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We develop practical formulas for the calculation of the matrix elements of the interaction of the electro-
magnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamil-
tonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators.
The final workable expressions include the interactions to all orders and are derived by first expanding the
fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large,
contrary to the result of the electric-dipole approximatiB®DA) where the value of the corresponding operator
increases indefinitely. Applications are given for Rydberg states of hydrogen ng 5 and for free-free
transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes
occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic
with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown
that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of
the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states.
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|. THE LONG-WAVELENGTH APPROXIMATION

The application of the LWA in quantum mechanics is ex-
AND EXTENDED WAVE FUNCTIONS

tensive and pervades many fields, especially in the form of

the electric-dipole approximatiofdEDA), whereby only the
As is well known, theoretical atomic and molecular spec-first term of Eq.(2) is kept. Its overall success in conven-

troscopy of a plethora of phenomena caused by the lineaional spectroscopy of states of small spatial extent is indis-
and nonlinear interaction of atomienoleculaj states with  putable. Furthermore, the simple forms that its operators ac-
the electromagnetic field has been developed over the depire in terms of their radial dependence, such ade¢hgth
cades using the lowest-order terms of the angularor thevelocityoperators of the EDA, have made the compu-
momentum- and parity-dependent multipole expansion of théation of matrix elements between polyelectronic wave func-
vector potentia[1-3]. The fundamental justification of this tions rather straightforward.
framework is the validity of théong-wavelength approxima- However, it appears that there are domains of currently
tion (LWA) and the concomitant physical and computationalapplied laser spectroscopy where the LWA and its most con-
relevance of matrix elements of the electric-dipoelj,  spicuous consequence, the EDA, cannot be justéipdori.
electric-quadrupole §2), etc., or of the magnetic-dipole Such domains are defined by spectroscopies probing Ryd-
(M1), magnetic-quadrupoleM?2), etc., operators. These berg states, and by strong-field laser spectroscopy, using a
matrix elements enter into various theoretical expressions dfiser (and its harmonigsof frequencies ranging from the
perturbative or nonperturbative treatments, either by theminfrared to the uv and vuv. In these cases, one may have to
selves or in combinatiofe.g., interference oE2 with M1 calculate quantities involving the following types of matrix
amplitude$, for the calculation of real or virtual processes. elements: Rydberg-Rydberg state, Rydberg-scattering state,
The LWA is based on the condition thatr2/\ is much  and scattering-scattering state. The dimensions of such states
smaller than unity. \ is the wavelength of radiation and are either huggsay, Rydberg levels of hydrogen with
signifies the “atomic dimensions” of the two statégal or  =50-100, or unlimited (energy-normalized scattering
virtual) involved in the transition matrix element. Under this state$, and have nothing to do with what is usually termed
condition, the low-order expansion of the vector potentialthe “atomic dimensions.” Therefore, their extent becomes
A(F) taken in the transverse gauge is valid: commensurate with that of the wavelengths of the commonly
used radiation sources and hence, when considering interac-
tion matrix elements involving such functions, the condition

A(F)=¢&,e"", &, k=0, pn=12, (1) of the LWA cannot be satisfied. Therefore, results on field-
induced processes that involve such extended states and are
A(7) = G 1+ K-it] (LWA). @) based on the EDA cannot be justifiagpriori. This comment

was made in a relatively recent publicatit] on the theory

L o ) and computation of free-free transition matrix elements
€k, Is the polarization vectory numbers the two possible ithin the EDA. At the same time, we also conjectured that,

transverse polarizations of the field, ani the photon wave given the apparent agreement between computations in the
vector. EDA and experimental phenomenology of processes involv-
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ing free-free transitions, the interpretation of the physicantershell electric-dipole matrix elements, is meaningless in
might be that the major part of the interaction occurs bethe velocity form of the EDA. This is because now the op-
tween the field and an electron wave packet very close to thposite is true, namely, the intrashell matrix elements are zero
nucleus. while the intershell ones are important. Since the latter are
Questions and ambiguities of this nature cannot be andnlimited in number, the time-dependent calculation appears
swered definitively without calculation of atom-field cou- to acquire large dimensions for which no computational ex-
pling matrix elements beyond the EDA and without compu-perience has been published yet for lamgeThis feature

tation of the corresponding, physically relevant wavecharacterizes th&- 5 operator as well. Of course, as regards
functions, transition probabilities, and rates. The presenihe final result of a calculation that solves the time-dependent
work is a contribution toward this goal. It was motivated by Schralinger equatiof TDSE) with all the stategincluding
recent publication$5—9] where, starting with Corless and the continuum coupled, the EDA forms of the length and
StrOUd[S], the aim of the calculations and of the diSCUSSionSVe|ocity operators Ought to be equiva]ent. In practice, the
is to obtain useful information about the formation of angularfunction spaces are truncated and the interesting question is
wave packets in higi-hydrogenic states and about photo- how to obtain quantitatively the correct physics from the
ionization of highn states, using wave functions from only solution of the TDSE in an economic way. Here, we point
one n manifold or from more such manifolds. In all cases, oyt that questions about the significance of intermediate
the analysis and calculations were done in the EDA. Thetates in problems where either the length or the velocity
work of [5-8] used the length form of the interaction and form is used were also dealt with by Lamb, Schlicher, and
that of [9] used the velocity form. Scully [11], who studied the two-photonsi2s transition in

The only quantitative clue as to what happens when on@ydrogen. For example, they noted that “the contributions of
goes beyond the EDA in order to compute the matrix elethe individual intermediate states are very different” when
ments between such highRydberg states has been providedthe two forms are usethppendix B of[11]).
thus far by the recent work of Ma.dsen, Hansen, and Nilsen Because of the above, we decided to treat the Computa_
[10], whose results confirm the conjecture that in such caseggnal problem of “EDA vs beyond EDA’ in a rigorous man-
the EDA is inadequate. Specifically, Madsetnal.[10] com-  ner to all orders, via the use of a multipolar Hamiltonian
pared the values of the matrix elements of the velocity 0P{2,3,11-13 see Sec. Ill. In what follows, we present our
erator of the EDAA(0)- P, with those ofA(F) - p, present in approach, formalism, and numerical results for the calcula-
the “minimal-coupling” Hamiltonian[1-3], for hydrogen tion of matrix elements beyond the LWA and the EDA. The
levels withn up to 30. The quadratic term of the interaction, demonstrative applications concern the electric-dipole-
A?(F), whose significance increases with increasing fieldallowed s—p and the dipole-forbidders—d matrix ele-
strength, was not considered. Their results show that, foments in the Rydberg spectrum and in the continuous spec-
matrix elements within Rydberg manifolds witHarger than  trum of hydrogen.
about 10—-15Fig. 1 of [10]), the EDA is not reliable. Spe-
cifically, Madsenret al.[10] stated that when=30 the EDA
“breaks down in connection with laser excitation of angular
wave packets.”

If one aims at developing a practical formalism for going  An approximate approach for going beyond the EDA
beyond the EDA for treating problems of hydrogen Rydbergwould be to employ higher-order terms in the expangin
wave-packet dynamics such as the ones proposed and exafor weak as well as for strong fields. This may be easily
ined in[5-9], it is necessary to choose a consistent and perstated but is not easily doable, especially for high-lying
tinent form for the Rydberg state-field interaction. For ex-states where there are energy degeneracies and near degen-
ample, consider the single manifold model employed by eracies. Furthermore, especially for strong fields, one would
Corless and Stroudl5] for determining the probability of have to prove convergence of the series for each case of
forming high-angular-momentum wave packets. They useéhterest.
the length form of the EDA, for which the intrashell dipole  In the present paper we give a practical formalism for the
matrix elements are hugéThey are given by-2n.n?—12, expressions and the calculation of the nonrelativistic matrix
regardless of the coordinate system—spherical or paraboli@lement of the full interaction between an atomic state and
Obviously, they increase rapidly with see also Sec. I[YOn  the electromagnetic field, which does not employ any type of
the contrary, if the EDA is chosen in the velocity form, thesemultipole expansion and which is generally applicable, in-
intrashell dipole matrix elements are zero. This can easily beluding to the unexplored cases of high-lying states. Both the
seen from the relatiop)=(E;— E;)(F), where, for hydro- Rydberg orbital§R") and the energy-normalized scattering
gen,E;=E; within the samen. Given the length values, Cor- orbitals|E) are considered to be in numerical form. As in our
less and Stroufs] argued that the attenuation of the resultsprevious work on atomic structure and dynamics, we develop
of this zero-order choice by the coupling of tihgh-shell  the formalism and methodology in terms of numerical orbit-
levels with those of the other shells and with the continuumals, rather than analytic hydrogenic ones, so as to treat the
would not affect the conclusions significantly. This assump-generalN-electron problem, whergR") or |E) is calculated
tion led to additional calculations and to counterargumentdérom state-specificl — 1)-electron potentials.

[6-9], and the problem is basically open. The determination of such full-interaction matrix ele-

On the other hand, this model, namely, the neglect of thenents also entails the deduction of their analytic properties.

Il. PRESENT WORK: CHOICE OF THE MULTIPOLAR
HAMILTONIAN
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For example, if we need to compute tti operator|E’), duces directly to the length form of the EDA, and which is
for E=E’ or for E#E’, we need to recognize and deal with obtained from Eq(3) by the application of the unitary trans-
the possible existence aingularities as in the case of the formation[2,3]
EDA or of the full minimal-coupling interactior{{4] and )
references therejin ot fla Ry e

The form of the Hamiltonian describing the atom-field U_eXp{hc; o 1T AGTdN @
interaction that was chosen for this work is the multipolar
one[2,3,11-13 This Hamiltonian is equivalent to the con- The multipolar Hamiltonian is given bj2,3,12—14
ventional minimal-coupling atom-field Hamiltonian via uni-
tary or gauge transformations. In the limit of the EDA, it B NI SN
reduces to the length form of the electric-dipole interaction, H'_ezj: 0 Fj- Ex(AT})dA mc; 0 AP

i.e., E(0)-F, whereE(0) is the field atr =0.

The multipolar Hamiltonian has been studied in the past Xg,()\r»_)d)\Jr e?
in the form of an infinite sum, whose terms represent electric e 2mc?
or magnetic multipoles, with the purpose of keeping and ana- 1 2
lyzing the first few of them. The elegant presentation of Lou- x> f AF: X g_()\r.)d)\] (5)
don[2] leads to a compact form in terms of the integral of a T Jo T

guantity 0<\ <1, multiplying the position vecto[Eq. (4) , ) o
below]. The Taylor expansion of the position-dependenta“d involves the electric and magnetic fields rather than the
fields reproduces the terms of the infinite multipolar sum Vector potential. Thex integration permits the writing of
The\ integral can be evaluated by a combination of analyticXPressions involving infinite expansions in a compact form.
and numerical methods—see E@) and below. The overall The three terms above are the electric, paramagnetic, and
result is a computationally practical form of the multipolar diamagnetic operators. In what follows, we show how to
Hamiltonian. reduce Eq(5) to workable expressions for the computation
Having obtained the appropriate expressions, we comf matrix elements.
puted numerically the matrix elements involvifig') as well The previous treatments of the above expresgh, 12—
as |E) of hydrogenic states, and compared them with the1_4] involve _the Taylor expansion about the origin of the
results obtained from the application of the EDA in the fiélds, described by plane waves, followed by the evaluation
length form. There are strong discrepancies, suggesting th&f the )\.lntegrals. ngpmg the first term of the electric-field
the theory and computation of related phenomena and of2XPansion, one obtains the length form of the EDA. Here we
servables ought to take this fact into account, and that pubshall follow a different route. We will use the partial-wave
lished conclusions on such phenomena, involving the cougXPansion(A4) of the Appendix of the plane waves describ-
pling of the electromagnetic field with the continuous and thd"d the fields, since this expansion involves the spherical
high-Rydberg spectra, need reexamination. Applications tgrarmonics, which are also used to describe the angular part

the dynamics of highly excited Rydberg wave packets will be®f the atomic orbitals. In this way, the integration over angles
given in a separate publication. is evaluated analytically in terms of thej 3ymbols and the

infinite expansion is truncated by the triangular inequalities
[li—l{|<I<I;+1; between the angular momenta included in

Ill. PRACTICAL EXPRESSIONS FOR THE MATRIX the 3§ symbols, wherd; andl; are the initial and final an-
ELEMENTS OF THE FULL INTERACTION OF THE gular momenta, respectively. Because of another property,
MULTIPOLAR HAMILTONIAN +1;+1; must be even. Consequently, the indeir the ex-

pansion increases in steps of 2 and the summation is either a
real or a purely imaginary number. For example, in the case
of the dipole-allowed transitionk=1;+1 and thereford

The interaction part of the conventional, minimal-
coupling Hamiltonian is given by

=13,...,4;*x1
2 1 L 1 | -
e - e - : .
H=—>> AF)-B+—=> A2(F). 3 In the next step, tha integrals are reexpressed as inte-
! mc; (j)- p; Zmé; (ry) @ grals over the radial variable,

As we discussed in Sec. |, the use of E8). in calcula- flj|()\kr))\”d)\= n1+1 frj|(kr’)r’”dr’ (6)
tions of certain interesting problems of wave-packet dynam- 0 r 0

ics need not provide an optimal treatment. In addition, one ) .

must consider the fact that, when using E8). for solving Wher_e the Bessel functions result from the partial-wave ex-
the TDSE, the expansion coefficients of a basis set of th@ansion of the plane waves. For reasons of simplicityzhe
unperturbed Hamiltonian are gauge dependent and do naiis is chosen in the direction of the wave vedtor~or the
correspond directly to time-dependent amplitufiels15. In ~ polarization of the field& andB we choose th& andy axes,
addition, as Lamb, Schlicher, and Scullyl] pointed out, the respectively; see formula@1)—(A3) of the Appendix. Use
turning on and off of the interaction must be assumed tds also made of the simplifying formuld#\5) and (A6).

occur adiabatically. Therefore, after some analysis, we opted The result of these choices is that the operators of the
for the investigation of the multipolar Hamiltonian that re- atom-field interaction are put in the form
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3.0

(electric field operator) x k

FIG. 1. Plot of the full electric operator3 Eq. (8) (dotted ling
versus the model operator E42) (full line), both multiplied by the
photon wave number.

M s

Oy=X(t) i'Ttmin( 2] +1)F\(r)0,(0,¢)+c.c. (7)

min

A. Electric-field operator

Specifically, for the electric-field operatdt ,,=1X(t)
=Ey(t)e "] the application of Eq(A5) gives

1(r1
A= | ikrar ®

and

0,(60,¢)=—Jm I+ D)/2I+1)(YE-Y Y, (9)

causing transitions withm= = 1. For values ok—0, only
the first term survives.

A useful insight is gained by examining the langbehav-
ior of F;. We write

1 1 fwsin(kr—lq-r/Z)

F,(r)—>Ec|—P r 2 dr (10

wherec; is the value of the integrdll0) from O to o [16],

o ararR)
200+ D)L (1/2+1/2)°

C (11)

Thus, for sufficiently large values of, the operatorF,

reaches a constant valughis is in contrast to the LWA
where the values of the length operator increase indefinitely
Comparison between the full operator and its LWA is sim-

plified for I;=0 andl;=1 when the only value allowed to
is unity. In Fig. 1 we plot the functionB,(r) together with
3F(r)=r, the latter representing the LWA. Therm,

= /4. Puttingro=3m/4k, Fig. 1 suggests the following

model of practical value:

PHYSICAL REVIEW A65 043412

r, r=<rg
3Fy(r)= -
ro, r=ro.

(12)

In words, the LWA is followed up ta, while a constant
value is assumed for larger valuesrofThis model can serve
as a rough test for the region of validity of the LWA. The
smaller the value ok is, the larger is the region of validity.
Hence, if the radial part of either the initial or the final wave
function falls off exponentially, for=r,, then the LWA is
valid. It becomes obvious that for transitions between high
Rydberg or between scattering states, the LWA is not a sat-
isfactory approximation.

B. Paramagnetic field operator

This is the second term of the Hamiltonidh). In the
general expression(7), where now |;,=0 and X(t)
=By(t)e '“!, we put

1 r ! !
F,(r)=r—2f0r ji(kr)dr (13
and
|(0,<p)=%\/477/(2|+1)
XA+ D) (Y=Y h+2yPd 1)),

(14)

where
L.Y"=J0Fzm=m+1)Y"t, (15)

In this case, the allowed transitions haten= = 1.

C. Diamagnetic field operator

This is a more complicated operator. We first split it into
two parts, each one corresponding to a different angular part,
obtained by using the formula

(F X 9)2=3(1+co< )+ 3sir? 6 cos 2p. (16)

We now reduce the double integration, which is implicit in
the third term of Eq(5), to a single one, using the fact that
the integrand depends only on the sum of the two variables.
It follows that

1 1 N
fwdwf N"dN" exgi (N +N")K-F]
0 0

1 (1 o 4
=—J (A3=3\+2)expink-F)dh— =
3Jo 3

1 N
xf (2N3=3N+D)expi2nk-F)dh. (17
0
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The first part of the angular operat(6) allows transi- 0.
tions with Am=0 [now | ,;,=0, X(t)=By?(t)e"'?*]. The
radial factor corresponding to this part is, following E#j7), 1 full electric operator
1 r 1 (r -1000
- 13 ’ r_ ’ ’ ’ g-
Fi(r) or2 Or fi(kr")dr Zfor fi(kr")dr 3
g
1 r 4 r , % -2000
+§rfof|(kr )dr —Wfor fi(2kr")dr z
r ) r é 3000 electric dipole approximation
+2f r’f|(2kr’)dr’——rf r'3f,(2kr’)dr’,
0 3 Jo
(18) -4000 <

where principal quantum number #

I(I+1

)| 1, FIG. 2. Plot of the transition matrix elemeftadial pari ns
gz [ikn k). (19

—np calculated with the full electric operator, versus the EDA

result — (3/2)nyn%—1.
fi(kr) is obtained by using EqA6) and eliminating the
resulting second derivative of the Bessel function using thyydrogen, for values of up to 50 and forw=0.5 a.u.(the
Bessel differential equation. Then, the angular factors are hydrogenic ionization potential Note thatk= w/c, where
¢=137.037 in atomic units. In the first cagg, is equal to
©1(6,6)=\I(1+1)/4mY7(6, ). 20 64577 a.u. In Fig. 2 we plot the radialgr?;atrixqelements
(Unol3F1(r)|ung) and (ung|r|un.). The latter is equal to
—2ny/n%—1[18]. For values ofi up to 10, the values of the
two matrix elements are essentially identical. Howevem as

derivative being simultaneously produced by the same rou- i .
tine [17] g yPp y increases beyond 10, a discrepancy starts, the former matrix

We now turn to the second part, for which the allowed©/ément approaching a value equalrip Noting that for
transitions haveAm=+2. Application of Eq.(A5) gives sufficiently large values oh the hydrogenl_c functions con-
[1in=2X(1) = Bo2(t)e 1241, centrate approximately at a distance“2 with the conven-

tion of having positive values close to the origin, and that the

fi(kr)=| 1+

Although Eq.(18) looks complicated, theaumericalevalua-
tion of F(r) is straightforward, the Bessel function and its

1 ro 1 (r1. overlap(u,o|uy)— — 1, the behavior of the matrix element
Fi(r)= TI r'ji(kr)dr’ — —2f = Ji(kr")dr’ can be explained by the simple model E#2) described in
24k“r 0 8k ofl sec. Il
r r1 1 r In the case of the dipole-forbidden transition, in which
+ Wf zhi(kr)dr’ = WJ r'ji(kr")dr’ case(Uno|un2)— 1, a similar behavior of the corresponding
0 0 matrix element is observed; see Fig. 3.
1 r1 H ’ ’ r rl H ’ ’
+W Or—,]|(kl’ )dr —m OrTzh(kr )dr 500 -
(21) 400 +
and
2 2 g 300
0,(0,0)=\[47/(21+D]1(1°—1)(1°—4) 2
) _ % Full electric operator
X(YE+Y?). CE .
£
IV. APPLICATIONS: COMPARISON OF THE EDA g
WITH THE EXACT TREATMENT 1004
We concentrate on the electric field, whose effects are
much larger than those of the magnetic offeee Eq.(5), 0 — T T T 1

0 10 20 30 40 50

where the paramagnetic operator is divided dynd the principal quantum nurmber 7

diamagnetic one byg?.]

As an applicatipn, we Ca|CU|aFed _the radial matrix (_'3‘|_e' FIG. 3. Plot of the transition matrix elemetadial pary ns
ments corresponding to the electric-dipole-allowed transition- nd calculated with the full electric operatéforbidden electric-
ns—np and to the dipole-forbidden transitiams—nd of  dipole transitio.
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2.5x10°
200 4 . LI
E 2.0x10°
E 2
S 100 ° g 15010°
@ . . é 5x
2 0 evt e X 1.0x10°
- . g
g . £
% : 5‘:3 5.0x10* * *
£ 100 E . .
‘E . 0.0 4 see’ *reaean
-200 T v T T 1 T T . T T T v T T T T T T T g T T T
0.990 0.995 1.000 1.005 1.010 1.015 0.990 0.995 1.000 1.005 1.010 1.015
k (au) [k=1.0au] k (au) [k=1.0au]
FIG. 4. Plot of the transition matrix elemefradial pari ks FIG. 5. Plot of the transition matrix elemefradial parf k;s
— k,p between energy-normalized Coulomb wave functions Ca|cuﬁk2p. between energy-normalized Coulomb wave functions calcu-
lated with the full electric operator. lated in the EDA(Gordon formula.

The hydrogenic wave functions of the above example agolar Hamiltonian, Eq(5), we developed and applied formu-
well as the wave functions of the continuous spectrum usetfS for the practical calculation of the exact matrix elements
in the following calculation are computed via numerical s0-Of _the electn_c, paramagnetic, and diamagnetic interactions,
lution of the differential equation that they satisfy. For highly Using numericaland, therefore, genejabne-electron wave
excited states, this is the fastest and most accurate methdgnctions. The prototypical examples that we used showed

and is immediately applicable to the one-electron states dhat the widely employed EDA is not justified for the calcu-
atoms other than hydrogen. lation of matrix elements between highly excited Rydberg-

Rydberg, Rydberg-scattering and scattering-scattering states.

Model (12) quantifies this statement in a transparent way.

The error is especially large for transitions between states of
The matrix elements between functions of the continuoushe same energy, which play a crucial role in the formation of

spectrum can be evaluated as follows. We first choose a convave packets excited from a lower state via laser pulses

veniently large valueb such thatj,(b), appearing in the (e.g.,[5-9], EDA calculation$.

electric-field operator, is obtained within a given accuracy by The results of this work are being implemented in com-

the asymptotic series of the spherical Bessel function. In theutationally demanding investigations of the excitation and

regionkr< b, the expressiof8) is used andr, is calculated evolution of highly excited Rydberg levels. Preliminary cal-

numerically. In the outer regiorkr>b, the expressiori10) culations[22] show that when hydrogen is excited to thi

is used and an overlap appears due to the constant term. Thkell from its ground state with laser pulses of frequencies

overlap between Coulomb functions of different angular mo-w=0.5(1— 1/n?), the results for the time-dependent popula-

menta provides the usuad function singularity plus a tion of initial and final levels from the use of the full inter-

principal-value kernel. The calculation is analogous to thakction (with the on-shell couplings taken into accoustart

showing thes orthonormality between Coulomb functions of differing from those obtained from the EDA wharbecomes

the same angular momentum, e[d9]. For atoms other than larger than 10. Already fon=25 the differences are very

hydrogen, the phase shift of the asymptotic part of the wavaignificant[22] and force us to suggest that it is doubtful

functions has to be taken into account. whether the theory and understanding of Rydberg wave-
A plot of the matrix element is given in Fig. 4, while the packet formation and dynamics is reliable within the frame-

corresponding plot for the dipole operator is given in Fig. 5.work of the EDA.

In the latter case, the integral has been expressed by Gordon

in terms of hypergeometric functiorj20]. Comparing the

two figures, we can see that the matrix elements not only

differ dramatically in magnitude, but also differ qualitatively =~ The single-mode vector potential is written as

in their behavior about the singular poiki=k,, since the )

EDA results in a5’ singularity and a second-order principal- E\:Ao(t)ieik‘F*“"t+c.c. (A1)

value kernel[21].

Free-free transitions for the Coulomb potential

APPENDIX

The corresponding electric fielfEr= — (1/c)(a/dt)A] is

V. CONCLUSION written as

By implementing the theory of the interaction of the elec- _ L
tromagnetic field with an atomic state in terms of the multi- E+=Eq(t)xe'* " et4c.c. (A2)
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Also, sinceB=V XA=ikXA,
B=ikAy(t)§ek "oty c.c. (A3)

The expansion of the plane wave in spherical waves is

[

ei‘z'F=eikr°°59=IZOi'(2|+1)j|(kr)P,(cose). (Ad)

As we proved in4],

PHYSICAL REVIEW A65 043412

©

sin™ gelkr c0sf— (%) ml_Zm i'(21+1)j,(kr)P"(cosh),
(AS)
vv_hiIe differentiating Eqg.(A4) m times with respect tckr
gives
cos™ 9 e 0= (i)™, i'(21+1)j{™(kr)P|(cosh).
=) 6
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