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Time-dependent formation of the profile of the He 2s2p 1p° state excited by a short laser pulse
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We produce quantitatively accurate data for the energy- and time-dependent formation of the profile of the
differential ionization probability of the He 1s? Is ground state from the coherent excitation and decay of the
doubly excited He 2s2p ! P° resonance state induced by a pulse of duration of 450 a.u. and field strength in the
range F=0.4X 1073 a.u. to F=0.4X 10" a.u. Two general methods were applied. One is analytic, using Fano’s
configuration interaction in the continuum in the framework of first order time-dependent perturbation theory.
The other is numerical, using the state-specific expansion approach for the nonperturbative solution of the
time-dependent Schrodinger equation. Electronic structures and electron correlation are incorporated via the
use of state-specific wave functions for the initial state, the resonance state, and the continuum of scattering
states. The results from the two methods are in perfect agreement, with a small discrepancy starting at F
=0.4X 107" a.u. The weak field analytic formulas show explicitly the dependence of the profile formation on
the pulse characteristics. In the limit of large times, the system becomes stationary and the computed resonance
state profile yields the Fano asymmetry parameter of g=-2.8, with energy E,=60.20 eV and width I’
=0.038 eV. These values agree with previously published ones obtained from time-independent calculations

and from photoabsorption measurements of the type initiated by Madden and Codling in 1963.
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I. INTRODUCTION

As a consequence of continuing developments in the sci-
ence and technology of techniques that produce and control
electromagnetic pulses with frequencies that are found in a
broad part of the spectrum, from the ir to the xuv and soft x
rays, it is possible to have hyperfast pump-probe time delay
(PPTD) spectroscopic techniques capable of time resolving
the dynamics of various atomic and molecular systems in-
volving excited states. By hyperfast we mean times in the
range of a few femtoseconds down to the attosecond regime.
These are necessary for the possible recording of time-
resolved processes caused by the “motion” of electrons in
certain categories of situations in atoms and molecules (see
below).

Such prospects evidently imply the preparedness of theo-
retical analysis and methods for interpretation and prediction
based on reliable quantum mechanical computations that
start from first principles of atomic and molecular structure
and produce reliable data quantitatively.

In this context, and in view of the announced observation
of trains [1] and of single [1] attosecond (as) pulses (1 a.u. of
time=2.42X 107'7 s=24.2 as), a few years ago [2,3], we in-
vestigated, via the ab initio solution of the time-dependent
Schrodinger equation (TDSE), cases in which the interplay
between electronic structure and electron dynamics can be
such as to allow, in principle, the recognition of processes
whose time evolution takes place within the as scale. Indeed,
it was found that it might be possible via hyperfast PPTD
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schemes to observe effects that result from the quantum me-
chanical motion of strongly correlating pairs of electrons.
The investigations focused on the time resolution of pro-
cesses induced at the pump step, since, apart from the fun-
damental interest in understanding computationally such
quantum dynamics from first principles, it is crucial to ac-
quire quantitatively data on the efficiency of preparing such
highly excited electronic states by short pulses.

Specifically, in [2,3] we studied from first principles the
time-resolved coherent excitation and decay of He 'P° non-
stationary states above 60 eV, labeled by doubly excited
configurations that were excited simultaneously with two
short femtosecond pulses. These configurations and their si-
multaneous excitation secure the conditions for the antici-
pated appearance of quantum beats (see below).

The results indicated that, in a representation of superpo-
sition of configurations (SOC), the dynamics of strongly cor-
relating electrons is the cause of hyperfast processes that can,
in principle, be time-resolved in PPTD schemes in the as
scale, with the final state being in the discrete or in the con-
tinuous spectrum. Three of these processes are: (i) The state-
specific electron correlation beats (ECBs) that carry the in-
formation not only of the energy difference between the
localized states over which the system oscillates due to its
own Hamiltonian, but also of their wave function character-
istics, such as amplitudes of oscillation and mixing coeffi-
cients of configurations, and good quantum numbers of zero
order labels; (ii) the intraatomic (or intramolecular) spatial
motion of pairs of electrons recognized through the time-
dependent geometries of their probability densities; and (iii)
the time-resolved decay due to autoionization of the doubly
excited (or inner-hole) states to the available open channels.
It was pointed out [2] that analogous time-resolved effects of
motions of electron pairs in doubly excited Rydberg configu-
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rations have been observed at longer time scales, e.g., [4,5].

In this paper, we study yet another aspect of possible pro-
cesses occurring in hyperfast PPTD schemes in real systems,
formally as well as numerically. The quantity of interest is
the differential ionization probability of polyelectronic atoms
in the neighborhood of a resonance state. This quantity is
given by

P(E,1) = |(scattering state|W¥(t))|*. (1)

The time-dependent |W(#)) contains the information for the
coherent excitation by a short pulse of the system, from an
initial discrete state to the energy region of a resonance state.

The calculation of P(E,t) was considered recently by
Wickenhauser ef al. [6] as part of an intriguing proposal on
the feasibility of hyperfast measurements of “fime resolved
Fano resonances.” They discussed a PPTD scheme involv-
ing a model inner-hole spectrum with input parameters from
the Lanthanide group. As is known, creation of one or more
holes in inner subshells of large atoms results in states with
strong hole-filling pair correlations that cause autoionization
into multichannel continua with very small decay lifetimes—
normally of the order of 107'4-5X 1071 s.

For the pump part, which is the object of our investiga-
tions in this and in our previous work [2,3], Wickenhauser et
al. solved a related time-dependent model of an isolated
resonance in the framework of first order time-dependent
perturbation theory (FOTDPT) and of Fano’s theory of the
phenomenology of the photoabsorption profile [7]. By pro-
jecting their FOTDPT solution on the unperturbed (by the
localized wave function of the resonance state) scattering
wave function, which we symbolize by |uj), they computed
the differential ionization probability P(E,z) of Eq. (1). In
such a time-dependent framework, |uy) represents a nonsta-
tionary state, in analogy with the bound nonstationary states
of [2,3] which exhibit the ECBs. Wickenhauser er al. [6]
stated that, “in the limit where the influence of the probe
laser pulse can be neglected, lim,_,P(E,t) converges to the
time-integral emission spectrum of a Fano resonance.” Their
result on P(E,?) for a Gaussian pulse envelope is given in
their Fig. 2 and depicts the formation of an asymmetric reso-
nance profile as a function of time.

In the present contribution to the nascent field of
theoretical-computational hyperfast time-resolved spectros-
copy of multiply excited (inner-hole) states, the focus is
again on the quantitative determination of the time resolution
of the preparation and decay of superpositions of nonstation-
ary states, considering as the test case the coherent excitation
and decay dynamics of the well-defined prototypical He
252p 'P? resonance state [7,8]. We recall that for this state,
the combination of Fano’s theory of line profiles [7] with the
experimental results of Madden and Codling [8] (use
of synchrotron radiation), yielded E,=60.133+0.015 eV,
'=0.038+0.004 eV, and ¢=-2.80+0.25. (The value
60.133 eV corresponds to the position of the resonance and
not to the absorption maximum, which is at 60.123 eV.)
Additional such measurements have since been reported
by other workers [9]. The more recent experimental values,
by Domke et al. [9], are thought of as being the most
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accurate (E,=60.147+0.001 eV, I'=0.037+0.001 eV, and
q=-2.75£0.01).

In Sec. IT we summarize the essential contents of the pa-
per. In Sec. Il we explain briefly the form and theoretical
background of the state-specific wave functions that are used
as input in our calculations. In Sec. IV we present our nu-
merical nonperturbative calculation and its results, and in
Sec. V we present an analytical treatment in conjunction with
FOTDPT. Section VI presents additional aspects of the re-
sults of the calculations, and we conclude in Sec. VII.

II. CONTENT OF THE PRESENT WORK

The analysis and computations reported here are con-
cerned with the ab initio calculation of P(E, ) numerically as
well as analytically, for the case of the He 2s2p 'P° reso-
nance. The physical processes involved in the problem are

laser pulse

HeW (15 'S) He*(1s)

_—
electric dipole coupling

+ (ep) in the vicinity of Wo(252p 'P°),

autoionization

———  He*(ls) + (ep).

Coulomb interaction

HeW,(252p 'P°)

At t=0, the atom is in the ground state, ‘I’g(1s2 19).
W,(2s2p 'P?) is the square-integrable wave function repre-
senting the localized part of the resonance. Autoionization is
taking place during and after the atom-laser pulse
interaction—at least until decay is over.

The next three sections discuss the theory and computa-
tion of accurate time-resolved results on P(E,f). These ac-
count for the details of electronic structure via the use of
state specific wave functions and for the characteristics of the
pulse. Although no experiment exists for direct comparison
with the behavior of P(E,t) during and immediately after the
application of the atom-laser pulse interaction, such a com-
parison is possible for long times, in terms of the energy, the
width, and the Fano parameter ¢, already cited in Sec. I. The
agreement is excellent. Thus, this work constitutes an ex-
ample where these observables for the He 2s2p 'P° reso-
nance state are obtained from the ab initio solution of the
TDSE. Finally, independent information is obtained from the
time-resolved exponential decay [2,3,10], which gives a life-
time of 17 fs, i.e., 703 atomic units of time corresponding to
a Lorentzian width of 0.039 eV, in agreement with experi-
ment.

The study was carried out along two axes, where two
different approaches to the calculation of W(z) and of P(E,t)
were followed. One approach is analytic, via which explicit
formulas involving matrix elements are obtained in FOTDPT
based on the application of the Fano formalism of configu-
ration interaction in the continuum (CIC) for the scattering
state. It is discussed in Sec. V. The analytic formulas are
generally valid for weak field situations. They add insight
into the physics of the time-resolved profile of the resonance
state during the excitation and the mixing of bound and scat-
tering components.
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The other approach is the numerical state-specific expan-
sion approach (SSEA) for the nonperturbative solution of the
TDSE [11]. Tts present implementation is described in Sec.
IV. The comparison of the results from two types of compu-
tation of W(r) can be used for delineating the boundary of
validity of the FOTDPT for each system (atom plus field) of
interest.

The calculations of the time-dependent wave functions of
Secs. IV and V solve the TDSE for the coherent excitation
and decay of He 2s2p 'P°, which is resonantly excited from
the ground state by a linearly polarized laser pulse of sin’
shape, of duration 450 a.u. (11 femtoseconds) and of
field strength ranging from F=0.4X107au. to
F=04X%X10" au.

Numerical comparison of the two approaches shows per-
fect agreement for weak fields and the beginning of some
discrepancy at F=0.4 X 107! a.u. (Sec. VI).

We stress that the structure of both approaches is perfectly
suitable for permitting the treatment of time-dependent sys-
tems where the initial state is excited. For example, such is
the case of excitation from the He 1525 'S state which was
considered in [2]. In other words, the computational method-
ology which is followed here is practical not only for two-
electron systems or for closed-subshell initial states such as
the ground states of the noble gases and of many molecules,
but for any type of polyelectronic system and initial state,
since it is based on the use of polyelectronic electronic struc-
ture methods for ground or excited states, as explained be-
low. In this context, since high frequency excitation of neu-
tral atoms inevitably involves resonance states labeled by
multiply excited (inner-hole) configurations, Sec. III com-
ments on the justification of the treatment of such states in
terms of state-specific wave functions.

Finally, we note that for the execution of this work, of
interest and concern to us was the choice of the scattering
state that ought to be included in Eq. (1). Is it the unper-
turbed background continuum (symbolized here by |ug)), or
is it the perturbed continuum (symbolized here by |Ug)),
where the effects of the resonance are incorporated? As is
discussed at the end of Sec. V, for the calculation of P(E,?) it
does not make a difference. This permits the reduction of the
size of the calculation of P(E,?) in terms of the full W(z) of
Sec. 1V, where the final calculations were run with |uE).
However, a difference might exist in the case where the am-
plitude of the probe interaction is added, since then, phases
may play a role.

In summary, the herein reported results were obtained
from ab initio calculations of the following quantities:

P(E,1) = [(ugW()))*  (Sec. IV), (2a)
P(E,t) = KUZP @) (Sec. V). (2b)

III. JUSTIFICATION OF THE WAVE FUNCTIONS
THAT ARE COMPUTED AND USED IN THE APPROACHES
OF SECS. IV AND V

The most difficult part of the ab initio calculation of
P(E,1) for an arbitrary polyelectronic system is obtaining the
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solution of the TDSE, |W(¢)), for a total Hamiltonian that
includes the time-dependent atom-field interaction. This is a
time-dependent many-electron problem (TDMEP) whose so-
lution to all orders of perturbation theory requires the appli-
cation of a method that pays attention to electronic structure
and handles complexity with efficacy and accuracy.

A theoretical analysis and computational methodology for
the practical nonperturbative solution of the TDMEP in at-
oms and small molecules was presented in [11,12], with ap-
plications to processes such as probabilities of multiphoton
ionization and dissociation, of photoassociation, high order
harmonic generation, etc.

The methodology in [11,12], which is called the SSEA for
reasons that are explained briefly below, computes nonper-
turbatively |W(z)) by implementing the basic quantum me-
chanical rule of expansion over a complete set of stationary
wave functions with time-dependent coefficients. In practice,
this implies that the wave functions which are employed
must be optimized solutions of the time-independent
Schrodinger equation for each state that is deemed relevant
to the time-dependent process under consideration and con-
tributes in a significant way to |W(¢)). This basic requirement
of quantum physics is taken into account in the SSEA
[11,12], which, in the case of electronic transitions, yields a
wave function,Wggz4(7), as a superposition of state-specific
bound and energy-normalized scattering wave functions that
are computed according to the state-specific theory (SST)
and methods that have been described in detail and applied
in previous publications, e.g., [2,3,10,11,13-18].

The methods that are implemented in the framework of
the SST are systematic in the computation of wave functions
of both the discrete and the continuous spectrum, including
cases of heavy valence-Rydberg-scattering state mixing in
which the wave functions are corrected for the quantum de-
fect and the phase shift [17].

What is significant for practical applications is that the
form of the bound wave functions for discrete states or for
the localized component of resonance states is the same. It is
given as a superposition of configurations, consisting of a
state-specific zero order multiconfigurational (in general)
wave function, i, computed in the Hartree-Fock (HF)
or multiconfigurational Hartree-Fock (MCHF) approxima-
tion, and a remaining correlation part. Thus, for each local-
ized state |n), the normalized square integrable wave func-
tion form is ([18] and references therein)

|¢SST>n = agn)| ¢1?4CHF>(n) + E a/(<n)<P/(<”), (3)
k

where the (p,({") are symmetry-adapted configurations contain-
ing occupied (MCHF) and optimized virtual orbitals. It
should be emphasized that, depending on the problem, the
size of each of the two terms on the right-hand side of (3)
varies in practice.

In this context, since for high-energy excitation sources
the states of interest are mostly in the continuous spectrum,
we briefly comment on the theory and computation of mul-
tiply excited (inner-hole) resonance states, such as the He
252p 'P?, since the many-body treatment for these states re-
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quires, in principle, special justification and consideration of
complex cases of zero order wave functions and of electron
correlation [ 13-18]. This is so because, contrary to the easily
handled by many-body methods closed-subshell ordinary
discrete states, the polyelectronic resonance states have spe-
cial characteristics, such as:

(1) They are embedded in the multichannel (in general)
scattering continuum of the same symmetry, and, therefore,
they belong to the continuous energy spectrum.

(2) They are most often labeled in zero order by open
subshell configurations, where orbitals and electron correla-
tions are term-dependent. Both the localized and the corre-
sponding scattering function spaces ought to reflect this fact.

(3) They may be subject to serious near-degeneracies
with other real or virtual resonances, in which case the single
configuration label is inadequate.

(4) They have an infinity of lower states of the same sym-
metry, a problem that has to be understood and solved in the
framework of electronic structure.

In view of the above, and of related serious difficulties in
dealing practically with the many-electron computation from
a scattering point of view (e.g., search for poles of the S
matrix), a decaying state approach was introduced and justi-
fied in [13] (see also [10,15,18]). Among other things, it was
argued that, for the many-electron problem, and in order to
handle the large variety of electronic structures that can rep-
resent wave packets that are created and then decay into the
continuous spectrum, the emphasis must be on the zero order
and correlation function spaces describing the localized com-
ponent of the resonance. A practical and theory-based way of
doing so is to adjust state-specific many-electron methods
that focus on a zero order solution that is obtained from the
solution of the self-consistent field equations (as is done for
ground states), rather than, say, to apply scattering type ex-
pansions or to use common basis sets for the discrete and the
continuous spectrum on which the total Hamiltonian is di-
agonalized.

The above requirement necessitates the solution of appro-
priate state-specific HF or MCHF equations and the subse-
quent appropriate optimization of the function spaces repre-
senting the remaining electron correlations. The efficacy and
physical economy of this approach for multiply excited and
for inner-hole resonance states has been demonstrated in a
series of publications since the 1970s, where the use of state-
specific analytic HF [13] zero order wave functions and,
later, of state-specific numerical HF and MCHF zero order
wave functions, e.g., [15,16], were combined with formal-
isms of many-electron calculations and of resonance states
that are practical and applicable to all types of nonstationary
excited states, e.g., [2,10,13-18].

As regards the scattering part of the full resonance wave
function, in the framework of the proposals in [13,15,17], it
is assumed that for practical purposes the asymptotically cor-
rect basis set of scattering wave functions may be chosen
from symmetry adapted products of a core bound wave func-
tion and the state-specific scattering orbitals in the potential
of the main component of the core (e.g., frozen core HF
scattering orbitals). Such bases are suitable for the develop-
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ment and implementation of K matrix, CIC type calculations
for the continuous spectrum of polyelectronic atoms [17].

IV. THE CALCULATION OF P(E,t) FROM THE STATE
SPECIFIC EXPANSION APPROACH (SSEA)
TO THE NONPERTURBATIVE SOLUTION
OF THE TDSE

As already stated in Sec. III, the form of the SSEA solu-
tion of the TDSE for electronic processes is [11]

Wssealt) = 2 a, (D, + f dEag(1)Pp, (4)

where @, are state-specific bound wave functions and ®, are
state- and energy-specific scattering wave functions with
Dirac function normalization. It is the nature of each prob-
lem of interest that defines the Hamiltonian and the values of
the coefficients at the initial time r=0, together with the type
and number of the wave functions in (4).

As regards the present problem, for linear polarization
and the electric dipole approximation, the time-dependent
Hamiltonian is

H()=H*+ V(w,1), (5a)
H" is the free-atom Hamiltonian and
V(w,1) = zFg(t)sin(wr). (5b)

g(1) is the temporal shape of the pulse. Here it was taken as
a sin’Q¢ function. F is the field strength and o is the fre-
quency.

The form of the W, (7) was

W gsealt) = Cg(t)q,g(lsz 'S) + co()Wo(252p ' P?)

+ J dEcg(t)u(E), (6)
0

where u(E) is the energy-normalized scattering wave func-
tion for the ionized state, He|1sEp> 1PO, at each value of the
energy, E, that is used in the computation of the coupling
matrix elements [19]. A computationally convenient practice
in the framework of the SST is for the scattering orbitals to
be computed in the single or multiconfigurational frozen core
of the ion, accounting for the exchange integrals. In the
present case, the situation is very simple, since the core is the
He* 1s orbital.

As before [2,3], the bound wave functions were com-
puted, according to theory (e.g., 13, 15, 18), as small MCHF
expansions, using the code published by Froese-Fischer [20].
Such expansions not only are accurate for such purposes, but
also provide a clear understanding of the magnitude of vari-
ous configurational contributions. For the Wg(1s>'S) state,
the numerical MCHF wave function consists of the configu-
rations 1s%, 2s%, 2p?, 3s% 3p? 3d* and its energy is
—2.901840 a.u., when the accurate value is —2.903724 a.u.
For the W(2s2p 'P°) wave function, the calculated MCHF
wave function is
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Wy (252p 'P%) = 0.948 ¢, (252p) — 0.308 b, (2p3d)
- 0.074¢5(353p) (7)

whose energy is —0.6906 a.u., i.e., 60.21 eV above the

ground state, only 0.06 eV above the experimental value [9].

Using these bound and scattering HF wave functions and the

“golden rule” expression for autoionization, the width comes

out to be 0.038 eV, in agreement with experiment.
Substitution of (6) into the TDSE (A=1),

l.NSSEA(t) _

Y [H* + V(w,1) W s5z4(1), (8)

transforms it into a system of equations having the form of
coupled integrodifferential equations with time-dependent
coefficients (¢ ;a1 = Cy):

dc
ij = Eyco+ Volw,1)co + f dEVp(w,0)cg,  (9a)
dcy A
l; = VOg(w’t)Cg+EOC0+ dEHOECE7 (9b)
dc
id—f = VEg(w,t)Cg + HgOCQ + Ecp. (90)

The initial condition at =0 is V(w,0)=0 and c,(0)=1. As
soon as >0, all configurations are mixed via the H(r). The
matrix elements, Vyo(w,1), Vp(®,1), HSE, etc. are computed
numerically [11]. The coupling matrix elements resulting
from the integral over the continuum are constructed as ac-
curately as is necessary, by extending the energy range and
by increasing the density of energy points via direct compu-
tation and interpolation [11,19]. Finally, the propagation of
Weera(?) in time, i.e., the calculation of the time-dependent
coefficients, is done by the Taylor-series expansion method
described in [11].

The final results were obtained from the solution of Egs.
(9) with 4845 terms, for a range of energy from 0 to 2.0 a.u.

Figure 1 depicts the calculated P(E,f). Slices of this sur-
face are presented in Figs. 2 and 3, after the discussion of the
analytic theory and its results in Sec. V.

Here we note that, for both numerical and analytic calcu-
lations, the limit lim,_..P(E,f) produces a Fano profile with
g=-2.8, in agreement with experiment [7-9]. The cross
section to the unperturbed continuum at the resonance energy
is calculated to be 1.21 X 107'8 cm?. Based on the experi-
mental data [8], Fano and Cooper [7] deduced a value of
1.4+0.2 X 107'8 cm? for this quantity.

V. ANALYTIC CALCULATION OF P(E,t) AT THE LEVEL
OF FIRST ORDER TIME-DEPENDENT PERTURBATION
THEORY (FOTDPT): APPLICATION TO THE He
25s2p 'P’ RESONANCE

We assume that the excitation of an isolated resonance
state is effected by a pulse of a weak electromagnetic field.
Therefore, the conditions of FOTDPT apply, i.e., the time-
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Q 1.26 >
“) 8000 "o\

FIG. 1. The differential ionization probability, P(e,f), computed
by the SSEA in this work, for the excitation of the He 2s2p I po
resonance state. € is the energy above the ionization threshold. The
scattering wave function represents a nonstationary state, whose
projection on the solution of the TDSE reveals the time-resolved
excitation profile, with its characteristic asymmetric profile [see Eq.
(32)]. The laser pulse has a sin’> envelope and duration of 450 a.u.
(=11 fs). At the frequency of the excitation energy it contains
158 cycles. This profile is the same for field strengths in the range
F=0.4x107 a.u. to F=0.4X 107! a.u., apart from the modulating
factor G(E, 1), given by Egs. (23) and (34), which depends linearly
on field strength F.

dependent coefficient of the initial state is close to unity.

In what follows we draw from the CIC formalism of Fano
[7]. We proceed by replacing (6) by an expansion over eigen-
functions. To achieve this we first diagonalize the atomic

0.8 4

450 a.u.)

0.6 4

P(e,t

0.4+
0.2+

0.0 4

0.2 — . ;
1.24 1.26 1.28 1.30 1.32 1.34 1.36

€ (a.u.)

FIG. 2. Comparison between the SSEA and the analytic results,
for field strength F=0.4 X 107" a.u. at the end of the duration of the
pulse (=450 a.u.). There is a minute discrepancy at the maximum,
suggesting the beginning of the deviation of the FOTDPT [Eq. (32)]
(solid line), from the nonperturbative approach.
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FIG. 3. (a) Time-resolved formation of the asymmetric profile of the differential ionization probability of the He 2s2p !P° resonance state
for excitation from the ground state with a pulse whose characteristics are given in the caption of Fig. 1 and in the text. For /=225 a.u. (b)
As in (a), for 1=450 a.u. (c) As in (a), for r=1000 a.u. (d) As in (a), for r=2000 a.u. (e) As in (a), for /=8000 a.u.

Hamiltonian in the basis W, uy, obtaining the eigenfunction .
of the stationary state at E Eya+ | dE'"Hyp /b =Ea, (11a)
Yp=a¥y+ UEEa‘I’0+JdE’bE,uEr. (10)
Hj),.a+E'bp =Ebyg. (11b)

The coefficients « and b were obtained by Fano by solving
the system of equations The solution is
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—E,—A
(12)
B |Hy ]”2
a(E) = { (E— Ey— AE)* + (mlHLP)? | (13)

Equation (13) results from the energy normalization of the
eigenfunction (10).
The energy shift function, A(E), is given by the principal
value integral
|Hog
A(E)=P | dE' ——. 14
(E) f e (14)

Multiplying Eq. (9¢) by b, integrating over E, and adding
Eq. (9b) multiplied by «, we obtain

dhg(1)
Puadd A0

= Wiroo(1) + Ehg(t), (15)

where we have defined

h(t) = aco(t) + f dE'bprcpr(D), (16a)

WEg:aVOg-l-JdE,bE’VE'g' (16b)
The following expressions for ¢((z) and cg(z) in terms of h(z)
are obtained from (16a) through the use of the orthogonality
relations between the a and b coefficients derived in the
Appendix

colt) = f dEah(r), (17a)

They can be used to transform (6) into an expansion over
eigenfunctions

V(1) = (), + J dERL(1) i (18)

while Eq. (9a) is written as

d
igct& =Ec, + f dEW hy. (19)

Equations (19) and (15) constitute the system of equations
satisfied by the coefficients of the expansion (18). This sys-
tem can now be solved perturbatively in the standard way, by
putting hp=hge ', c,=¢,e "¢, and then ¢, ~1.

The quantity of interest is the probability amplitude Ag(r)
for the system to be in the ionized continuum. Using Eq. (10)
we have

PHYSICAL REVIEW A 75, 013407 (2007)

Ag(t) = (| P (1)) — a{W o[ W (1))
=hp(r)-a f dE'hyi(f)a = f dE'bgicp (). (20)

Evaluation of Ag(r) requires the calculation of a principal
value integral of the form

1
Pde'HgErﬁcE’(t)’

which is similar to the energy shift integral Eq. (14). This has
to be added to the on-the-energy-shell contribution provided
by the & function of Eq. (12).

We now proceed to the first order perturbation solution of
the system of Egs. (15) and (19). We define the matrix ele-
ments

ng(E) = <\I’g|Z|\P0>, dgE = <\I,g|Z|ME> (21)
In terms of these, we have
hi(t) = e ®'G(E,1)D,, (22)
where
t
G(E,f)=- iFf dt’e‘i(Ei_E)’,g(t’)sin wt’ (23)
0

with g(7) being the temporal pulse shape appearing in the
expression (5b) and

A

HE’O

D,p= a|:dg0(E) +P f dE’dgE’ﬁ

+

E-Ey-AE) dgE} . (24)

Hy,
Now we invoke the expression for the parameter g given
by Fano [7]

1
ng(E)-'-PJdE,dgE’ETE’Hg/O

A
’n-HEOdgE

in order to express the ratio of the transition probability am-
plitude D, to the analogous quantity referring to the unper-
turbed continuum, dgE, as follows:

u] 6)

hE(t) = ae_iEtG(E’ t) WngOdgE|:q + l"

where
I = alH, (27)

is the half width of the autoionizing state.

If the quantities ¢, A, and I" are sufficiently constant in the
energy range of a few widths around the shifted energy E,
+A, from (13) one obtains the known result of the Lorentz-
ian distribution

aZ(E)= l I

2
m(E—Ey—A?+T?% (28)

with energy poles at z; and z(*), where
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Z()=E0+A—1T. (29)

These poles appear in the expression for the amplitude be-
low. Application of the second term of (20), with hg(¢) given
by Eq. (26), produces the expression

. E-E;-A
Ag(n) = CEe_’EtG(E,t){q + TO]

!

o —iE"t
+ _’de’ G
2 E' -2

i -z
+i —iE't
v f dE'——G(E'),  (30)
2770 E' -z,
where
I'd
Cg (31)

- V(E—Ey—A)?>+T?%

The integrals of Eq. (30) are easily calculated via contour
integration assuming the energy range to extend from — to
. Thus, by closing the contour in the lower half plane we
obtain the main result of this section, namely

. E-E,— A
Ag(t) = Cpe P'G(E, 1) [q + TO]
q-1i _.
-Cg 5 -7 'G(z0,1), (32)

where the exact form of the function G, which is given by
Eq. (23), depends on the shape of the pulse g().
A simple case for G is obtained when g(7) has the form

., 2t
sinc —— t<T/2
g()= T . (33)

0 t>T/2

Specifically, putting Q:z—f, where () <, and assuming the
rotating wave approximation, the function G is given by

F{ SE-E w200 _ | S E-E0-20) _ |
G(E7 t) == . + .
8i E—Eg—w+29+zs E—Eg—w—ZQ+18
ei(E—Eg—w)t -1
S (34a)

E-E,-w+ie
for t<T/2, while
G(E,t) = G(E,T/2), i.e. independent of t, for r = T/2.
(34b)
By combining Egs. (32) and (34) we obtain an analytic
expression for the quantity of interest
P(E,1) = |Ag(0)]*. (35)

In the limit 7— o, the last term of (32) goes to zero. The
first term is the Fano profile, modulated by the pulse factor
G(E,1).
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The above formalism can be extended to take into account
the presence of N ionization channels. To this purpose, it is
advantageous to draw from already developed time-
independent CIC approaches [7,21,17]. In the case where the
direct interchannel coupling can be neglected, the channels
are coupled through their interaction with the autoionizing
state W,,. There are N matrix elements HéjE, j=1,N and the
resulting diagonalization of the system of N+1 equations
analogous to Egs. (11) gives rise to N independent linear
combinations /% each expressed through its own set of co-
efficients a(k),b(.k). As Fano has shown [7], a choice can be
made so that the autoionizing state is contained in only one
of these combinations, say ¢/, the rest N-1 acting as a
structureless background. In this choice a®¥'=0 for k> 1 and
the coefficients b(k),k> 1 are proportional to delta functions
of the energy [21]. The characteristic resonant behavior is
contained in the coefficients ! and bgl) of ¥V which are
rapidly varied as a function of energy in the vicinity of the
autoionizing state. They are given by expressions similar to
(12) and (13) where the squares of the matrix elements
|Hj|?, contained within the brackets, are being replaced by
. |H,;|>. The same holds for the energy shift A(E), Eq. (14),
and the width I'(E), Eq. (27). In the case where interchannel
coupling cannot be neglected, this approach is not applicable
straightforwardly, due to the presence of the off-the-energy-
shell K matrices that account for all the important couplings
to all orders ([17] and references therein).

We close by commenting on the formulas (1, 2) where, in
the place of the scattering state, the use of the unperturbed
(Jug)) as well as of the perturbed (|Ug)) continuum state has
been made. The former involves the distribution |cE|2, while
the latter involves |[dE’bg/(E)cg|*, thereby accounting for
the time delay due to the presence of the localized compo-
nent of the resonance. In the Appendix, it is shown why the
ionization probability, P(rf)=[dEP(E,t), is independent of
whether |ug) or |Up) is used. This is due to the fact that the
two amplitudes differ by a factor exp[itan‘l( E_Igj_ A)] which
is the phase shift of the perturbed scattering state. Thus, al-
though the amplitudes are different, the calculated probabil-
ity is the same.

However, we point out that in a PPTD scheme, where
amplitudes including the second pulse (probe) are added co-
herently, the difference between the unperturbed background
scattering wave function and the perturbed one should in
principle, depending on the final states, affect the final re-
sults.

VI. RESULTS

The essential results are included in Fig. 1. Additional
information is contained in Figs. 2 and 3.

The numerical results from the application of the analytic
theory and use of the state-specific wave functions agree
with those of the SSEA. i.e., P(E,f)=P(E,t) [see Egs. (2)].
Only when the field strength becomes F=0.4X 107" a.u.
does a minute discrepancy start. This is shown in Fig. 2,
where the comparison is made at t=450 a.u., i.e., at the end
of the pulse.
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In Figs. 3(a)-3(e) we have plotted the time-resolved for-
mation of the profile of the diffential ionization probability,
P(E,t), for different times, =225 a.u., 450 a.u., 1000 a.u.,
2000 a.u., and 8000 a.u. For very short times [Figs. 3(a) and
3(b)], a rather symmetric form is obtained. For longer times
[Figs. 3(c) and 3(d)], asymmetry starts appearing. The small
oscillations are due to interference of the two terms of Eq.
(32).

Finally, for long times, [Fig. 3(e)], the system becomes
stationary and so the final asymmetric form of the profile for
the photoexcitation of the He 2s2p 'P° resonance is ob-
tained, described by the first term of Eq. (32). When the
function G(E, 1) is set equal to one, the profile corresponds to
q=-2.8, in agreement with the experimental value [7-9].

VII. CONCLUSION

The theme of the present paper combines the theory and
ab initio computation of resonance states labeled by multiply
excited or inner-hole excited configurations with the explo-
ration of the possibility of creating nonstationary states in the
continuous spectrum of an atom or molecule whose finger-
prints can, in principle, be time-resolved in hyperfast pump-
probe delay schemes. There are two principal prerequisites
for doing so. First, one must be able to prepare appropriate
nonstationary states whose time evolution is resolvable ex-
perimentally and computationally. Second, as regards theory,
one must be able to compute and apply W(z), namely the
time-dependent solution of the TDSE, where the total Hamil-
tonian contains the time-dependent perturbation due to the
atom (molecule)-field interaction.

Depending on the mode of excitation and the characteris-
tics of the laser pulse(s) with respect to the atomic spectrum,
the preparation of excited states in the continuous spectrum
via hyperfast excitations may involve either an isolated state
(as in the present study), or a superposition of states (as in
[2,3], or if a single pulse is broad and the quasi-discrete
excited states are close in energy).

The problem that was tackled in this work is the ab initio
calculation of the coherent excitation and decay of the dou-
bly excited He 252p 'P? resonance state, and in particular the
demonstration of its time-resolved formation of its asymmet-
ric profile, as revealed quantitatively via the computation of
the differential ionization probability, P(E,1)—see Figs. 1-3.

Here, the calculation of W(¢) was carried out from first
principles with very good accuracy, as indicated by the
agreement of the experimental energy, width, and the Fano
profile parameter, ¢, [7-9] with the values obtained from our
computations in the limit of times that are much longer than
the pulse duration (450 a.u.). Two approaches were imple-
mented. One is the numerical solution of the TDSE to all
orders of perturbation theory by the SSEA (Sec. IV), and the
other is the weak field analytic solution in the context of
FOTDPT, introduced here (Sec. V). For this system, it
appears that the limit where FOTDPT starts losing accuracy
for the problem at hand is for field strengths of about
F=0.4Xx10"" a.u. (Fig. 2).
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It should be noted that our analytic theory shows explic-
itly the energy- and time-dependent modulation of the Fano
profile due to the effect of the excitation pulse [function
G(E,1) of Eq. (32)].

Finally, we mention that the treatments of this paper have
been implemented for the ab initio determination of the time-
dependent coherent excitation and decay of inner-hole states
in larger atoms, where the added complexity includes the
problem of accounting for two-electron continua [22].
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APPENDIX

On resonance, the stationary scattering state fulfills the
orthonormality relation

(Yl i) = a(E)a(E) + J dE'bp/(E)bp(E) = SE - E),

(A1)

where the energy dependence of the « and b coefficients is
stated explicitly.

By multiplying Eq. (A1) with a(E), integrating over E,
and making use of the normalization of the Lorentzian dis-
tribution, i.e., [dEa*(E)=1, one obtains

f dEa(E)by(E) =0. (A2)

Alternatively, multiplying Eq. (Al) by bg(E), integrating
over E, and making use of (A2), one obtains
J dEbg/(E)bpn(E) = 8(E' — E"). (A3)

Thus, the orthonormality relation between wave functions
has been transformed into orthonormality relations between
coefficients.

From (A3), the following result is valid for a given dis-
tribution |cg/|* [e.g., see Eq. (20) and (35)]

P(t)= f dEP(E,1) = f dE| f cp'bp/ (E)dE'?
= f dE f dE’CE/bEr(E) f dE”CE//bEu(E)
=de’jdE”CE’CE”fdEbE’(E)bE”(E)

:de,jdE”CE'CE”(s(E_E’):fdE’|CE’|2'
(A4)
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