) satisfies the CESE

„Hac~r!2z0…C~r!50, ~8!

where, formally, all complex coordinates are rotated by
angleu sufficient to makeC~r! square integrable. Substitu
tion of expansion~7! into Eq. ~8! yields the matrix complex
eigenvalue MEMP equation

ĤsX5z0X, ~9a!
7-4
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where

Ĥs53
Â12v Î Û

Û Â1v Î Û 0

Û Â Û

0 Û Â2v Î Û

Û Â22v Î

4 ~9b!

Â is the free atom Hamiltonian matrix in terms of the ba

set of Eq.~5! andÛ is the interaction Hamiltonian matrix.z0
is given by

z05E01D~v,Fac!2 1
2 iG~v,Fac!, ~10!

whereD is the energy shift fromE0 , and G is the energy
width of the dressed~resonance! state.

When using expansions such as Eq.~5! or ~7! in the cor-
responding CESE’s, it was argued in Refs.@53# and@16–19#
that matrix elements involving bound-state wavefunctio
remain invariant under the back-rotationre2 iu5r , with ob-
vious favorable consequences as to the type and econom
the computation ofz0 in the complex energy plane. In th
case of the present MEMPT, the bound matrix elements h
the invariance properties

^C i~r!;nuHA~r!1\vav
† avuC j~r!;n8&

5^C i~r !;nuHA~r !1\vav
† avuC j~r !;n8&

5~n\v1Eid i j !dnn , ~11a!

^C i~r!;nu2 1
2 Faczeiu~av

† 1av!uC j~r!;n61&

5^C i~r !u2 1
2 FaczuC j~r !&. ~11b!

Equations~11! imply that these matrix elements, includin
the ones involvingC0 , are computed only once, on the re
axis, and are kept fixed when searching forz0 .

The L2 scattering statesXj (r) can be written as a sym
metry adapted product of a bound correlated core rotate
the complex plane and of orbitals~as yet unspecified! corre-
sponding to each decay channel

Xj~r!5Xj
core~r! ^ « l ~u!. ~12!

TheL2 rotated orbitale l (u) is expanded in terms of a bas
set with real coordinates,wk(r ):

« l ~u!5(
k

ck~u!wk~r !. ~13!

In our work, wk(r ) are chosen as Slater orbitals and th
number is augmented until stable results for the comp
energy are obtained. The matrix elements involvingXj (r)
satisfy
01340
s

of

ve

in

r
x

^Xi~r!;nuH~r!uXj~r!;n&

5n\vd i j 1K Xi
core~r !

^ (
k

ck
~ j !wk~re2 iu!uHA~r !uXj

core~r !

^ (
m

cm
~ j !wm~re2 iu!L , ~14a!

^Xi~r!;nuH~r!uXj~r!;n61&

5K Xi
core~r ! ^ (

k
ck

~ i !wk~re2 iu!U2 1

2
FaczUXj

core~r !

^ (
m

cm
~ j !wm~re2 iu!L , ~14b!

^C i~r!;nuH~r!uXj~r!;n61&

5K C i~r !U2 1

2
FaczUXj

core~r ! ^ (
k

ck
~ j !wk~re2 iu!L .

~14c!

Expansion~7! and the above invariance properties of m
trix elements reduce the MEMP problem into two over
types of computation. The first type focuses on the accu
calculation of state-specific, correlated functions for t
bound and autoionizing states, thereby accounting for
bulk of the many-electron calculations which are carried
only once on the real coordinate axis. The second type a
at the optimization of the orbitalswk and their coefficients
ck

( j ) which correspond to each decay channel defined by e
Xj

core and photon occupation numbern. The matrix elements

of the building blocks ofĤs @Eqs. ~9a, 9b!# Â and Û are
calculated in terms of two categories of functions. The fi
category involves functions of real coordinates, obtained
ther numerically or analytically, which represent bou
„C i(r )… ionic core „Xi

core(r )… or autoionizing states calcu
lated at the multiconfigurational Hartree-Fock~MCHF! level
with or without the addition of more correlation vectors. Th
second category contains„wk(r )…, which are rotated
„wk(re

2 iu)… while remainingL2. Because of the separatio
of the function spaces and of the consequences of the inv
ance properties, the size of final matrices in the overall c
culation is sufficiently small so as to allow rigorous and r
liable calculations on polyelectronic systems.

The u dependence inwk results in au-dependent MEMP

matrix Ĥs . On the other hand, the exact eigenvaluez0 @Eq.
~10!# is u independent. This implies that good convergen
exists when for a reasonably large range ofu values, for each
digonalization the complex eigenvalue corresponding to
initial bound state wave functionC0 remains essentially the
same. The state-specific, physically transparent choice o
function spaces of Eq.~7! allows the direct identification of
the solution vector from conditions~6!.
7-5



io
v

o

n
n

t
n

on

s

a-

s

e

and

the
te

nc-

in
r

ies
to
ac
g

po-
ti-

ec-
na-
n-
nd
n
bly
lv-

ear
eld
to

lar-

MERCOURIS, THEMELIS, AND NICOLAIDES PHYSICAL REVIEW A61 013407
C. Solution of the matrix eigenvalue equation

The infinite MEMP matrix of Eq.~9!, Ĥs(u), should be
truncated at a point which allows its practical diagonalizat
without sacrificing the requirement that the results ha
reached convergence. It follows that some thought has t
given to the way the diagonalization ofHs(u) is carried out,
especially since its direct diagonalization is not convenie
This inconvenience is circumvented by writing the eige
value equation~9! as an infinite ladder of equations

ÛXn21~u!1~Â1nv Î !Xn~u!1ÛXn11~u!5z0Xn~u!, ~15!

wheren runs from2` to 1`, Î is the unit matrix,Xn(u) is
the part of the complexified eigenvector corresponding
photon numbern, andz0 is the eigenvalue. The introductio
of the ‘‘shift’’ operatorsPn andQn that have the property

Xn5PnXn11 , Xn5QnXn21 ~16!

results, via Eq.~15!, in the recurrence relations

Pn52@~Â1nv Î 2z0Î 1ÛPn21!21#Û,

Qn52@~Â1nv Î 2z0Î 1ÛQn11!21#Û. ~17!

Thus, the diagonalization of the infinite matrixĤs is reduced
to first solving an eigenvalue equation, of finite dimensi
@Eq. ~15!, n50#

ÛX211ÂX01ÛX15z0X0 , ~18a!

which is then transformed, via the ‘‘shift’’ operatorsPn and
Qn , to

~ÛP211Â1ÛQ1!X05z0X0 . ~18b!

The matricesP21 andQ1 are infinite continued fractions, a
can be seen from Eq.~17!, with n ranging from2` to 1`.
The inverse of the matrix,

M05z0Î 2Â2ÛP212ÛQ1 , ~18c!

is the ‘‘elastic resolvent’’ of the continued-fraction perturb
tion theory in matrix form@3#. For the model case of 232
matrices, we can solve analytically Eqs.~18b! and ~18c! by
setting the determinant ofM0 equal to zero. The results thu
obtained are identical to those of Autler and Townes@57#.

The solution of the eigenvalue equation~18b! must be
obtained self-consistently, since the matricesP21 and Q1
depend on the eigenvaluez0 . In practice, the infinite contin-
ued fractionsP21 andQ1 are truncated at some large valu
of N, for which we assume that

P2uNu215QuNu1150. ~18d!

The calculation is checked so as to ensure that indeed~18d!
is satisfied after some large value ofN.
01340
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We emphasize that this method requires the invertion

diagonalization of matrices of the order ofÂ and Û, while
taking into account the photon states to any order. Thus,
computational efforts in the MEMPT focus on the accura

construction of the block matricesÂ and Û, which is
achieved by incorporating all those correlated wave fu
tions which affect the multiphoton process.

D. Calculation of linear and nonlinear polarizabilities

The calculated complex eigenvalue of Eq.~10! provides
the multiphoton ionization rates,G(v,Fac), as well as the
energy shiftD(v,Fac). For the static case, the expansion
Taylor series ofDstatic provides the definition of the linea
and nonlinear polarizabilities@see, e.g., Ref.@58##. For at-
oms,

Dstatic52~1/2!!aF0
22~1/4!!gF0

42~1/6!!dF0
62¯ .

~19!

For the dynamic case, the solution of Eq.~9! can be
achieved with more than one ac field of different frequenc
and/or static fields. Until now, we have restricted our work
a maximum of one ac field and one dc field. When one
field of frequencyv is present, we have used the followin
series expansion forD~v! @19,20#:

D~v!52~1/2!!a~v!„F0 cos~vt !…2

2~1/4!!g~v!„F0 cos~vt !…42¯ ~20a!

52~1/2!!a~v!~1/2!F0
22~1/4!!g~v!~3/8!F0

4

2~1/6!!d~v!~5/16!F0
62¯, ~20b!

where in going from Eq.~20a! to Eq. ~20b! we have aver-
aged over an optical cycle. The functionsa~v! and g~v!
represent the first two expansion coefficients of induced
larization for linearly polarized light averaged over an op
cal cycle. We point out that in the MEMPT, the values ofv
can go beyond the ionization threshold,Ethr , without any
difficulty, as indeed was demonstrated with Li2 @19# and H2

@20#. This is because the contribution of the continuous sp
trum is achieved rigorously, without any changes in the a
lytic structure of frequency-dependent quantities. Co
versely, calculations of frequency-dependent linear a
nonlinear polarizabilities via conventional perturbatio
theory and Green’s-function expansions must deal relia
with the problem of divergences in matrix elements invo
ing scattering states.

For approaches based on perturbation theory, the lin
and nonlinear coefficients of the series expansion in the fi
are obtained individually from expressions corresponding
different observable processes. Specifically, the hyperpo
izability tensorgabgd(2vs ,v1 ,v2 ,v3), is defined@1,2,14#
by the equation

Pa~vs!5Kgabgd~2vs ;v1 ,v2 ,v3!

3Eb~v1!Eg~v2!Ed~v3!, ~21!
7-6
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where a, b, g, and d are atom- or laboratory-fixed axe
~x,y,z!, Eb(v1) is theb component of the applied field with
frequencyv1 , Pa(vs) is the induced polarization with fre
quencyvs @vs5v11v21v3#, andK is a numerical factor.
Depending on the combination of photon frequencies and
transition processes,g expresses the dynamic polarizatio
for different phenomena. For example, the dc Kerr effec
represented byg~2v;v,0,0!, the degenerate four-wave mix
ing ~DFWM! by g~2v;2v,v,v!, the electric-field-induced
second-harmonic generation byg~22v;0,v,v! and the third-
harmonic generation~THG! by g~23v;v,v,v!.

The nonperturbative MEMPT incorporates field-induc
effects to all orders. The calculation directly yieldsD and
D~v!, and the quantitiesa, a~v!, andg, g~v! may then be
obtained, for small field strength values, by fitting the ene
shifts to a polynomial of high degree. For linearly polariz
monochromatic light, the hyperpolarizability tensor comp
nent thus obtained isgzzzz, and represents a frequenc
dependent superposition of the effects of DFWM and TH
for which uv1u5uv2u5uv3u5v. Therefore, a direct com
parison with the results of LOPT,~e.g., Ref.@14#!, where
hyperpolarizabilities for these processes are calculated s
rately, cannot be made. However, for certain values of
quencies, it happens that only one process dominates,~e.g.,
when the denominator of the corresponding perturba
theory formulas become very small!, in which caseg~v! rep-
resents essentially only this process~see next section!.

III. RESULTS

According to the description of Sec. II, MEMPT is imple
mentedab initio by choosing, manipulating, and optimizin
suitable one-electron andN-electron basis sets. Calculation
such as the ones carried out in this work are time consum
not only because of the need to account for the electro
structure and electron correlation of many states, but a
because of the number of properties examined over la
ranges of values forv and I. Therefore, in order to make
such a project worth pursuing, it is crucial to use functi
spaces which, on the one hand, render the calculations
table, and, on the other hand secure that the results co
quantitativelyall the significant physical information. As a
indicative test of the level of accuracy of these calculatio
we chose the comparison between the results of Bishop
Lam @14~a!# and our result for the dynamic polarizability
a~v!. They used LOPT with large expansions of carefu
optimized r 12-correlated functions obtained earlier b
Thakkar and Smith. Table II shows that the average de
tion is only 0.35%, with our numbers being systematica
smaller except forv50.75 a.u.~see below!. The function
space used here consisted of the following two-electron fu
tions.

~1! The initial stateC0 H1S was represented by a corre
lated ten-term numerical MCHF wave function@59# with the
configurations 1s2, 2s2, 2p2, 3s2, 3p2, 3d2, 4s2, 4p2,
4d2, and 4f 2. This function contains essentially all the radi
and angular correlations which play a role when the b
ground state is perturbed by the external field.

~2! C i of Eq. ~7! consist of singly excited Rydberg con
01340
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figurations and of doubly excited configurations represent
autoionizing states and correlations. In the He Rydb
states, electron correlation is not significant for the proper
under consideration. What is important is to have good ra
als for the Rydberg electron. This is achieved here via
use of numerical Hartree-Fock functions 1snl 1L with
n52,3,...,6 andL5 l 50,...,5. The remainder of the functio
space, which is made to mix viaHac is represented by 82
excited configurationsv lv l8

1L, wherev l are virtual orbitals,
with l 50,...,3, andL50,...,4.

~3! Xj of Eq. ~7! are represented by configurations of t
type 1s^ « l , where the orbital« l is expanded in terms o
Slater-type orbitals~STO’s!

wk~r* !5wk~re2 iu!5ck~u!r ke2ar* . ~22!

For each l ( l 50,...,5) the continuum orbitals were repr
sented by tenwk(r* ), except forl 55, for which eightwk
were used.

The convergence of the results was tested with respec
the rotation angleu and the STO exponenta, and with re-
spect to the numberN of the blocks of the infinite matrix
used@see Eqs.~9b! and~18d!#. The convergence is achieve
when the results are independent ofu, a, andN over a rea-
sonable range of parameter values. For most of the res
this was accomplished foruNu>10, a around 1.5 andu
around 0.3 rads.

A. dc-field tunneling rates

The only earlier quantum-mechanical work for this pro
erty on He is that of Ref.@60#, where the same method wa
used but with a smaller basis set and a less extensive
mization search in parameter space necessitated at the
by restricted computer power. In Fig. 1 we compare
presentab initio tunneling rates for He with semiclassic
results calculated here according to the widely us
Ammosov-Delone-Krainov~ADK ! tunneling rate formula
@61#. The validity of the ADK formula in the case of He i
thus tested for the range of field strengths used here.

FIG. 1. He tunneling rates~G in a.u.! as a function of the dc-
field strengths~F in a.u.!. The dotted line represents the rates whi
were obtained from the Ammosov-Delone-Krainov semiclass
formula @61#. The solid line represents the rates which were o
tained from the present MEMPT.
7-7
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agreement between theab initio MEMPT results and the
semiclassical ones is surprisingly good. Our calculatio
were systematic and detailed in the variation of parame
with special attention to the weak-field regime, where
imaginary part of the complex eigenvalue becomes v
small. It is in the weak-field regime that the present resu
correct the ones reported in Ref.@60#.

B. ac-field multiphoton ionization rates

The large ranges of frequencies@v5248 nm~;5 eV! to
40 nm~;26.4 eV!# and of intensities (I 53.531012– 1.715
31014W/cm2) which were used in the MEMPT calculation
of MPI rates were chosen so as to mark out different type
features which are characteristic of the high-order, nonlin
nature of the response. The results are shown in Figs. 2
Each one corresponds to a particular region ofv values. To
our knowledge, such predictions are reported here for
first time.

Figure 2 shows the rates, for peak intensities in the ra
1.431013– 1.71531014W/cm2, in the frequency region
where at least five photons are necessary for ionization.
pecially for low intensities, a series of identifiable pea
emerge from a more or less smooth background. This
manifestation of a 411 resonance-enhanced multiphot
ionization ~REMPI! where the field energy of four photon
comes to resonance with the 1s2s 1S, 1s3s 1S, 1s3d 1D,
1s4s 1S, and 1s4d 1D states, while the fifth photon drive
the He atom to the continuum. As the intensities increase,
positions of these peaks shift to higher energies, and
discrete structures become smoother and broader. Finally
1.71531014W/cm2, the rate function is smooth, with onl
two broad bumps; one representing the 1s2s 1S intermediate
state and the other representing the collective contribu

FIG. 2. He MPI rates~G in a.u.! in the laser frequency~v in a.u.!
region, where at least five photons are necessary for ionization.
different curves correspond to different laser intensitiesI. Specifi-
cally, the solid line curve was obtained forI 51.431013 W/cm2, the
dashed line forI 53.1531013 W/cm2, the dotted line forI 55.6
31013 W/cm2, the dash-dotted line forI 58.7531013 W/cm2, the
dash-dotted-dotted line forI 51.2631014 W/cm2, and the short
dashed line forI 51.71531014 W/cm2. The peaks denoted byA
correspond to~411! REMPI with the 1s2s 1S state. Similarly, the
peaks denoted byB correspond to~411! REMPI with 1s3s 1S,
1s3d 1D, 1s4s 1S, and 1s4d 1D states.
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from the 1S and 1D Rydberg states forn53 and 4. The
overall behavior ofG(v) is thus in accordance with the ex
pected upward shift, and the with the width broadening t
the Rydberg states undergo as intensity increases.

In Fig. 3, the frequencies cover the energy necessary
at least four-photon ionization. The intensities are in t
range of 1.431013– 1.71531014W/cm2. The ~311!-photon
REMPI with intermediate state the 1s2p 1Po is reflected in
the first peak. As the intensity increases, the position of
peak shifts to higher energies, but its width broadens re
tively little. The second peak corresponds to the~311!-
photon REMPI with intermediate states the 1s3p 1Po,
1s4 f 1Fo, 1s4p 1Po, 1s5 f 1Fo, and 1s5p 1Po. The near
degeneracy of the states belonging to the fourth and hig

he
FIG. 3. As in Fig. 2 but in the frequency region where at lea

four photons are necessary for ionization. The peaks denotedA
correspond to~311! REMPI with the 1s2p 1Po state. Similarly,
the peaks denoted byB correspond to ~311! REMPI with
1s3p 1Po, 1s4p 1Po, 1s4 f 1Fo, 1s5p 1Po, and 1s5 f 1Fo states.

FIG. 4. He MPI rates~G in a.u.! in the laser frequency~v in a.u.!
region where at least three photons are necessary for ionization
solid line curve was obtained for peak intensityI 53.5
31012 W/cm2, the dashed line forI 51.431013 W/cm2, the dotted
line for I 53.1531013 W/cm2, the dash-dotted line forI 55.6
31013 W/cm2, the dash-dotted-dotted line forI 58.7531013 W/
cm2, the short dashed line forI 51.2631014 W/cm2, and the short
dotted line forI 51.71531014 W/cm2. The peaks denoted byA cor-
respond to~211! REMPI with the 1s2s 1S state. Similarly, the
peaks denoted byB correspond to~211! REMPI with 1sns1S and
1snd 1D (n53,...,6) states.
7-8
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shells results in one peak for each shell. Again, the disc
structures forn54 and 5 that appear for low intensities a
wiped out as the intensity increases.

In Fig. 4 the frequency range corresponds to ionizat
with at least three photons. Results from seven intensity
ues between 3.531012 and 1.71531014W/cm2 are shown.
The same picture as in Figs. 2 and 3 appears, where
intermediate states for the 211 REMPI are the 1s2s 1S,
1sns1S, and 1snd 1Dn53,...,6 states. Forn>4, the peaks
for the 1S and 1D states are indistinguishable. Again, th
peaks shift to higher energies and broaden with increa
intensity.

Figure 5 showsG~v! for v values where at least tw
photons are required for ionization. Now, apart from the 111
REMPI, which involves the appearance and disappeara
~for higher intensities! of the 1s2p 1Po discrete intermediate
state, an additional structure appears atv;0.74 a.u. as the
field intensity increases. This structure is absent for field
tensities of the order of 3.531012W/cm2 or smaller, where
G~v! increases smoothly and quadratically with intensi
The interpretation of this is that it is a manifestation of
higher-order effect, whereby the autoionizing sta
2s2p 1Po, whose field-free position is around 60.2 eV,
coupled with the He1S ground state via a three-photon pr
cess. Three photons ofv;0.74 a.u. add to;60.4 eV. Apart
from energetics and symmetry we also tested this interpr
tion by removing from expansion~7! the correlated function
representing the 2s2p 1Po state. In this case, the peak di
appeared. This type of higher-order contribution to the io
ization rate of He for high intensities was first reported
Purviset al. @27#, whose calculations combine CCR Floqu
and R-matrix procedures. In their study, they observed
effect of the two-photon coupling between the1S ground
state and the lowest1D autoionizing state in a one-photo
ionization process.

We point out that this interplay between the field-fr
spectrum and the field characteristics of frequency and in
sity is brought out rather clearly when the state-specific
proach to the field-atom interaction problem is applie

FIG. 5. As in Fig. 4 but in the frequency region where at le
two photons are necessary for ionization. A peak emerges fro
smooth background, just belowv50.74 a.u., as the intensity in
creases. It is a manifestation of a three-photon process in which
2s2p 1Po autoionizing state is coupled resonantly with the H
ground state.
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where the fundamental ingredient is the form of Eq.~7! ~see
Ref. @21# and subsequent publications for the state-spec
expansion approach to the solution of the time-depend
Schrödinger equation!.

On the other hand, trial MEMPT calculations have ind
cated that difficulties with convergence and with interpre
tion may occur even when a faithful wave-function repres
tation of the discrete, autoionizing, and scattering state
used as input. This is when the strength of the perturba
due to operatorsF is such that, in combination with spectr
features of the system and with the values ofv, it causes
strong mixing of states and large and possibly abrupt ene
shifts. In such cases, the adiabatic criteria~6! must be applied
with great detail~something which is computationally expen
sive!, and must be supplemented by additional informat
on the solutions.

Finally, for each frequency, the laser intensity (I LOPT) at
which the I k-power ‘‘law’’ of the k-photon ionization rate
breaks down, is a parameter that determines the domai
the validity of the LOPT, except when intermediate res
nances with excited states are present. For example, in F
the quantity (G/\)/I 5 is given as a function of intensityI for
v50.2 a.u. AroundI 5431014W/cm2, the I 5 power ‘‘law’’
breaks down. More examples are given in Table I, wh

t
a

he

FIG. 6. The quantity (G/\)/I 5 as a function of intensityI for
v50.2 a.u. For this frequency at least five photons are necessar
ionization. As expected, in the low-intensity region where theI 5

power law of the five-photon ionization rate is valid, the quant
(G/\)/I 5 is essentially independent ofI.

TABLE I. The intensityI LOPT at which theG;I k power ‘‘law’’
breaks down. The values ofv were chosen so as to avoid, at lea
for low intensities, any Rydberg states coming into resonance.

v ~in a.u.! k
I LOPT

~in W/cm2!

0.184 5 1.031014

0.200 5 4.031014

0.240 4 5.031014

0.320 3 1.031014

0.400 3 3.031014

0.600 2 8.031014

0.800 2 1.031014
7-9
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I LOPT means the value ofI up to which LOPT holds. The
values ofv were chosen so as not to have any Rydberg st
coming into resonance. For these frequencies, the doma
validity of the LOPT is up to 1014– 1015W/cm2. Systematic
calculations concerning the peculiarities of the domain of
validity of the LOPT are under way and, hopefully, resu
will be reported in a future publication.

C. Dynamic polarizabilities and hyperpolarizabilities

Table II compares our results fora~v! with those of
Bishop and Lam@14~a!# up to v50.75 a.u.~below the ion-
ization threshold!, where the LOPT calculations of Re
@14~a!# stop. The agreement is very good. Figure 7 shows
MEMPT a~v! in the frequency range 0.17–0.97 a.u. i.
below and above the ionization threshold of He1S. The ex-

TABLE II. Comparison of the results for the dynamic polari
ability, a~v!, obtained from the nonperturbative many-electr
many-photon theory presented here and from the LOPT expres
with r 12 correlated functions, calculated by Bishop and Lam@14~a!#.
The comparison is up tov50.75 a.u., where the LOPT calculation
stopped because of the proximity to the excited state 1s2p 1Po.
Our calculations actually went up tov50.97 a.u.~see Fig. 7!.

v ~a.u.!
Bishop and
Lam @14~a!#

This
work

0.20 1.448 341 1.443 88
0.25 1.488 335 1.483 64
0.30 1.540 981 1.5360
0.35 1.609 325 1.603 96
0.40 1.697 985 1.692 04
0.45 1.814 214 1.8078
0.50 1.970 037 1.962 36
0.55 2.186 990 2.177 92
0.60 2.508 292 2.4972
0.65 3.037 345 3.023 36
0.70 4.111 021 4.096 92
0.75 8.014 127 8.195 68

FIG. 7. He ground-state dynamic polarizabilitya~v!, defined by
Eq. ~20b!, below and above the ionization threshold. The stro
variations which start just abovev50.75 a.u. are a manifestation o
the one-photon resonant excitation of the 1snp 1Po states.
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treme variations which start around 0.75 a.u. are the fing
prints of the one-photon resonance excitation of
1snp 1Po states.

The calculated dynamic hyperpolarizability@Eq. ~20b!#,
g~v!, is thezzzzcomponent of the tensor, and constitutes
linear combination of the perturbation theory terms rep
senting the processes DFWM and THG. Their presenc
revealed by examining Fig. 8. The variations ofg~v! for
frequencies larger than 0.75 a.u. correspond to one-ph
resonance excitation with the 1snp 1Po states. The struc-
tures denotedA aroundv50.25 a.u. are shown magnified i
Fig. 9. The first, and more pronounced, structu
~v;0.26 a.u.! corresponds to the three-photon excitation
the 1s2p 1Po state, and is due to the THG terms that a
present in the dynamic hyperpolarizability defined by E
~20!. Bishop and Lam@14~a!# explicitly computed the THG
term up tov50.25 a.u. However, direct comparison betwe
their THG results and ours forg~v! is not possible.

StructuresB for frequency values just abovev50.34 a.u.
are shown in detail in Fig. 10. These correspond to the tw
photon resonance excitation of the 1s2s 1S, 1sns1S, and
1snd 1D ~n53, 4, and 5! states, and have their origin in th
DFWM terms that are present in ourg~v!. Again, the values
of DFWM computed in Ref.@14~a!# are not directly compa-
rable with theg~v! of this calculation.

IV. SYNOPSIS

We have presented a large amount of experimentally v
fiable information for physical quantities related to the line
and nonlinear response of He to strong dc and ac fie
These results were obtained nonperturbatively, by applyin
MEMPT which is directly applicable to ground as well a
excited states of arbitrary electronic structures. We h
shown how this can be done economically and generally
systematically choosing and optimizing appropriate for
and parts of one-electron andN-electron functions. The key
features of the theory are the following.

~i! In analogy with work on the theory and calculation

on

g

FIG. 8. He ground-state dynamic hyperpolarizabilityg~v!, de-
fined by Eq.~20b!, below and above the ionization threshold. T
variations ofg~v! for v.0.75 a.u. correspond to the one-photo
resonant excitation of the 1snp 1Po states. The structures denote
by ~A! and ~B! are shown in more detail in Figs. 9 and 10, respe
tively.
7-10
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field-free resonance states, the problem is reduced to fin
the complex eigenvalue of a state-specific matrix equa
@Eq. ~9!# using as trial function the expansion~7!.

~ii ! The C(r) of Eq. ~7! consists of wave functions fo
the discrete, autoionizing, and free states of the system,
all the significant electronic structure and correlation effe
for each case included. The theory and methods of com
tation of state-specific correlated wave functions based
MCHF solutions, which comprise the zero-order approxim
tion, are described in Ref.@56# and references therein.

~iii ! The solution of Eq.~9! and the overall calculation in

FIG. 9. StructureA of the He ground-state dynamic hyperpola
izability g~v! ~Fig. 8! appears in the frequency region where
resonant three-photon excitation of the 1s2p 1Po state occurs. It is
due to the THG terms that are present in theg~v! of Eq. ~20b!.
ys

.

se
e

.

01340
ng
n

ith
s
u-
n
-

the complex energy plane are simplified and made tracta
and systematic due to the matrix element properties of E
~11! and ~14!.

~iv! The combination of~i!–~iii ! allows one to delineate
the various contributions and to understand the interplay
tween electronic structure and state symmetries on the
hand, and field characteristics on the other hand.
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FIG. 10. StructureB of the g~v! ~Fig. 8! appears in the fre-
quency region where a resonant two-photon excitation of
1sns1S and 1snd 1D ~n53, 4, and 5! states occurs. It is due to th
DFWM terms that are present ing~v! of Eq. ~20b!.
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