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Theory and computation of the matrix elements of the full interaction of the electromagnetic field
with an atomic state: Application to the Rydberg and the continuous spectrum
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We develop practical formulas for the calculation of the matrix elements of the interaction of the electro-
magnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamil-
tonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators.
The final workable expressions include the interactions to all orders and are derived by first expanding the
fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large,
contrary to the result of the electric-dipole approximation~EDA! where the value of the corresponding operator
increases indefinitely. Applications are given for Rydberg states of hydrogen up ton550 and for free-free
transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes
occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic
with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown
that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of
the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states.
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I. THE LONG-WAVELENGTH APPROXIMATION
AND EXTENDED WAVE FUNCTIONS

As is well known, theoretical atomic and molecular spe
troscopy of a plethora of phenomena caused by the lin
and nonlinear interaction of atomic~molecular! states with
the electromagnetic field has been developed over the
cades using the lowest-order terms of the angu
momentum- and parity-dependent multipole expansion of
vector potential@1–3#. The fundamental justification of thi
framework is the validity of thelong-wavelength approxima
tion ~LWA ! and the concomitant physical and computatio
relevance of matrix elements of the electric-dipole (E1),
electric-quadrupole (E2), etc., or of the magnetic-dipol
(M1), magnetic-quadrupole (M2), etc., operators. Thes
matrix elements enter into various theoretical expression
perturbative or nonperturbative treatments, either by the
selves or in combination~e.g., interference ofE2 with M1
amplitudes!, for the calculation of real or virtual processes

The LWA is based on the condition that 2pr /l is much
smaller than unity. l is the wavelength of radiation andr
signifies the ‘‘atomic dimensions’’ of the two states~real or
virtual! involved in the transition matrix element. Under th
condition, the low-order expansion of the vector poten
AW (rW) taken in the transverse gauge is valid:

AW ~rW !5eW kWmeikW•rW, eW kWm•kW50, m51,2, ~1!

AW ~rW !5eW kWm@11kW•rW1¯# ~LWA !. ~2!

eW kWm is the polarization vector,m numbers the two possibl
transverse polarizations of the field, andkW is the photon wave
vector.
1050-2947/2002/65~4!/043412~7!/$20.00 65 0434
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The application of the LWA in quantum mechanics is e
tensive and pervades many fields, especially in the form
the electric-dipole approximation~EDA!, whereby only the
first term of Eq.~2! is kept. Its overall success in conven
tional spectroscopy of states of small spatial extent is ind
putable. Furthermore, the simple forms that its operators
quire in terms of their radial dependence, such as thelength
or thevelocityoperators of the EDA, have made the comp
tation of matrix elements between polyelectronic wave fu
tions rather straightforward.

However, it appears that there are domains of curren
applied laser spectroscopy where the LWA and its most c
spicuous consequence, the EDA, cannot be justifieda priori.
Such domains are defined by spectroscopies probing R
berg states, and by strong-field laser spectroscopy, usin
laser ~and its harmonics! of frequencies ranging from the
infrared to the uv and vuv. In these cases, one may hav
calculate quantities involving the following types of matr
elements: Rydberg-Rydberg state, Rydberg-scattering s
and scattering-scattering state. The dimensions of such s
are either huge~say, Rydberg levels of hydrogen withn
550– 100!, or unlimited ~energy-normalized scatterin
states!, and have nothing to do with what is usually term
the ‘‘atomic dimensions.’’ Therefore, their extent becom
commensurate with that of the wavelengths of the commo
used radiation sources and hence, when considering inte
tion matrix elements involving such functions, the conditi
of the LWA cannot be satisfied. Therefore, results on fie
induced processes that involve such extended states an
based on the EDA cannot be justifieda priori. This comment
was made in a relatively recent publication@4# on the theory
and computation of free-free transition matrix eleme
within the EDA. At the same time, we also conjectured th
given the apparent agreement between computations in
EDA and experimental phenomenology of processes invo
©2002 The American Physical Society12-1
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ing free-free transitions, the interpretation of the phys
might be that the major part of the interaction occurs
tween the field and an electron wave packet very close to
nucleus.

Questions and ambiguities of this nature cannot be
swered definitively without calculation of atom-field co
pling matrix elements beyond the EDA and without comp
tation of the corresponding, physically relevant wa
functions, transition probabilities, and rates. The pres
work is a contribution toward this goal. It was motivated
recent publications@5–9# where, starting with Corless an
Stroud@5#, the aim of the calculations and of the discussio
is to obtain useful information about the formation of angu
wave packets in high-n hydrogenic states and about phot
ionization of high-n states, using wave functions from on
one n manifold or from more such manifolds. In all case
the analysis and calculations were done in the EDA. T
work of @5–8# used the length form of the interaction an
that of @9# used the velocity form.

The only quantitative clue as to what happens when
goes beyond the EDA in order to compute the matrix e
ments between such high-n Rydberg states has been provid
thus far by the recent work of Madsen, Hansen, and Nil
@10#, whose results confirm the conjecture that in such ca
the EDA is inadequate. Specifically, Madsenet al. @10# com-
pared the values of the matrix elements of the velocity
erator of the EDA,AW (0)•pW , with those ofAW (rW)•pW , present in
the ‘‘minimal-coupling’’ Hamiltonian @1–3#, for hydrogen
levels withn up to 30. The quadratic term of the interactio
A2(rW), whose significance increases with increasing fi
strength, was not considered. Their results show that,
matrix elements within Rydberg manifolds withn larger than
about 10–15~Fig. 1 of @10#!, the EDA is not reliable. Spe
cifically, Madsenet al. @10# stated that whenn530 the EDA
‘‘breaks down in connection with laser excitation of angu
wave packets.’’

If one aims at developing a practical formalism for goi
beyond the EDA for treating problems of hydrogen Rydbe
wave-packet dynamics such as the ones proposed and e
ined in @5–9#, it is necessary to choose a consistent and p
tinent form for the Rydberg state-field interaction. For e
ample, consider the singlen manifold model employed by
Corless and Stroud@5# for determining the probability of
forming high-angular-momentum wave packets. They u
the length form of the EDA, for which the intrashell dipo
matrix elements are huge.~They are given by2 3

2 nAn22 l 2,
regardless of the coordinate system—spherical or parab
Obviously, they increase rapidly withn; see also Sec. IV.! On
the contrary, if the EDA is chosen in the velocity form, the
intrashell dipole matrix elements are zero. This can easily
seen from the relation̂pW &5(Ei2Ej )^rW&, where, for hydro-
gen,Ei5Ej within the samen. Given the length values, Cor
less and Stroud@5# argued that the attenuation of the resu
of this zero-order choice by the coupling of thenth-shell
levels with those of the other shells and with the continu
would not affect the conclusions significantly. This assum
tion led to additional calculations and to counterargume
@6–9#, and the problem is basically open.

On the other hand, this model, namely, the neglect of
04341
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intershell electric-dipole matrix elements, is meaningless
the velocity form of the EDA. This is because now the o
posite is true, namely, the intrashell matrix elements are z
while the intershell ones are important. Since the latter
unlimited in number, the time-dependent calculation appe
to acquire large dimensions for which no computational
perience has been published yet for largen. This feature
characterizes theAW •pW operator as well. Of course, as regar
the final result of a calculation that solves the time-depend
Schrödinger equation~TDSE! with all the states~including
the continuum! coupled, the EDA forms of the length an
velocity operators ought to be equivalent. In practice,
function spaces are truncated and the interesting questio
how to obtain quantitatively the correct physics from t
solution of the TDSE in an economic way. Here, we po
out that questions about the significance of intermed
states in problems where either the length or the velo
form is used were also dealt with by Lamb, Schlicher, a
Scully @11#, who studied the two-photon 1s-2s transition in
hydrogen. For example, they noted that ‘‘the contributions
the individual intermediate states are very different’’ wh
the two forms are used~Appendix B of @11#!.

Because of the above, we decided to treat the comp
tional problem of ‘‘EDA vs beyond EDA’’ in a rigorous man
ner to all orders, via the use of a multipolar Hamiltonia
@2,3,11–13#; see Sec. III. In what follows, we present ou
approach, formalism, and numerical results for the calcu
tion of matrix elements beyond the LWA and the EDA. Th
demonstrative applications concern the electric-dipo
allowed s→p and the dipole-forbiddens→d matrix ele-
ments in the Rydberg spectrum and in the continuous sp
trum of hydrogen.

II. PRESENT WORK: CHOICE OF THE MULTIPOLAR
HAMILTONIAN

An approximate approach for going beyond the ED
would be to employ higher-order terms in the expansion~2!
for weak as well as for strong fields. This may be eas
stated but is not easily doable, especially for high-lyi
states where there are energy degeneracies and near d
eracies. Furthermore, especially for strong fields, one wo
have to prove convergence of the series for each cas
interest.

In the present paper we give a practical formalism for
expressions and the calculation of the nonrelativistic ma
element of the full interaction between an atomic state a
the electromagnetic field, which does not employ any type
multipole expansion and which is generally applicable,
cluding to the unexplored cases of high-lying states. Both
Rydberg orbitalsuRn& and the energy-normalized scatterin
orbitalsuE& are considered to be in numerical form. As in o
previous work on atomic structure and dynamics, we deve
the formalism and methodology in terms of numerical orb
als, rather than analytic hydrogenic ones, so as to treat
generalN-electron problem, whereuRn& or uE& is calculated
from state-specific (N21)-electron potentials.

The determination of such full-interaction matrix el
ments also entails the deduction of their analytic propert
2-2
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THEORY AND COMPUTATION OF THE MATRIX . . . PHYSICAL REVIEW A65 043412
For example, if we need to compute the^Eu operatoruE8&,
for E5E8 or for EÞE8, we need to recognize and deal wi
the possible existence ofsingularities, as in the case of the
EDA or of the full minimal-coupling interaction~@4# and
references therein!.

The form of the Hamiltonian describing the atom-fie
interaction that was chosen for this work is the multipo
one @2,3,11–13#. This Hamiltonian is equivalent to the con
ventional minimal-coupling atom-field Hamiltonian via un
tary or gauge transformations. In the limit of the EDA,
reduces to the length form of the electric-dipole interacti
i.e., EW (0)•rW, whereEW (0) is the field atr 50.

The multipolar Hamiltonian has been studied in the p
in the form of an infinite sum, whose terms represent elec
or magnetic multipoles, with the purpose of keeping and a
lyzing the first few of them. The elegant presentation of Lo
don @2# leads to a compact form in terms of the integral o
quantity 0,l,1, multiplying the position vector@Eq. ~4!
below#. The Taylor expansion of the position-depende
fields reproduces the terms of the infinite multipolar su
Thel integral can be evaluated by a combination of analy
and numerical methods—see Eq.~6! and below. The overal
result is a computationally practical form of the multipol
Hamiltonian.

Having obtained the appropriate expressions, we co
puted numerically the matrix elements involvinguRn& as well
as uE& of hydrogenic states, and compared them with
results obtained from the application of the EDA in t
length form. There are strong discrepancies, suggesting
the theory and computation of related phenomena and
servables ought to take this fact into account, and that p
lished conclusions on such phenomena, involving the c
pling of the electromagnetic field with the continuous and
high-Rydberg spectra, need reexamination. Applications
the dynamics of highly excited Rydberg wave packets will
given in a separate publication.

III. PRACTICAL EXPRESSIONS FOR THE MATRIX
ELEMENTS OF THE FULL INTERACTION OF THE

MULTIPOLAR HAMILTONIAN

The interaction part of the conventional, minima
coupling Hamiltonian is given by

HI5
e

mc(j
AW ~rW j !•pW j1

e2

2mc2 (
j

AW 2~rW j !. ~3!

As we discussed in Sec. I, the use of Eq.~3! in calcula-
tions of certain interesting problems of wave-packet dyna
ics need not provide an optimal treatment. In addition, o
must consider the fact that, when using Eq.~3! for solving
the TDSE, the expansion coefficients of a basis set of
unperturbed Hamiltonian are gauge dependent and do
correspond directly to time-dependent amplitudes@11,15#. In
addition, as Lamb, Schlicher, and Scully@11# pointed out, the
turning on and off of the interaction must be assumed
occur adiabatically. Therefore, after some analysis, we op
for the investigation of the multipolar Hamiltonian that r
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duces directly to the length form of the EDA, and which
obtained from Eq.~3! by the application of the unitary trans
formation @2,3#

U5expH i

hc(
j
E

0

1

rW j•AW ~lrW j !dlJ . ~4!

The multipolar Hamiltonian is given by@2,3,12–14#

HI5e(
j
E

0

1

rW j•EW T~lrW j !dl2
e

mc(j
E

0

1

lpW j•rW j

3BW j~lrW j !dl1
e2

2mc2

3H(
j
E

0

1

lrW j3BW j~lrW j !dlJ 2

~5!

and involves the electric and magnetic fields rather than
vector potential. Thel integration permits the writing of
expressions involving infinite expansions in a compact for

The three terms above are the electric, paramagnetic,
diamagnetic operators. In what follows, we show how
reduce Eq.~5! to workable expressions for the computatio
of matrix elements.

The previous treatments of the above expression@2,3,12–
14# involve the Taylor expansion about the origin of th
fields, described by plane waves, followed by the evaluat
of the l integrals. Keeping the first term of the electric-fie
expansion, one obtains the length form of the EDA. Here
shall follow a different route. We will use the partial-wav
expansion~A4! of the Appendix of the plane waves descri
ing the fields, since this expansion involves the spher
harmonics, which are also used to describe the angular
of the atomic orbitals. In this way, the integration over ang
is evaluated analytically in terms of the 3-j symbols and the
infinite expansion is truncated by the triangular inequalit
u l i2 l f u< l< l i1 l f between the angular momenta included
the 3-j symbols, wherel i and l f are the initial and final an-
gular momenta, respectively. Because of another properl
1 l i1 l f must be even. Consequently, the indexl in the ex-
pansion increases in steps of 2 and the summation is eith
real or a purely imaginary number. For example, in the c
of the dipole-allowed transitionsl f5 l i61 and thereforel
51,3,...,2l i61.

In the next step, thel integrals are reexpressed as int
grals over the radial variable,

E
0

1

j l~lkr !lndl5
1

r n11 E
0

r

j l~kr8!r 8ndr8 ~6!

where the Bessel functions result from the partial-wave
pansion of the plane waves. For reasons of simplicity thz

axis is chosen in the direction of the wave vectorkW . For the
polarization of the fieldsE andB we choose thex andy axes,
respectively; see formulas~A1!–~A3! of the Appendix. Use
is also made of the simplifying formulas~A5! and ~A6!.

The result of these choices is that the operators of
atom-field interaction are put in the form
2-3
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KOMNINOS, MERCOURIS, AND NICOLAIDES PHYSICAL REVIEW A65 043412
OX5X~ t ! (
l 5 l min

`

i l 1 l min~2l 11!Fl~r !Q l~u,f!1c.c. ~7!

A. Electric-field operator

Specifically, for the electric-field operator@ l min51,X(t)
5E0(t)e2 ivt# the application of Eq.~A5! gives

Fl~r !5
1

k E0

r 1

r 8
j l~kr8!dr8 ~8!

and

Q l~u,f!52ApAl ~ l 11!/~2l 11!~Yl
12Yl

21!, ~9!

causing transitions withDm561. For values ofk→0, only
the first term survives.

A useful insight is gained by examining the large-r behav-
ior of Fl . We write

Fl~r !→ 1

k
cl2

1

k2 E
r

` sin~kr2 lp/2!

r 2 dr ~10!

wherecl is the value of the integral~10! from 0 to ` @16#,

cl5
ApG~ l/2!

2~ l 11!G~ l /211/2!
. ~11!

Thus, for sufficiently large values ofr, the operatorFl
reaches a constant value.This is in contrast to the LWA
where the values of the length operator increase indefinit.

Comparison between the full operator and its LWA is si
plified for l i50 andl f51 when the only value allowed tol
is unity. In Fig. 1 we plot the function 3F1(r ) together with
3F1(r )5r , the latter representing the LWA. Then,c1
5p/4. Putting r 053p/4k, Fig. 1 suggests the following
model of practical value:

FIG. 1. Plot of the full electric operator 3F1 Eq. ~8! ~dotted line!
versus the model operator Eq.~12! ~full line!, both multiplied by the
photon wave number.
04341
y
-

3F1~r !5H r , r<r 0

r 0 , r>r 0 .
~12!

In words, the LWA is followed up tor 0 while a constant
value is assumed for larger values ofr. This model can serve
as a rough test for the region of validity of the LWA. Th
smaller the value ofk is, the larger is the region of validity
Hence, if the radial part of either the initial or the final wav
function falls off exponentially, forr>r 0 , then the LWA is
valid. It becomes obvious that for transitions between h
Rydberg or between scattering states, the LWA is not a
isfactory approximation.

B. Paramagnetic field operator

This is the second term of the Hamiltonian~5!. In the
general expression~7!, where now l min50 and X(t)
5B0(t)e2 ivt, we put

Fl~r !5
1

r 2 E
0

r

r 8 j l~kr8!dr ~13!

and

Q l~u,w!5
1

2i
A4p/~2l 11!

3@Al ~ l 11!~Yl
12Yl

21!12Yl
0~ l̂ 12 l̂ 2!#,

~14!

where

l̂ 6Yl
m5A~ l 7m!~ l 6m11!Yl

m61. ~15!

In this case, the allowed transitions haveDm561.

C. Diamagnetic field operator

This is a more complicated operator. We first split it in
two parts, each one corresponding to a different angular p
obtained by using the formula

~ r̂ 3 ŷ!25 1
2 ~11cos2 u!1 1

2 sin2 u cos 2f. ~16!

We now reduce the double integration, which is implicit
the third term of Eq.~5!, to a single one, using the fact tha
the integrand depends only on the sum of the two variab
It follows that

E
0

1

l8dl8E
0

1

l9dl9 exp@ i ~l81l9!kW•rW#

5
1

3 E0

1

~l323l12!exp~ ilkW•rW !dl2
4

3

3E
0

1

~2l323l11!exp~ i2lkW•rW !dl. ~17!
2-4
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THEORY AND COMPUTATION OF THE MATRIX . . . PHYSICAL REVIEW A65 043412
The first part of the angular operator~16! allows transi-
tions with Dm50 @now l min50, X(t)5B0

2(t)e2 i2vt#. The
radial factor corresponding to this part is, following Eq.~17!,

Fl~r !5
1

6r 2 E
0

r

r 83f l~kr8!dr82
1

2 E0

r

r 8 f l~kr8!dr8

1
1

3
r E

0

r

f l~kr8!dr82
4

3r 2 E
0

r

r 83f l~2kr8!dr8

12E
0

r

r 8 f l~2kr8!dr82
2

3
r E

0

r

r 83f l~2kr8!dr8,

~18!

where

f l~kr !5S 11
l ~ l 11!

2k2r 2 D j l~kr !1
1

kr
j l8~kr !. ~19!

f l(kr) is obtained by using Eq.~A6! and eliminating the
resulting second derivative of the Bessel function using
Bessel differential equation. Then, the angular factors ar

Q l~u,f!5Al ~ l 11!/4pYl
0~u,f!. ~20!

Although Eq.~18! looks complicated, thenumericalevalua-
tion of Fl(r ) is straightforward, the Bessel function and
derivative being simultaneously produced by the same r
tine @17#.

We now turn to the second part, for which the allow
transitions haveDm562. Application of Eq. ~A5! gives
@ l min52,X(t)5B0

2(t)e2 i2vt#,

Fl~r !5
1

24k2r 2 E
0

r

r 8 j l~kr8!dr82
1

8k2 E
0

r 1

r 8
j l~kr8!dr8

1
r

12k2 E
0

r 1

r 82 j l~kr8!dr82
1

3k2r 2 E
0

r

r 8 j l~kr8!dr8

1
1

2k2 E
0

r 1

r 8
j l~kr8!dr82

r

8k2 E
0

r 1

r 82 j l~kr8!dr8

~21!

and

Q l~u,f!5A@4p/~2l 11!# l ~ l 221!~ l 224!

3~Yl
21Yl

22!. ~22!

IV. APPLICATIONS: COMPARISON OF THE EDA
WITH THE EXACT TREATMENT

We concentrate on the electric field, whose effects
much larger than those of the magnetic one.@See Eq.~5!,
where the paramagnetic operator is divided byc and the
diamagnetic one byc2.#

As an application, we calculated the radial matrix e
ments corresponding to the electric-dipole-allowed transit
ns→np and to the dipole-forbidden transitionns→nd of
04341
e
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hydrogen, for values ofn up to 50 and forv50.5 a.u.~the
hydrogenic ionization potential!. Note thatk5v/c, where
c5137.037 in atomic units. In the first case,r 0 is equal to
645.77 a.u. In Fig. 2 we plot the radial matrix elemen
^un0u3F1(r )uun1& and ^un0ur uun1&. The latter is equal to
2 3

2 nAn221 @18#. For values ofn up to 10, the values of the
two matrix elements are essentially identical. However, an
increases beyond 10, a discrepancy starts, the former m
element approaching a value equal tor 0 . Noting that for
sufficiently large values ofn the hydrogenic functions con
centrate approximately at a distance 2n2, with the conven-
tion of having positive values close to the origin, and that
overlap^un0uun1&→21, the behavior of the matrix elemen
can be explained by the simple model Eq.~12! described in
Sec. III.

In the case of the dipole-forbidden transition, in whic
case^un0uun2&→1, a similar behavior of the correspondin
matrix element is observed; see Fig. 3.

FIG. 2. Plot of the transition matrix element~radial part! ns
→np calculated with the full electric operator, versus the ED
result2(3/2)nAn221.

FIG. 3. Plot of the transition matrix element~radial part! ns
→nd calculated with the full electric operator~forbidden electric-
dipole transition!.
2-5
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KOMNINOS, MERCOURIS, AND NICOLAIDES PHYSICAL REVIEW A65 043412
The hydrogenic wave functions of the above example
well as the wave functions of the continuous spectrum u
in the following calculation are computed via numerical s
lution of the differential equation that they satisfy. For high
excited states, this is the fastest and most accurate me
and is immediately applicable to the one-electron states
atoms other than hydrogen.

Free-free transitions for the Coulomb potential

The matrix elements between functions of the continu
spectrum can be evaluated as follows. We first choose a
veniently large valueb such that j 1(b), appearing in the
electric-field operator, is obtained within a given accuracy
the asymptotic series of the spherical Bessel function. In
regionkr,b, the expression~8! is used andF1 is calculated
numerically. In the outer region,kr.b, the expression~10!
is used and an overlap appears due to the constant term
overlap between Coulomb functions of different angular m
menta provides the usuald function singularity plus a
principal-value kernel. The calculation is analogous to t
showing thed orthonormality between Coulomb functions
the same angular momentum, e.g.,@19#. For atoms other than
hydrogen, the phase shift of the asymptotic part of the w
functions has to be taken into account.

A plot of the matrix element is given in Fig. 4, while th
corresponding plot for the dipole operator is given in Fig.
In the latter case, the integral has been expressed by Go
in terms of hypergeometric functions@20#. Comparing the
two figures, we can see that the matrix elements not o
differ dramatically in magnitude, but also differ qualitative
in their behavior about the singular pointk15k2 , since the
EDA results in ad8 singularity and a second-order principa
value kernel@21#.

V. CONCLUSION

By implementing the theory of the interaction of the ele
tromagnetic field with an atomic state in terms of the mu

FIG. 4. Plot of the transition matrix element~radial part! k1s
→k2p between energy-normalized Coulomb wave functions ca
lated with the full electric operator.
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polar Hamiltonian, Eq.~5!, we developed and applied formu
las for the practical calculation of the exact matrix eleme
of the electric, paramagnetic, and diamagnetic interactio
using numerical~and, therefore, general! one-electron wave
functions. The prototypical examples that we used show
that the widely employed EDA is not justified for the calc
lation of matrix elements between highly excited Rydbe
Rydberg, Rydberg-scattering and scattering-scattering st
Model ~12! quantifies this statement in a transparent w
The error is especially large for transitions between state
the same energy, which play a crucial role in the formation
wave packets excited from a lower state via laser pul
~e.g.,@5–9#, EDA calculations!.

The results of this work are being implemented in co
putationally demanding investigations of the excitation a
evolution of highly excited Rydberg levels. Preliminary ca
culations@22# show that when hydrogen is excited to thenth
shell from its ground state with laser pulses of frequenc
v50.5(121/n2), the results for the time-dependent popu
tion of initial and final levels from the use of the full inter
action ~with the on-shell couplings taken into account! start
differing from those obtained from the EDA whenn becomes
larger than 10. Already forn525 the differences are ver
significant @22# and force us to suggest that it is doubtf
whether the theory and understanding of Rydberg wa
packet formation and dynamics is reliable within the fram
work of the EDA.

APPENDIX

The single-mode vector potential is written as

AW 5A0~ t !xWeikW•rW2 ivt1c.c. ~A1!

The corresponding electric field@EW T52(1/c)(]/]t)AW # is
written as

EW T5E0~ t !x̂eikW•rW2 ivt1c.c. ~A2!

-

FIG. 5. Plot of the transition matrix element~radial part! k1s
→k2p between energy-normalized Coulomb wave functions cal
lated in the EDA~Gordon formula!.
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Also, sinceBW 5¹W 3AW 5 ikW3AW ,

BW 5 ikA0~ t !ŷeikW•rW2 ivt1c.c. ~A3!

The expansion of the plane wave in spherical waves is

eikW•rW5eikr cosu5(
l 50

`

i l~2l 11! j l~kr !Pl~cosu!. ~A4!

As we proved in@4#,
A.

ys

ev

04341
sinm ueikr cosu5S i

kr D
m

(
l 5m

`

i l~2l 11! j l~kr !Pl
m~cosu!,

~A5!

while differentiating Eq.~A4! m times with respect tokr
gives

cosm u eikr cosu5~ i !m(
l 50

`

i l~2l 11! j l
~m!~kr !Pl~cosu!.

~A6!
Ser.

on,

n-
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