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By solving rigorously and accurately the time-dependent Stihger equation, we have obtained numerical
results for the decay probability?(t), of real, multiparticle systems, in the time domain tef0. Three
different types of atomic nonstationary states were examined, thelbzp? *P, the CakLM 3d5p °F°, and
the He 1s2s2p *Pg),, the last one being metastable and decaying via spin-spin interactions. The main results
are that there is & dependence dP(t~0) and that a time-dependent short-time decay rate can be calculated.
The computed coefficients of thiéterm reflect the degree of stability of the staies., the degree of proximity
to the notion of the standard stationary state of quantum mechagnits are named thstationarity coeffi-
cients These, together with the conventional quantity of the lifetime, corresponding to the exponential decay
regime, constitute intrinsic properties of each real unstable state. For the herein studied metastable state the
onset of exponential decay occurs after aboutl® *s, i.e., after a duration which is achievable experimen-
tally with laser pulses.
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[. INTRODUCTION such deviations have not been observed, and this fact agrees
with calculations based on models which show that the mag-
The excited states of polyelectronic atoms which lie in thenitude of nonexponential deca§NED) is too small to be
continuous spectrum, henceforth called resonance or a@bservable. Since the literature on this topic is considerable,
toionizing states, offer a few theoretical and experimentalVe refer the reader to the treatise of Goldberger and Watson
challenges concerning the fundamentals of quantum mechaht], to a recent reviey2] and to[3-5], where a large num-
ics. With regard to theory, one is the possibility of advancingPer of references are included.

and testing many-body theory to unusual and often weakly It has been arguefB,6] that when it comes to real sys-
bound electronic structures, occurring in a variety of scatterl®MS: the appearance of long-time NED has to be searched in

ing and photoabsorption experimentsegative ion reso- particular states, which are close to threshold. Indeedalthe
nances, multiple excited states, Auger states).&toother is initio calculations of4,5] on the nondecagsurviva) prob-

the possibility of using them as paradigms of states where p'“ty' P(t), of polyelect_ronlc atomic resonance states, bear
R ) o is out, thereby enforcing the view that it is significant to
nonseparable Hamiltonian is knowti.e., kinetic plus Cou- .
lomb interaction operatoysand where the nonstationary as understand, formally and computationally, the sources and
action op s hary the magnitudes of the possible violations of tae of ED in
pects of dissipatioidecay can be understood quantitatively

. o . real systems.
from first principles,(and not in terms of models or of use of | t¥1e present paper, we apply the method for the calcu-

empirical data, as it has been done in other fields of physics|5tion of P(t) which was first presented and applied #5]

in order to study basic questions of quantum theory and dyg, the calculation oP(t) very close tat=0. This region was

namics. excluded from analysis in our previous work, since this do-
As is well known, the fundamental characteristic of anmain seems to be undefinable, in a rigorous sense, as regards

isolated nonstationary state interacting with a purely continupreparation and measurement. However, given the fact that,

ous spectrum is its exponential deddsD). This marks the  during the past two decades, a number of calculations and

temporary formation at=0 of a localized wavepacke¥y,  arguments using models have dealt with this regieng.,

of energy E, inside the continuous spectrum. Associatedsee Refs[2,7-14), we thought that information coming

with it via analytic continuation to the second Riemann sheefrom ab initio calculations on real states would shed addi-

below the real axis is a complex eigenfunction with a com-tional insight into the issues, from a different angle. In fact,

plex eigenvalue, which drives the ED. The intriguing featurethese calculations have given us the opportunity of examin-

in this subject is that the formalism of quantum mechanicsing the notion of stability of a decaying state and to relate it

in conjunction with model calculations, predicts the possibil-to the coefficients of thé? term in thet~0 development of

ity of violations of the ED law, fort=0 and fort>1/T", P(t), which we name thestationary coefficients

wherel is the rate of decay in the ED regime. Nevertheless,

Il. NONEXPONENTIAL DECAY FOR t=0

*Email address: thmerc@eie.gr For many decades, the theory of decaying states in all
"Email address: can@eie.gr fields of physics has treated the time dependent decay dy-
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namics in terms of assumptions and modéls14], and ref-  jons (He 1s2p? *P,Li 1s22s2p °P°) as well as of

erences therein. Specifically, the quantity of interest has beeftoms  (CakKLM 3d5p °F°). These states, except

the P(t), which att=0 is one. The standard approach to its i ~1s?2s2p 3P°, have also been used as the examples for
calculation and analysis has been to compute the amplitud@e present work on the<0 NED regime.

G(t), [P(t)=|G(t)|*], from the expression/(=1), Fort~0, i.e., in the preexponential short time regime,
) * ) ~1— 2t24 ...
G~ (Wole M|wg)- [aEgEEE @) PIO=L= @B @
° where
| W) is the initially (t=0) localized state with real energy 2 _ 2 _
Eo., g(E) is the real spectral function given By |E)|?, (AB)*=(Wol(H=(H))*Wo)=4, 3
|E) is the energy normalized scattering state at en&gnd (HY= (W o|H| W) = E,. @)

the lower bound 0 of the integral signifies the starting point

of the continuous spectrum into which the nonstationary | extensively discussed expressi@n is obtained di-
state decays. The calculatio'n 6{t) and ofP(t) according rectly from the expansion of the operater ™t in Eq. (1).

to Eq. (1) has been done in many publications since theahough it is model independent, several investigations
1950s, by assuming a form f@(E), the best known one 15ye aiso considered models fpE) where the short de-
being the Brelt-ngner. We point out that 8,6] it was endence is different, e.g7—11,14. It is then significant to
shown that in order to account for time asymmetry as well agnderstand, formally and computationally, the sources and
for the fact that the spectrum is bounded from bel@e., e magnitudes of the possible violations in real systems.
t>0, E>0), the integral forG(t) must involve a complex gphecifically, we have asked the question: How doesPt3
spectral function rather than a real one. In the latter Caseyf 4 true at(;mic decaying state behavetfei0? If we fit this

G(t) includes the contribution from the adjoiritime re- 014 imep(t) to a polynomial int, which term dominates
versed stated 6] since “g(E) does not differentiate between and with what coefficient?

positive and negative timesp. 492 of[3]). In the former Before we proceed with thab initio calculation, in the

_ —iHt ;
case, G(t) =(Wo| 6(t)e” ™[ Wo), where 6(t) is the step (o) 1owing section we draw from earlier wofl 7] in order to

function fort>0. . discuss a concept about stationarity of excited states.
Regardless of the adopted formgi(fE), or, if time asym-

metry is considered, of the form of a complex spectral func-
tion, thelaw of exponential decayED), which is expressed
by P(t)=e""", whereT is the rate of decay in the ED re- |t has been arguel®,17,18, with examples of highly ex-
gion, is not satisfied for~0 and fort>1/I". Yet, a variety of  cited states, that the crucial concept in the theory of decaying
measurements have not uncovered any violation of ED otates is the existence and computation of a multiparticle
fundamental origin in an isolated quantum state dissipatingocalized wavepacket in the continuous spectring, hav-
into a purely continuous spectrum. A testimony to this fact ising a real energ¥,. Assuming loss of memory of the exci-
a comment on the law of ED by Greenlafith], who, fol-  tation process, this causes the breakdown of time continuity
lowing the null results of the careful measurements on unof the Schidinger equation at=0, and, through its interac-
stable nuclei by Normaet al. [16], conjectured: The cor-  tjon with the open channels, and, possibly, with other local-
rect combination of circumstances does not seem to arisged wavepackets via the open channels, it producest for
naturally to produce deviations from exponential decay,>0, the observable information about its intrinsic properties.
which is why it is such an accurately fulfilled law, even out to| ) is square integrable but is not an eigenfunction of the
45 half-lives” full Hamiltonian H, since it does not represent a discrete,
In two relatively recent publicatiorist,5], we presented a  stationary state. Instead, it represents a nonstationary state at
theory for theab initio solution of the time-dependent Schro =0 without whose existence, concepts such as poles of the
dinger equatiofTDSE) in the case of polyelectronic atomic scattering matrix, complex eigenvalue Safirger equation,
resonance states decaying into the continuous spectrum fﬁp|d phase shift Changes and peaks in a reaction cross sec-
the kinetic energy of the free electron. It is based on the statgon, cannot be justified.
specific expansion of the time dependdnft), with W (0) The proximity, due td¥,), of the concept of a decaying
=Wy, in terms of accurate representations of bound andtate to that of a stationary state, implies that, formally, the
energy normalized scattering wave functiofsee below.  time domain oft~0 might reveal information about the de-
The choice of the states that were Stud|e¢4r5] followed gree of Stationarity of the nonstationary Stdt@!,(t)) Fol-

from the earlier predictior}3,6] that, in real multiparticle |owing the arguments of17], we define the vector fot
systems, in order for the magnitude of the long time NED to~ g,

become non-negligible after only a few ED lifetimes, the

resonance state must be very close to thresh@d. with [u(t))=|¥(t))—|¥o). 5)
every generally accepted rulaw) of physics, possible vio-

lations may occur only in exceptional cagedle reported Equation(5) implies thatG(t)~ 1, since, for allt, | ¥'(t)) is
results for the long time NED, which turned out to formally given byG(t)| W)+ |0(t)), where|t(t)) signifies
be considerably enhanced for states of negativehe decayed products.

Ill. DEGREE OF STATIONARITY OF UNSTABLE STATES
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For t~0, one intuitively would expect that

[lim u(t))|= [[lim[exp( —iHt) —exp( —iH o) ]| ¥ )| = min,

t—0 t—0
(6)
where
Ho=[Wo){(WoH[W o) (Wl
and
(Wo|H[Wo) =Eq=(Wo|Ho| o). (7
Also,
Iin;[exr( —iHt)]=1-iHt,
to
Iirr:)[exp(—iHot)]zl—iHot. (8)
t—

From Egs.(6) through(8) we obtain the result that for the

nonstationary state, the optimaly) is such that the vari-
ances of Eq. (3) is minimum[17]

S=min. 9
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IV. METHOD OF INTEGRATION OF THE TDSE

The dynamics of decay is given by the solution of the
TDSE,

9
| P(O)=HW (), (11)

where H is the polyelectronic Hamiltonian an®¥ (t=0)
(=WT,), is the initially localized wave function of the reso-
nance, whose enerdy,, [see Eq.(4)], is embedded in the
continuous spectrum.

Our approach to the solution of the TDSE for this prob-
lem has been to exparii(t) in terms of state specifit|
electron wave functions, calculated by advanced methods
which account for the electronic structure of each participat-
ing state, and solve for the time-dependent coefficients. The
details of the method have been given in previous publica-
tions[4,5], and therefore, only the essentials are given below.

The expansion over the stationary states invoNgsand
other square-integrable wave functions,,, representing
other resonances possibly contributing, indirectly, to the de-
cay dynamics, and the scattering functiodge), represent-
ing the continuous spectrum. Thus, the form of this expan-
sion is

N

V()= a,(t)V,+ f:b(e,t)U(e)de

n=0

The use of Eq(9), and its non-Hermitian extension which (12

allows the optimization of trial wave functions for the calcu-

lation of widths, has been demonstrated in actual calculationgith the initial condition ag(t=0)=1 and a,(0)=b(e,0)

of resonance stat¢47,19-232. Here, its usefulness is taken =Q, for n+0.

to be conceptual. It signifies the degree of the deviation from |n our previous worl{4,5] as well as in the present one,
stationarity, before exponential decay sets in. In this work wep ~ were obtained numerically as multiconfigurational
will call & the stationarity coefficientlts definition implies  Hartree-FockMCHF) wave functions. The wave functions

that it depends only oji¥) and the first two moments &f.  of the continuous spectrum have the structure
In this work, we will compute it from the solution of the

TDSE, for the first time for real multiparticle systems.
We point out that the moments ¢f, i.e., (Vo|H"| W),
are related, in the limit ot—0, to the derivatives of the Where the continuum orbitale are energy normalized and
nondecay amplitudeG(t), by (Appendix C of[3] corrected ~ are obtained, numerically, for each value of the enetgy
for misprints: from a scattering calculation where the potential is fixed by
the structure and the symmetry of the core state. The wave

U(e) =W e el (13

(Wo[H" W) (—i)"=(—1)(W(t)|H"| (1)) (109  function of this core state is also obtained numerically at the
MCHF level.
As the next step, we substitude(t) of Eq.(12), into (11).
=(—i)”f dE E"g(E) (10b  The following system of integrodifferential equations is pro-
duced:
I"G(t) (100 d w
gtn o 'dta”(t)ﬂfo dtb(e,t)Sn(e)de

As is well known, if the computation ob is to be done
directly from its definition, Eq(3), then this requires that the
evaluation of expressiond0a and(10b) for n=2 produce a
finite result. However, there are distributions, such as the d Ny
Lorentzian, for which10g and(10b) yield an infinite result. i —b(e,t)+i >, — am(t)Sn(e)de
On the other hand, a time dependent calculation such as the dt m=o0 dt

one described below, can always prod{igeG(t)1/dt"|;- o, N

from which the related moments, and in particular, the _

=2 case, can be obtained. (Bt e)b(e'thE:o n(t)Vm(e).

—E,a(t) + Fb(e,t)vn(e)de, n=0,1,...N,
0

(14
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The overlapS,(€), and interactionV,(€), matrix elements
are given by

1.000000 —

P(t) =1-1.94364x10" 1*-6.23049x10™* *

Si€)=(¥oU(e), Vale)=(¥oH[U(e). a5
The existence and the magnitude 9f(e) depends on the
electronic structure of initial and final states and on the func-
tion spaces used to represent them. For sHapmle par-
ticle) resonancessee belov, this overlap is, in general, sig-
nificant and must be included.

The integrals in Eq(14) are performed by the trapezoidal
rule and the solution for the coefficients is tested for conver-
gence with respect to two parameters: the number of scatter  osesses 4+ : , S — ,
ing states and the extent of the continuous spectrum. The ¢ 4 & k00 200 0 180
time dependent coefficients are advanced in time via the Tay: t(@au)
lor series expansion techniq[#] that has proven efficient in
solving systems of tens of thousands of coupled equations

0.999985 ~

P(t)

0.899980

0.999975 — t-dependence of the nondecay probability
He 1s2p2 ‘P shape resonance

0.999970 -

FIG. 1. He 1s2p? *P shape resonance. Short time nondecay
probability P(t) =|ay(t)|? as a function of?, see also E¢1). One
atomic unit of time=2.418<10 %’s,

V. RESULTS ON THE SHORT-TIME EVOLUTION OF

NONSTATIONARY STATES
_ P(t)=1+>, at". (16)
We chose to study three resonance states belonging to n

different categories as regards their decay mechanism and o )
their lifetimes. The first two, He 1s2p? “P and CaKLM Indeed, this is what Fig. 1 demonstrates. The slope of the

3d5p 3F°, fall into the category of short-lived statéife-  Straight line is the stationarity coefficient. In practice, by fit-
time of 10" 24— 10" 23s) with decaying mechanisms involving ting polynomials of increasing order to the calculaf),
one and two electron nonrelativistic operators. The third oneWe found that the coefficierd,, which is the stationarity
He™ 1s52s2p *Ps,, is a long-lived metastable staféetime coefficients of Egs.(3) and(9), is by far the dominant one in

. e . . 77
of about 350us) that decays via relativistic spin-spin inter- the expansiori16). Specifically, its value is-1.9x10"".
actions. In addition to the above, we definetime-dependent rate

by considering théogarithmic derivative ofPP(t):

A. The He™ 1s2p? “P shape resonance d

This state is a shapésingle particleé resonance, lying F(t)=—&[P(t)]/P(t), (173
about 11 meV above threshold and decaying into the
He [1s2p3P°+ ep]*P continuum[4]. For the purpose of which, for short times, R(t)~1), is
the present study, the correlated localized phg of the

resonance wave function was computed in terms of a MCHF I'(t)y=—a;—2a,t—---. (17b)
expansion, containing the five most important components
[4]: This time-dependent rate is shown in Fig. 2 for a wide range

of values oft. For sufficiently large timesrelatively speak-
¥ ,=0.916/ (1s2p?) —0.383) (1s3p?) +0.118/ (1s3d?)

+0.0104 (1s4p?) +0.005) (1s4d?).

Its calculated energy is 12.7 meV, while its experimental one
[23] is 10.8 meV. One might think that such a small differ-

ence would play an insignificant role in the overall calcula-
tion. However, we found that for such a state, and probably
also for other shape resonances very close to threshold, th
calculation is sensitive to the value &f, and its position 10° 3
relative to the distribution of the interaction. In this work, we ]
adopted the experimental value. The systéd) was solved

for very short times and fon=0 only, since the other four 1073
roots of the MCHF solution, which represent higher lying
resonance states, do not affect the substance of the physics

He 1s2p” ‘P
Short-time, time-dependent decay rate

r( (a.u.)

o

T T T T T T UL T 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t(a.u.
the decay of He 1s2p? *P. ()
Figure 1 depict(t) for short times as a function af. FIG. 2. He 1s2p?“P shape resonance. Short time, time-
The main contribution td>(t) is expected to come from the dependent decay rat(t) (in a.u., logarithmic sca)e from Eq.

guadratic term of the expansion (17a.
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1.0x10%

8.0x10°

6.0x10°

4.0x10° 4 2e .
He 1s2p” "P=+—"1s2pep P
Full interaction matrix element

V(e)-(E,+€)S(€) (a.u.)

2,0x10°

0.0

T
2x10*

T
4x10*

T
4

8x10

T T T T AR |
5x10* 7x10* 8x10* 9x10* 1x10°

£(a.u.)

T T
0 4x10* 3x10°*

P(t)

1.0000

0.9995

0.9990

0.9985

0.9980
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P(t) = 1-1.11837x10°

t-dependence of the nondecay probability
Ca 3d5p °F° autoionizing state

0.9975

—T T T —
50 100 150 200 250

£ (a.u)

FIG. 3. He 1s2p? *P shape resonance. Full interaction matrix
elementVy(€) — (Eqreshoid™ €) So(€) (in a.u) as a function of the
energye (in a.u) above threshold. The thick vertical line indicates with energy.[The full interaction matrix element in calcula-
the positionE, of the resonance. tions of decay of real states of multielectron systems is given

by Vo(€) — (Etnreshoidt €) So(€), where the symbols are de-
ing) (t=700 a.u.), I'(t) acquires an essentially time- fined in Eq.(15). The individual behavior as a function ef
independent value that coincides with the autoionization rateof each matrix element is different. For example, in"He
On the other hand, for short timelS(t) varies linearly with  1s2p? #P the values oW(€) are positive for alk and those
t and the concomitant slope is, as expected, equal2a,. of Sy(€) are negativd.The thick line shows the position of

The special value of the present work and approach is thahe resonance, which is at about 8.80 *a.u. The curve
it produces results on the dynamics of decay of real, multiteaches a maximum at abat#=0.1 a.u. and then starts drop-
particle systems starting from first principles. This fact al-ping slowly. (Not possible to include it within the scale of
lows the possibility of comparison with previous work which this figure) Its value reaches 210 3a.u. at aboute
has been carried out by assuming models of decay of un=1 a.u.
stable states. Two such comparisons are made below. The
first involves the possible relationship between the energy
spread,AE= "2 and the lifetime,7, of a nonstationary

state. The second involves the details of initial tifg) and This state, which is found experimentally at 0.24 eV
its connection to the position and interaction with the con-a@bove threshold, has two valence electrons, whose interac-

tinuum of ¥,. tion constitutes the dominant cause of the decay into the

. . . . . . 2 3 P ; H H
An immediate answer to the first issue is provided by theCa'[4s S+ ef]°F® continuum via Coulomb interactions.
time—energy uncertainty relationshipEAt=1. A stricter The analysis of the contributions of the various correlat-

condition has been proposed by Gislason, Sabelli, and Woodf}d configurations resulted in a three-term compact wave
[9] function W, which was obtained self-consistently by the

MCHF method,

FIG. 4. As in Fig. 1, but for the CadBp 3F° autoionizing state.

B. The Ca 3d5p 3F° autoionizing state

AE7r=375Y%25=0.843. (18

¥ ,(Ca 3d5p 3F°)=0.994/(3d5p) — 0.103/(4d4p)

For the shape resonance under study, we obtaih&d +0.013/4(4d4f).

=(1.9x10 ")¥2 In addition, the calculation of the lifetime

in [4] yielded 7~=5200 a.u. From thesab initio results, the Details of the long-time decay curve of this state were

first of their kind, we indeed confirm the condition of Gisla- given in[5]. Also in [5], by Fourier transforming the time-

sonet al.[9], sinceAET~2.3>0.843. dependent amplitude of decay, we obtained for the first time
The second issue regards the oscillatory behavidr(of  for a real autoionizing state its spectral functigiie) of Eq.

which appears after its initial linear variation witharound  (1).

the value of the autoionization rate. Such behavior has been Figure 4 shows the survival probability as a function of

seen in model calculations of Levitah0] who studied, ana- t2, for short times. From the slope of the straight line we

lytically, the time dependent rate in the second order of arobtain the stationarity coefficienf=—a,=—1.12x10 °.

unstable quantum system using a model interaction of thélow, AE=(1.12<10 %) and the lifetime which was cal-

exponential typdV,(e) of Eqg. (15]. He concluded that, if culated in[5], 7=~1450 a.u. ThereforeAE7~4.8>0.843,

the interaction decreases slowly as a function of energy sthat again satisfies the form of the uncertainty relafibg),

that contributions from energies higher thégare included, proposed in9].

then the quadratic mode is followed by an oscillating period As in the previous case of Hels2p? “P, the time-

before ED. This conclusion is in harmony with our findings. dependent rat& (t) provides us witha, and with the region

Indeed, Fig. 3 shows that the full interaction drops slowlyof time where exponential decay sets in. Indeed, from Fig. 5
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] N/\/\/\W 1.0x10™ 1
] 8.0x10™

6.0x10™

Ca 3d5p °F° autoionizing state

He' 1s2s2p *P°,,, decays to the 1s°¢f °F° continuum
via spin-spin interactions

-
[=1
S
1

re (au)

4.0x10™

T (a.u.)

2.0x10™

00

— — . T — ,
; . —— : . . 0 1000 2000 3000 4000 5000
0 1000 2000 3000 4000 5000 t(a.u.)

t(a.u)

o o FIG. 7. As in Fig. 5, but for the He 1s2s2p “P2;, metastable
FIG. 5. As in Fig. 2, but for the Cadbp 3F° autoionizing state.  gtate.

one sees that for=400 a.u. ED has essentially taken over.  On the other hand, it is indeed possible to compute the

On the other hand, for short times the slope of the linearlyshort-time ratd™(t). Figure 7 depictd'(t) as a function of.

varying I'(t) is equal to—2as,. It is revealed that ED sets in foE=2000 a.u., while from the
The interaction of the initially localized state with the sjope of the linearly varying'(t), for very short times, we

underlying continuum is shown in Fig. 6. Here, because Obbtaina,=—2.7x107'%. For this case the produ®Er is

the two-electron rearrangement and the ionic core, the ovegqual to 2<10°, which, of course, also satisfies inequality

lap S(€), which is defined by Eq(19), is zero. The thick (18).

vertical line indicates the positio of . The same con- The spin-spin interaction of¥', with the continuum,
clusion with the case of Hels2p” P regarding the origin  which causes the decay, is shown in Fig. 8. As in the previ-
of the oscillations holds. ous case, the overla§(e) is zero. The vertical line indicates
the positionEg, which is 0.69 eV above threshold. The ex-
C. The He™ 1s2s2p “Pg, metastable state planation of the oscillatory structure &f(t) in Fig. 7 is as

o 2l 2F0 before, and verifies again the results that emerged from the
This is a metastable state that decays to theefl “F model calculations of LevitafL0].

underlying continuum via spin-spin interactions. Its lifetime

i; a_bout 350us (seg Rgf.[S]). Becaus.e of this very long V1. DISCUSSION AND CONCLUSION

lifetime, the determination of the full time-dependent curve

of decay has proven to be impossible within certain con- The phenomenon of decay of unstable quantum mechani-
straints of computer speed and of length of duration of thecal states involves irreversible fragmentation into a purely
computation[5]. The calculation of wave functions and of continuous spectrum of a multiparticle system which initially
relativistic matrix elements in the Breit-Pauli approximation (t=0) is represented by a localized wave functiohg,
follows from the 1980s work of Aspromallis and Nicolaides whose energ¥, is embedded in the continuous spectrum of

[24]. the kinetic energy of the emitted articles. The physics of this
1.10x10” -
1.6x107 |
1.08x10% 4 1.4x107 -
1.2x107 4
—~ 1.06x107 El -7_-
5 & roe
s S soxt0*S
= 3’: 8.0x10™ . spin-spin 21 oo
< 10ex10” Ca 3d5p °Foar dsef °F° el He 1s2s2p ‘P, =~ Hels" S+ef 'F,
- Interaction matrix element >% X ]
2 4.0x10°
1.02x10% |
2.0x10°
1.00x10° d T T T T T T Trrrr 1T 1 00 LELNRALE BLELEL LA SR ASLES (LA S SR LI N BB B T T T 1
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FIG. 6. Ca 3I5p 3F° autoionizing state. Absolute value of the FIG. 8. He 1s2s2p *P2, metastable state. The spin-spin inter-
interaction matrix elemen¥/(¢) (in a.u), as a function of energy ~ action(in a.u) of ¥, with the 1s?ef 2F° continuum, as a function
(in a.u) above threshold. of the energye (in a.u) above threshold.
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phenomenon is of fundamental interest and has been distationarity coefficientis a physically meaningful property
cussed in a number of papers over many decades. In thaf each real state, analogous to the lifetime associated with
overwhelming majority of these works, the main interpreta-the regime of ED, and reflects the degree of the states stabil-
tive and computational tool has been Et). and equivalent ity. We also showed that it is possible to define and compute
forms, and the use of models and assumptions about the forfar short times a time-dependent rate, Etj7ag, whose ex-
and properties of the functiog(E). This approach has pro- pansion reveals thatis half the coefficient of the linear term
duced qualitative and phenomenological information aboutn t [Eq. (17b)].

the existence of nonexponential de¢ByED) for short times, As we mention in Secs. | and Il, the clear-cut observation
t~0, and for very long times,>1/T . of NED for an isolated unstable quantum state remains elu-

In recent publication$4,5], as well as in the present in- sive. Regarding the long-time NED, Nicolaides and Beck
vestigation, we showed that it is possible to obtain quantitaf3,6] argued, via formal and numerical demonstrations, that
tively from first principles, for all times covering the expo- the magnitude of this type of violation of the law of ED can
nential decay(ED) regime and the two NED regimes, the be enhanced considerably in multiparticle states whose en-
survival probabilityP(t) [or any quantity for which the time- ergy is very close to the threshold of the continuum into
dependent wave functionV(t), is neededl for real, poly-  which they decay, even when the energy dependence of the
electronic unstable atomic states, by solving numerically thénteraction is weak. The choice of the H&s2p? *P and the
time-dependent Schdinger equation (TDSE). This is CaKLM 3d5p 3F° nonstationary states and the related ap-
achieved by using a physically appropriate expansion oflications which were presented [i4,5] were made for this
W(t) over accurately computed state-specific polyelectroni¢eason. Indeed, the suggestion8f6] was confirmed in the
wave functions representing localized statésquare- first principles computations d#,5]. It remains to be seen
integrable wave functionsand fragmented stategnergy- whether such deviations can be clocked experimentally. A
normalized scattering wave function®(t) is obtained nu- possible scheme may involve pump-probe synchronization
merically for each state of interest. Furthermore, bywith femtosecond laser pulses in the process
obtaining numerically the interaction matrix elements and hy
other quantities, such as the energy dispersion, it is possible He 1s2s2p *Pg,— He 1s2p? “P
to compare with previous results based on models and for-
malism. (See the discussion in the text related to RE®S. )
and[10]. h—y> He 1s2p 3P°+e™

The theory and calculations p4,5] focused on the expo- '
nential and long-time NED regime. In the work presented inThe population of $2p? “P is time dependentsince the
this paper we focused on the pre-exponential, short-timgtate is nonstationaryand this dependence ought, in prin-
NED regime, using as prototypical examples, three atomiciple, to be recordable in the intensity of the photoelectrons.
autoionizing(autodetachingstates: He 1s2p? “P, which is When it comes to the question of observing the short-time
a single particle shape resonance for which the change of theED we opined 3,4] that thet=0 point is not well defined
self-consistent field as well as the two-electron operatorsince it depends on the excitation wave packet and on the
contribute toP(t), CaKLM 3d5p 3F°, which autoionizes detection setup. On the other hand, it appears that the possi-
predominantly via the two-electron Coulomb interaction, andbility of its observation should depend primarily on the du-
He  1s2s2p *Pg2, which decays slowly via relativistic ration of this pre-exponential NED regime. By choosing to
spin—spin interactions. investigate the metastable state Hes2s2p *P2,, we ex-

The results of our calculations showed that, by fittingplored the possibility that the duration of the pre-exponential
P(t) to a polynomial int, Eq. (16), the short-time NED is NED regime is sufficiently long to be clocked experimen-
overwhelmingly dominated by thé term, in agreement with tally. Indeed, this duration for this state is about
the formal expansion of Eq2). It was argued that the com- 5x10 * s, which is within the femtosecond range of avail-
puted coefficient of thé? term, §=a, which we named the able laser pulses.
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