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We present a theory for the definition and the reliable calculation of correlated wave functions of
a special class of triply excited states and for their rigorous geometrical analysis. This class is
named the three-electron ionization ladder (THEIL) and refers to the simultaneous excitation of
three electrons in valence states near threshold. Application to the Li THEIL of *S ° symmetry re-
veals impressive localization properties. In analogy with a similar analysis of the “two-electron ion-
ization ladder,” which leads smoothly to the so-called “Wannier ridge” at the E =0 threshold, the
present results suggest the existence of a “hyperridge” at E =0 with the following properties: (1)
The ion core and the three electrons lie in a plane, (2) |1, | = | ;| = | 13|, and (3) 6,,=0,;=0,,.

I. INTRODUCTION
In recent papersl‘3 we have presented a quantitative
theory of a special class of low- as well as high-lying dou-
bly excited states (DES’s) in polyelectronic atoms, which
we have called the two-electron ionization ladder (TEIL).
Analysis of their spectra and of their wave functions and
the corresponding conditional probabilities as a function
of the principal quantum number n has led to the con-
clusion that the TEIL joins smoothly with the so-called
Wannier state at the two-electron ionization threshold
(E =0).** According to the classical calculations and
assumptions of Wannier,’ this state is characterized by
the property r;=—r, at E =0, an important property
which has been called the Wannier ridge.*

A rigorous quantum-mechanical many-electron theory
and calculation of the two-electron continuous spectrum
near threshold in the presence of a core is not yet avail-
able. However, important insight can be obtained via al-
ternative routes of investigation. These refer to the possi-
bility of understanding the very-high-n and threshold re-
gions by joining smoothly with information from wave
functions and observables obtained accurately for the
TEIL below.

In this paper we turn our attention to the physics of
low- as well as high-lying triply excited states (TES’s).
Although their experimental observation and study is not
easy yet,® their quantitative understanding, especially as
regards their electronic structure, their properties, and
their complete fragmentation dynamics, is an intriguing
theoretical problem, whose complexity exceeds by far the
corresponding one of the two-electron problem.” Our
aim has been to develop a theory in such a way as to be
able to obtain first principles and accurate information as
regards the spectrum and the wave functions of real
atomic systems and then extract from this information
additional properties. Although this aim has many
facets, the related fundamental question has been: What
are the geometrical and dynamical properties of the
three-electron threshold ionization state? As in the case
of the two electrons, this question addresses the very
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difficult problem of treating electronic correlations close
to threshold. This implies that the theory should be ap-
plicable beyond the very-low-n region.?

II. THEORY AND CALCULATIONS

Responding to the question stated above, we expect, by
conceptual analogy to the two-electron Wannier state
and by symmetry, that, at £ =0, the simultaneous ejec-
tion of the three electrons will occur in a plane which in-
cludes the remaining ion and with the position-space
property

o] =[] =] (1a)
and
612:623=631 . (lb)

This geometry defines the hyperridge of the three-electron
excitation and ionization problem.

Is the hyperridge geometry realizable? The theory and
calculations of this work yield a positive answer.

Our first conceptual and computational steps are based
on the main inputs and results of the TEIL theory.'—3
These are as follows.

(1) For each manifold of valence DES’s characterized
by n,=n,, the TEIL state corresponds to the state of
lowest energy (electron correlation criterion).

(2) The DES’s of polyelectronic atoms are treated
quantitatively in a state-specific manner.""* The compu-
tation of the appropriate zeroth-order vector is carried
out within multiconfiguration Hartree-Fock (MCHF)
theory with valence configurations characterized by
ny=n, only (zeroth-order, concerted motion criterion; in
this way, angular as well as a large portion of radial
correlation are computed systematically).

(3) Given the MCHF solution, the remaining correla-
tion is obtained variationally. It is found that the prox-
imity of the result of the zeroth-order calculation to that
of the fully correlated one improves as » increases.

(4) For relatively high n, the only available experimen-
tal spectrum is that of Buckman and co-workers'® in
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He ™. Our theory agrees with it.>'® The geometry of the
TEIL states is derived via appropriate definitions and cal-
culations of expectation values and probability densities,
and can be used to deduce® the analytic formula for the
TEIL spectrum in small atoms,

nin—1)
2 ’

E,(TEIL)= A (2)

r

where A is a constant characterizing the system and
r,={r;),={r;),, computed from first principles.' >

The aforementioned questions and facts have led us to
the definition of the three-electron ionization ladder
(THEIL) and to a corresponding many-electron theory
which is analogous, but more complex than that of the
TEIL. The three-electron system which was studied is
the triply excited Li coupled to a *S° symmetry and pari-
ty. The configuration corresponding to the lowest state
of this symmetry is the 2p>*S°. This state was examined
more than ten years ago'"!? in relation to the problem of
determining the number and the type of excited discrete
states in negative ions (e.g., Refs. 12 and 13). It was then
found that H~ ~ is unbound but that He~ *S° is bound
nonrelativistically due to electron correlation.!"!*

In order to proceed with the analysis which is related
to the question of the hyperridge geometry, we first had
to obtain THEIL wave functions. The following calcula-
tions were carried out.

(1) The exact wave functions (localized part only) are
written as

T,=TO+X, , 3)

where T? is the MCHF zeroth-order solution at each
shell n. The T? contain angular as well as a large part of
radial correlation and their characteristics are very close
to those of T,,. Thus we confined ourselves to the calcu-
lation of T? only, since their quality is perfectly adequate
for our purposes.

(2) We computed up to n =S5. It was deemed unneces-
sary to go any higher since, as n increases, the calcula-
tions become more difficult and expensive and since the
information which has been obtained from these wave
functions is sufficient to draw our conclusions (see below).
As an example, the n =4 T? of *S° symmetry is given by

T9=0.788(4p>)+0.557(4p4d?)+0.257(4f4d?)
+0.053(4f3)—0.002(4p4f?) . (4)

We note that configurations which represent open
channels are excluded from the TEIL or THEIL calcula-
tions, since they cannot contribute significantly to the
problem at hand. In the region of interest
(ry=ry~r;=(r)) the corresponding core orbitals are of
short range and do not have a substantial —if at all—
amplitude.

Having defined and calculated the T,? wave functions,
the following analysis was developed and applied. Our
goal is to deduce the geometrical behavior of these three-
electron excited states as a function of n. Two properties
are relevant. The first is the average radii of the elec-
trons. The second is the average angle between pairs of
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TABLE I. Values of {r), and {(8,,), for n =3,4,5, calculat-
ed from the T? wave functions of this work. As n increases,
(6,,), tends to 120°.

n r, (a.u.) (6,,), (deg)
3 5.0 99.6
4 9.0 105.2
5 14.0 110.1

electrons with respect to the nucleus.

The first property is obtained immediately from the ex-
pectation values of r and from the fact that all the MCHF
orbitals in T have nearly the same {r),;. Table I shows
the THEIL radii and Fig. 1 shows the graphs of the or-
bitals in T as a function of r.

The second property is derived by calculating the ex-
pectation value {cosf,,) and by calculating and plotting
the density p(?,,7,) [see Eq. (9)] for an arbitrary position
of the third electron. The related physics and algebra are
as follows.

First, we integrate the radial part out of the probability
density function. Given that the T,? contain only MCHF
configurations with n,=n,=n;=n, no cross terms ap-
pear and the radial integral is normalized to unity. If
W(?,,7,,7;) is the angular part of the total wave function,

(coseu)=fﬂl fﬂzfﬂ}dﬂ,dnzdﬂﬂ*(?l,?z,% )cosh,
XW(R,, 70, P3) (5)

where 7; (i =1,2,3) represents the unit position vector of
the ith electron with respect to the nucleus.

In order to carry out the triple integral (5), we con-
struct the ¥ function of *S° symmetry by coupling the
three electrons sequentially,

N
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r (a.u.)

FIG. 1. Plots of the MCHF orbitals for T (n =4). The aver-
age values are (r),,=9.0a.u, {r),;=8.9au., and {(r),,=9.0
a.u. The extreme closeness of these values implies that calculat-
ing an {r ), from the total wave function is meaningful.
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where C,I,ZI‘ are the T configuration coefficients and D(l,,l,,13) is a normalizing factor which depends on the form of
the configurations:

1 fOr 11212213

DU, 1y 05) = T/% for 1, =1,
1
\/—B f0r ll:/élzf/&l:;;éll.

Using expression (6b) the probability density of the angular part of T is written as

PP L= 3 > CI,II,ZISC,‘,z,JD(l’l,lg,lg)D(ll,lz,l3)
AV L P P
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We now single out one of the electrons by integrating over its angular space Q5. Thus
—EZ 2 2 0, G DU DU L )
Ly my 11
( 1)1’1‘/;( 1)1'*12 1’1 lé ll? ll 12 [3
X - - ’ ' '

XY R (R)Y, "’2*( Y2 (Ry) (8)

where only terms /5 =1} and m;=m} have survived.
Upon execution of a rather tedious angular momentum algebra, Eq. (8) reduces to

PPPI=3 3 3 Cppy €y DUGLI51DU L, L)1 + 1021+ D21 + D20+ 1]

1.4/ [ 1,1,
k L1y kL L kL kT
max K 1 1 1 1 2 1 1
% 2 (_1)[3 l\2k+ Pk(Coselz) 0 0 0 O O 0 ll’ l l ’ ) (9)
k=k 2 3 2

where

Kmin=max( [} =11 |, [l =13 ])

kmaxzmin(ll +l’2,12+l’2) .
A formula similar to Eq. (9) has been derived before for the reduced density of a doubly excited state.!> Finally, using
Eq. (9), we obtain

(COSHIZ ) = f ! d(COSGlZ)p(?I,?Z )005012

I,—1
=23 2 Crrpp G, DU 1D L, 1) (= 1)

Iy [ 1 1, o
I 171
0 0O

1, 151

X[+ 10215 + 121, +1)(21,+1)]'2 . oo

1ol 1| (10)
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FIG. 2. Plot of p(?,,?,) [Eq. (9)] as a function of the angle
68,,. For n =2, i.e., for the single configuration 2p**S°, the dis-
tribution is symmetric around 90°. As n increaes, the curve be-
comes increasingly skew-symmetric, while {(6,,) tends to 120°
at the threshold. The small negative part for n =5 is due to nu-
merical inaccuracy.

where 11,15,1,,1,, are such that

max( |1, =15 |, |1, =13 |)<1<min(l, +1},1,+1}) .

III. RESULTS AND CONCLUSION

The numerical implementation of Egs. (9) and (10) re-
veals an impressive geometrical property. This is
presented in Table I, for the values of r, and (cosf,),
(n =3,4,5), and in Figs. 2 and 3. Figure 2 shows the plot
of p(?,,7,) as a function of angle and Fig. 3 shows geome-
trical “pictures’ of the valence electrons as a function of
level of excitation. As n— o, we expect the realization
of the hyperridge geometry of Eq. (1).

In conclusion, the theory and calculations of this paper
offer conceptual as well as quantitative insight into the
physics of simultaneous excitation and threshold ioniza-
tion of three valence electrons. We point out that the va-
lidity of our analysis depends on the fact that it is angular
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FIG. 3. Geometrical “pictures” of the THEIL *S” states as a
function of n, based on the results of the present theory. (a)
Low n. (b) Higher n. (c) n— . As n increases, the pyramid
opens up and flattens out, tending toward the hyperridge
geometry of (c), where the nucleus and the three electrons lie in
the plane with 0,,=0,;=6;,,and |r,| = |1, | =|r3].

correlations which must be computed accurately for such
properties. Thus the trend for hyperridge shows up reli-
ably already at n =5. Nothing new would be gained in
this respect by doing calculations at higher n. Given the
generality of the theory and its computational advan-
tages, it is reasonable to expect, in future work, the pre-
diction of accurate spectra of experimentally verifiable
THEIL’s and, possibly, of formulas analogous to Eq. (2).
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