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A general scheme is presented for explaining the inter-relation of measurement, 
theory, and information. Ordinary measurement theory is enriched with ideas 
from quantum physics and coupled to the concept of informations on lattices. 
Algebraic properties of the class of informations are studied, and it is shown 
that probability theories are imbedded in the scheme. The Maximum Entropy 
Principle (Jaynes, 1957; 1958) is justified and generalized in the new context. 
Finally the Bayesian theory of inductive logic is criticized on the grounds that 
"attributes" and "evidences" do not belong to a common "language." 

I .  INTRODUCTION 

The theory of information has--with few exceptions--developed as a branch 
of statistical communication theory. As such, its scope is intrinsically limited by 
Shannon's explicatum for information (Shannon, 1948) and by its dependence 
on the concept of probability. Recently it has been suggested that information is 
actually more fundamental than probability (Ingarden and Urbanik, 1961; 
Forte and Kamp~ de Ffiriet, 1967; Qern)~ and Brunovsk?~, 1974)--indeed that 
probabilities exist only for special cases of information measures. Also, the 
traditional domain of probabilities--the a-complete Boolean lattice of "events" 
(Renyi, 1970)--can be extended using informations defined on any lattice 
(Sallantin, 1972). 

Much older than the development of information theory has been the continual 
controversy over the significance of probability. There are basically two view- 
points--with a broad spectrum of subdivisions: The "frequentists" view 
probability as defined by the limit of the ratio of the number of "successes" to 
the number  of "trials" as the latter becomes infinite. The  "subjectivists" 
consider probabilities p(a/b) as representing logical weights ("degrees of belief") 
on the relation of propositions a and b (Carnap, 1950; Jeffreys, 1961). For a more 
complete survey, see (Fine, 1973). 

Jaynes has employed Shannon information theory to obtain "degrees of 
belief" on evidence in the form of expectation values of random variables 
(Jaynes, 1957; 1958). While enjoying much success in various applications, 
this algorithm has drawn fire for various reasons (Macqueen and Marschak, 
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1975; Friedman and Shimony, 1971). Elsewhere we discuss the "MEP"- - fo r  
maximum entropy principle--debate (Cyranski, 1978), and show that Jaynes' 
procedure actually provides a reunification of  the camps: When relative fre- 
quencies are available as evidence, then the MEP yields as "degrees of belief" 
based on this evidence exactly the relative frequencies. But, when frequencies 
are not available, the MEP yields distributions consistent with the assumption 
that the evidence used to calculate the distributions is "total". This method 
has the advantage of specific reference to empirical data and the quantitative 
information content of the data. 

Nevertheless, the h/[EP is based on the restricted Shannon measure of 
"uncertainty", its foundations and domain are not clearly defined, and its 
apparent basis in the "subjective" camp leads to the following difficulty: 

The basis tenet of the subjective school is Bayes' rule: 

p(A & B/C) = p(A/B & C) p(B/C) -: p(B/A & C) p(A/C). (1.1) 

This is justified (for Boolean "languages") in a variety of ways (Carnap, 1950; 
Cox, 1946; Shimony, 1955). The difficulty with (1.1) is that all statements have 
the same logical weight. That is, if _//and B are "attributes" of an object and C 
is "evidence" obtained from experiment about the family of attributes ~f, 
(1.1) "mixes" z/with C and B with C. In other words, Bayes' rule requires that 
"A & C" be a legitimate statement in some "language" encompassing both ~qo 
and empirical evidence about ~ .  However, the very procedure of the MEP is 
such that NIEP "degrees of belief" concern ~o alone, although they are chosen 
via C. Shimony and Friedman have tried to show by an example that the MEP 
is inconsistent with (1.1) (Friedman and Shimony, 1971). While their arguments 
fail to do so (Hestenes and Gage, 1973; Cyranski, 1978) it is still not clear 
whether or not (1.1) is indeed inconsistent with the MEP. In any event, the 
MEP raises the above issue--whether or not all propositions are "equivalent" 
in some language. We consider this question in Section VI. 

In order to better understand the role of "information" in measurements, 
the role of "theories", the domain and justification of the MEP, and in some 
sense to develop a universal attitude--if not methodology--towards the 
"scientific method", we have been led to the following considerations: A class 
of objects is defined by the relevant empirical relations that operate on the objects. 
These can be partially ordered and the partial order completed in a natural way 
to form a "logic" (a "language" governed not by its grammar but by "truth" 
value directly related to observation). Information is most generally an anti- 
homomorphism on a partially ordered set, so in particular a class of informa- 
tions can be associated with the system. We consider a class of inputs from 
experiment that restrict the possible informations. Functions defined on the 
partially ordered set of empirical relations are "evaluated" according to the 
information subset defined by the data. The key to the synthesis of these ideas 
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is the natural criterion that there be an unambiguous evaluation of any (permis- 

sible) function given the data. 
In  Section I I  we provide the basic mathematical  structure needed for our 

viewpoint. In  Sections I I I  and V we present the basic model, while in Section IV 
we show that the model  includes the special case of "ordinary"  probabil i ty  
theory. We reconsider Bayes' rule in Section VI, and conclude in Section VII  
with suggestions for applications and open questions. 

II .  MATHEMATICAL PRELIMINARIES 

The  basic mathematics that we require can be found in (Birkhoff, 1973). In  
order to clarify the significance of the results, we present our own modified 

proofs. 

DEFINITION 2.1. A quasi-ordered set (quoset) is a set S that is non-empty 
and has defined on it a binary relation < satisfying: 

x < x, for all x e S (reflexive) (2.1) 

x < y and y < z implies x < z (transitive). (2.2) 

Any oriented graph with loops is a quoset. This  includes, for example, computer  
programs (algorithms) and, more exotically, relativistic space-time ordered by  
"causali ty" (Carter, 1971). 

DEFINITION 2.2. A partially-ordered set (poset) is a set that is non-empty 
and has defined on it a transitive, reflexive binary relation ~ satisfying: 

x ~< y and y ~< x implies x = y (antisymmetric). (2.3) 

Start ing with a quoset S ordered by < ,  define x ~ y  whenever x < y and 
y < x. Then  the quotient set P = S/~'.~ is a poset if E ~< F in P means x < y 
for some x ~ E a n d y  ~F .  In  other words, if one identifies all points in each loop, 
one can  transform any quoset into a poset. 

DEFINITION 2.3. A lattice is a poset S in which for every pair x, y e ~,¢ 
x ^ y  = g lb (x ,y )  and x v y  = lub(x ,y )  are in ~ .  (Note that z = x  A y  
means that for all w e ~o such that w ~ x and w ~.~ y, then w ~ z, and con- 
versely. Dually, z = x v y means for all w ~ 5¢ such that w ~> x and w > / y  
then w > / z ,  and conversely.) A poset or lattice has universal bounds if 0 = 
Ax~e x and I = Vxe~O x are in ~ .  A lattice i s  complete if for every subset 
X C ~qo, Axex x and Vx~x x are in ~c~. 

I f  Y is any set, and 2 r is its power set, then 2 r forms a complete lattice With 
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universal bounds under se t  inclusion. The  real line ordered in the usual way 
is only conditionally complete (every non-empty bounded subset of the real line 
has a lub and glb, but  0, I are not in ~ ) .  

DEFINITION 2.4. An order morphism between lattices ~ i  and ~ is a mapping 
g: ~1 --~ 5¢2 such that for all x, y ~ ~Pa : 

g(x A y)  = g ( x )  Ag(y)  

g ( x v y )  ~-g(x)  v g ( y ) .  

(2.4a) 

(2.4b) 

I f  (2.4) holds for any countable joins and meets, g is a a-morphism. I f  (2.4) holds 
for arbitrary joins and meets, g is a complete morphism. I f  g is 1 - -  1 and onto, 
it is an (order) isomorphism, and if ~1 = ~'~ in this case, g is an automorphism. 

LEMMA 2.1. Let X *  -~ {u ~ P : u >~ x, for all x ~ X )  and let X t -~ {r ~ P : 
r <~ x, for all x ~ X}.  Set X -= (X*)  t. Then 

x ___ x (2.5) 

X = • (2.6) 

X C Y implies X C Y (2.7) 

Proof. X = { t E P : t  ~ u ,  for a l l u ) x ,  for all x ~ X} is the set of lower 
bounds to the set of upper  bounds of X. Clearly, if x ~ X, then x E X, so (2.5) 
is immediate. 

Now X _C Y implies X* ~_ Y*, so by (2.5), X* ~ (X)*. But, X = {t ~ P : 
t ~ u, for all u ~ X*} so (X)* = {z ~ P : z ~ y for all y ~< u, for all u e X*}. 
Clearly, X* G (_~)*, so that X*  = (X)* and X ----- .~. 

Finally, X C Y implies X* D Y*; this implies (X*) + C (Y*)+ and thus 
X _C y .  Q.E.D. 

The  following theorem is essential to our approach. I t  extends any poset to 
a complete lattice in a manner  analogous to the celebrated extension of the 
rationals to the reals--Dedekind 's  "completion by cuts". I t  appears to be the 
most  natural completion procedure valid for posets. (There are other imbedding 
theorems appropriate for lattices and metric lattices.) As this method parallels 
the imbedding of generally discrete, finite empirical resuks in a continuum 
theory, it is especially appealing for our purposes. 

THEOREM 2.1. Let P be any poset and ~q~(P) -~ { X  C p : X = X}.  Then 

.W(P) is a complete lattice under set inclusion with A X a = (] X~ = (~ Xa and 

v xo  = U x~ for x~ ~ w(P). 
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Pro@ First, if Xa e .£F(P), a ~ A, then for each b c A we have ~ e a  Xa _C X~, 

using Lemma 2.1. Thus, (~a~A Xa C Oo~A Xb C Nb~A XO , again by this lemma, 
so finally ('1 3;-~ = A Xa ~ og°(P). 

Now .go(p) is obviously a poset under set inclusion. Let S be a family of sets 
X c c,q(p) and let U be the family of sets W E £¢(P) such that X C W, for all 
X c S. Set A = (']w~v W, which we have just shown belongs to ~ ( P ) .  Any 
X c S is a lower bound for U, so X C A and A is thus an upper bound for S. 
If  B is another upper bound for S, then B E U so A _C B. Thus,  by definition, 

A = Vx~ s X.  

Finally, [.)xes XD_ (x~s  X,  so Oxes X is an upper bound for S. Thus, 

lOxes 222 D__ Vxes X D_ lOxes X.  Using (2.6) and (2.7) it follows that Vxe s X - =  

lOxes X.  Q.E.D. 

The next theorem shows that P is actually imbedded in o,~(P). 

THEOREM 2.2. Let I(a) = {t E P : t <~ a} define a mapping I: P ~ •(P).  
Then P is (lattice) isomorphic to {I(a) : a ~ P} _C ~L~F(P). 

Proof. Note first that I (a)~ 5¢(P). Moreover, each a ~ P defines a unique 
l(a). The map is clearly onto and as I(a) = I(b) iff a = b, I is 1 - -  1. Note, in 
fact, that a ~< b iff Z(a) C I(b). 

Now if a =  Ax~ x x ~ P ,  then b ~ < a i f f b ~ < x  for a l l x ~ X .  Thus,  I(a) = 
(],~x I(x). If  a = V~x  x ~ P, V~ex I(x) -- {t ~ P : t <~ u, for all u >~ v for all 
v ~< x, for some x ~ X}. This is readily seen to reduce to I(a) Q.E.D. 

The  following apparently new result will be of considerable importance. 

THEOREM 2.3. - 4 =  V o ~ A I ( a ) f o r A C P .  

Proof. A -~ t.)a~A {a} ___ Uo~A I(a), since I(a) = {a}. Thus,  A __C Va~ A I(a). 
But, {a} __C A implies I(a) C A and thus loa~a I(a) C .~. Hence, Va~a I(a) C_ 
as well. Q.E.D. 

We now turn to the concept of information: 

DEFINITION" 2.5. 

such that 

a ~ b implies Jp(b) ~ J~(a). 

I f  P has universal bounds 0 and I, 

Jp(O) = oo; Jp(I) = O. (2.9) 

Intuitively we can understand this definition as saying that if "proposition" 
a "implies" b, then the information associated with b cannot exceed that asso- 

An information on a poset P is a mapping Je: P -+ [0, oo] 

(2.8) 
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ciated with a. The amount of information needed to fix b, in other words, will be 
generally less than that of the "cause" a of b. The boundary values (2.9) are 
chosen mostly for mathematical convenience, but are natural enough, for the 
"proposition" I is "certain" in the sense that it is implied by all other "proposi- 
tions" of P. Hence, its information value is null. Conversely, 0 implies all 
"propositions" of P, so the information inherent in 0 must be infinite. We will 
be particularly interested in informations defined on cp(p). If J is an information 
on •(P),  J(I(a)) = Jp(a) obviously defines a related information on P. 

As we noted in the introduction, the general concept of informations on 
lattices was first proposed by Jean Sallantin in 1972 with specific application to 
quantum physics in mind. The approach has been developed by Sallantin, 
Comyn and Losfeld with the general goals of applications to pattern recognition 
problems, statisticaI analyses, and questionnaire theory, within the general 
approach of Kamp6 de F&iet, Forte, and Acz61 in characterizing information 
measures. Among the many articles and texts containing these developments 
we single out (Kamp6 de Ffriet and Picard, 1974), (Picard, 1975, 1976, 1977), 
(Picard and Sallantin, 1977) and the articles by Comyn, Losfeld, and Sallantin 
in (Picard, 1978). The general notion of informations on lattices is thus not 
original, but is quite new. This is not to dismiss other work, eg. that of Carnap 
and Bar Hillel (Bar Hillel, 1964) who as early as 1952 defined a "semantic 
information" on "languages". Their approach, however, is based on "subjective" 
probability and has apparently not ted to significant progress. 

Our interest in and application of the informations defined by Definition 2.5 
leads us to study in particular the properties of such informations as a class, 
i.e., Z(P) the family of all informations defined on a poset (lattice) P. 

THEOREM 2.4. Z(P) is a complete lattice. 

Proof. We define Ja ~< J2 by: 

J~ ~< J.a iff J~(a) ~< J2(a) for all a e P. (2.10) 

Clearly Z(P) is a poset under this operation. If Q is a subset of Z(P), we certainly 
can define: 

A J(a) = inf{J(a): J e Q} (2.11a) 
JEO 

V ](a) =: sup{J(a): J 6  Q}. (2.11b) 
,leo 

The question is whether the maps defined by (2.11) from P to [0, oo] are 
informations. If0, I ~ P, clearly Aj~ o J(I) = 0 = x/j~ o J(I) and Vs~ o J(0) = ~ .  

If a ~< b, then J(b) <~ J(a), for all J ~  Q. Thus, As,co J'(b) ~ J(b) ~ J(a) 
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for all J • Q, so that Aj~ o J(b) <~ As~o J(a). Similarly, fib) <~ J(a) <~ Vs,~o J'(a) 
implies that Vj~ o J(b) <~ Vs~o ](a). Thus,  As~ o ] and Vj~ o J are both in Z(P). 

Q.E.D. 

DEFINITION 2.6. A lattice S is Brouwerian if when a, b ~ Y ,  the set (x • S : 
a ^ x ~< b} has a greatest element b : a (called the relative pseudo-complement  
of a in b). 
An example of a Brouwerian lattice is the complete lattice of all open sets of any 
topological space. I f  f is a fixed complete Brouwerian lattice and E is a non- 
empty set, a fuzzy set A of E is a function A: E --~ ~ .  The  class of all fuzzy sets 
of E, £~(E), is itself a complete Brouwerian lattice (Sanchez, 1976). This lends 
interest to the following result. 

THEOREM 2.5. Z(P) is a convex Brouwerian lattice. 

Proof. I f  L ,  J2 • Z(P), then for all t • [0, 1] tJ~ 4- (1 - t) G • Z(P), for if 
0, I • P, t]~(0) + (1 - t) JE(O) = m and t L ( I  ) 4- (1 - -  t) J2(I) = 0, while if 
a <~ b, ]l(a) >~ ]l(b) and ]2(a) ~> L(b)  means that tJ~(a) + (1 - t) G(a)>~ 
tJ~(b) 4- (1 - t) J~(b). 

Now a complete lattice is completely distributive when 

where (/i is the set of all functions with domain C and ~(g) e A~. But [0, oo] is 
completely distributive under the real number  ordering, so (2.12) applies to 
fq,~(b) for each b ~ P. As Z(P) is a complete lattice, it follows that Z(P) is a 
completely distributive lattice. But by Theorem 24, page 128 (Birkhoff, 1973) 
it follows that Z(P) is Brouwerian. Q.E.D. 

We pursue our study of the algebraic properties of Z(P) by noting that in any 
lattice I(a) = {x • .,W: x ~ a} is a principal ideal of ~c¢. 

LEMMA 2.2. (a) Each principal ideal of Z(P) is convex. (b) J* • I(J) iff there 
exists t • [0, 1) such that tJ 4- (1 - t)]* • I(J). (c) I f  Ja , J2 are not comparable, 
then for no s, t •  (0, 1) are s J1 4- (1 - s)J~ and tJ~ 4- (1 -- t)J2 comparable. 

Proof. (a) I f  J1 ,  L • I(J), then L ~< jr and J2 ~< f implies that t L 4 -  

(1  - -  t)f2 <~ (t 4- (1  - -  t ) ) ]  = ].  

(b) I f  t]  4- (1 - -  O f f  ~ ], then (1 - -  t)J* <~ (1 - t)j ,  or J*  ~ jr for 
t • [0, 1). Conversely, J*  ~ J implies t]  4- (1 - O f f  • I ( ] )  by (a). 
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(c) Suppose there exist s, t e (0, 1) such that s j1 + (1 - s)f2 <~ t j l  q- 
(1 - t)j . , ,  with s @ t. Then  if, eg., (s - -  t) > 0, it follows that (s --  t)J~ <~ 
((1 - t) - (1 - s))J2 = (s - t )Jz ,  so J1 ~ J.~, contradicting the assumption 
of (c). Q.E.D. 

DEFINITION 2.7. I f  5¢ is a complete lattice and x~ ~ .W, then x~ order 
converges to x* (x~ -+  x*) when 

y [aAb Xa] ~ A [Z xa] = X* (2.13) 

where a, b e A, a directed set of indices. A set X is closed if every order convergent 
set of elements from X order converges to an element of X. The  closed sets thus 
established define the order topology on £a. 

THEOREM 2.6. Let g be a complete automorphism on Z(P).  Then g is a homeo- 
morphism in the order topology. 

Proof. Any complete morphism on Z(P)  preserves arbitrary meets and joins. 
Hence, if x~ --* x, h(x) = Ab [Va>b h(x~)] = Vb [A~>~ h(xa)], or h(x~) -+ h(x). 
As g is an automorphism in particular, it follows that both g and g-* are thus 
continuous in the order topology, so that g is a homeomorphism. Q.E.D. 

Note that I (J )  is closed in the order topology as if J~ -+ J*,  then J*  = 
Vb [A~>b Ja] <~ Vb J = J, so j *  e I ( j ) .  

THEOREM 2.7. Z(P)  is metrizable. 

Proof. I t  is straightforward to show that the following defines a metric 
function: 

d ( k  , ]~) = sup{[ fl(a) - -  L(a)i : a e P}. (2.14) 

THEOREM 2.8. Let K~(J) = {J' ~ Z(P)  : d(J, J') < e}. Then, i f  

J 1 , J 2 ~ [  A J ' ,  V J ' ] =  l J " e z ( P ) :  A J ' ~ J ' < ~  V J' l '  
J'~Ke(Y) J'eKe(Y) J'EKe(J) J'~Ke(J) 

then d(J1, ]2) ~ 2e, for all e > O. 

Proof. Now d(f, ] ' ) <  e for all ] '~ Ke(J) implies that for all such J ' ,  
J(a) - e < J'(a) < J(a) + e, for all a e P. Thus,  

J(a) - e <~ inf{J'(a) : J '  e Ke(J)} ~ J'(a) <. sup{J'(a) : J '  e Ke(J)  } 

<~ J(a) q- e. (2.15) 

Hence, I f (a)  - A,'e•,(s) J'(a)l ~ e and I f (a)  --  Vs'~x~u) J'(a)[ ~ e for all 
a e P. Thus,  d(J, As.~K,(s) J ' )  ~ e and d(J, Vj'~K,U) J ' )  ~ e. I t  is also apparent 
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from (2.15) that if f *  ~ [Aj,~,(j) ] ' ,  VfeK, U) J '] ,  then d(J, J*)  ~ e. Hence by 
the triangle inequality of metrics, d(J1, ]2) <~ d(J~ , J) + d(.[, .[o.) <~ 2e. 

Q.E.D. 

I I I .  1V[EASUREMENTS, THEORY, AND INFORMATION 

Let  us begin by imagining that we have a non-empty set of objects. These 
objects are defined by a finite set of characteristics or properties that can be 
measured. For example, weight, color, intelligence, spin, valence, volume, 
cross-section, etc. are properties. Clearly not all properties are relevant to any 
given set of objects. Moreover, only finite lists of properties are realistic-- 
operat ional--for  if an object required an infinite list of such properties for its 
definition, we would never be able to recognize this object with certainty. 

Now each property has manifestations: Red, blue, turquoise are manifestations 
of the property color. Manifestations of spin form the set ½, 1, a 5 ~, 2, ~, etc. Intelli- 
gence is manifest by the I.Q. scale of values. When we perform a measurement,  
we associate an object with manifestations of one or more properties. Indeed, 
with any set of manifestations of properties we identify a class of objects which 
- - o n  measurement- -we identify with this set. Thus,  electrons are identified 
by a particular rest mass, charge, and spin. In  other words, the objects are 
classified according to relations that they are observed to satisfy. Hence, musical 
tones have the properties pitch and loudness, which can be used to relate 
different tones. Some typical relations are: (1) tone A has higher pitch than tone 
B; (2) tone A is softer than tone B; (3) tone C has pitch midway between the 
pitch of tone A and that of tone B. Each family of such empiricially meaningful 
relations defines the structure of a property. Formally, then, measurement 
theory deals with what is called an empirical relational system: a set A together 
with a family P of relations on A. In  particular, the classical discipline turns 
toward an examination of "scales"--essentially homomorphisms from the 
empirical relational system to a similarly defined numerical system. The  idea 
here is that the scales parallel or image the relations--for example, higher pitch 
is assigned a greater scale value. For this approach to measurement theory see 
(Pfanzagl, 1971). 

There  are several shortcomings of this "classical" approach to measurements. 
For one, this theory seems unsuited to describe quantum physics. Moreover, 
it is based on a restricted concept of relations that excludes "fuzzy relations" 
as well as further generalization. I t  does not seem to admit very comfortably 
the notions of "evidence", "degrees of belief", and information. It  is, of course, 
possible that these difficulties can be overcome in the traditional context- -and 
perhaps to some extent this has been done. Nevertheless we believe it worth- 
while to avoid the idea of "scales" and approach the problem of measurements 
somewhat differently. 
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We start with the assumption that a system of objects is defined (i.e., completely 
characterized) by some class of empirically definable relations on the family 
of objects. Thus, we have an empirical relational system (A,  P )  associated with 
each class of objects, P containing all relations that are (or we believe to be) 
relevant to the objects. In other words, P is a defining model for the class. 

As an example, we consider the situation in quantum physics. In this context, 
an atomic system is defined by an appropriate Hilbert space; the one-dimensional 
vector subspaces of this space characterize various "pure states" of the system 
- - i n  fact define equivalence relations. Empirically, one can determine to which 
f ini te-dimensional  subspace a particular system belongs, but infinite-dimensional 
subspaces are clearly not operationally defined. This suggests, therefore, that P 
actually consists of all finite-dimensional sub-spaces of the Hilbert space. 
The  theoretical model must be generated in terms of P so that P is somehow 
imbedded in the general theory. That  is, we wish to extend the finitary definition 
to an infinitary definition. 

In fact, the defining model P forms a poset under sub-space inclusion, and 
its completion by cuts, ~o(p) corresponds to the complete lattice of all subspaces 
of the Hilbert space. (Birkhoff, 1973). The  approach we take below is an attempt 
to extend and generalize this description to measurement theory in general. 

DEFINITION 3.1. An n-ary relation on set A (non-empty) is a mapping 
R: A n ~ Q, where Q is a poset. 

This generalization of the concept of relation admits fuzzy relations (if ~ is 
a Brouwerian lattice) and classical relations (if Q = {0, I}). In  the latter case, 
R(al  ,..., an) is just the "characteristic function" Cn(al ..... a,~) where the 
"relation" is the subset R of A n. We thus define our system class by a family 
of such relations, P, with fixed (2. 

DEFINITION 3.2. If  R, T ~ P, define R -~  T iff nR ~ nr  and R ( x  1 ,..., xnR ) ~< 
T(x~l ,..., Xk, r) in Q for every subsequence (xel ,..., X~,r) of (x~ ,..., x~ )  and for 
all (x 1 ,..., X~R ) ~ A ~R. 

The order thus defined actually corresponds to a natural extension of the idea 
of "implication". For example, suppose that n R = n T . Then, R -+ T means 
that R ( x  1 ..... X,~R) <~ T ( x  1 ,..., XnR ) for all (x 1 ,..., X~R ) E A hR. In  particular, if 
Q = (0, I}, this can be restated as follows: R --~ T i f f  the subsets R, T _C A~R 
satisfy R C T whenever (x 1 ,..., X~n ) satisfies relation R, it satisfies T as well. 
The  "truth" of R "implies" the " truth" of T. 

To demonstrate the more general case of n R @ n r (with the same classical Q), 
consider the following. Suppose A = (1, 2, 3,...} and R~ = {(a, b) : a < b}, 
R 2 : {(a, b, c ) :  a < c < b}, and R 3 -~ ( ( a , b , c ) :  a < b < c}. Now if 
(a, b, c) ~ Ra,  then (a, b), (a, c), and (b, c) are in R~ so that whenever R 3 is 
"true" for a triple (a, b, c), then R 1 is "implied" for each pair  of elements in 
the triple taken in order. Note, however, that (a, b, c )e  R 2 does not " imply"  
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R~ in this sense, as (a, b) and (a, c) E R1, but (b, c) ¢ R~. In  this case it is not 
possible to say that R 2 "implies" R~ in any sense. 

We believe definition 3.2 to be the natural ordering on relations. Definition 
3.2 is further justified by the following result. 

THEOREM 3.1. P is a poset under --~. 

Proof. Clearly R - - + R .  I f  R - + R '  and R ' - - ~ R ,  we have n R = n  R, = n .  
Thus,  R(x~ ,..., x,O <~ R'(xa ,..., x,~) and R' ( x  1 ,..., x,~) ~ R ( x  1 ,..., x~) for all 
(x,  ,..., x,~) ~ A% As Q is a poset, however, this implies R = R'.  (Note that two 
relations R and T are equal iff R(x~ ,..., x,~) = T(x l  ,..., x,,)-- they must have 
the same order, of course for all (x 1 .... , x,~) e A~.) 

Finally, R - - +  T and T - +  V means ne ~ n v .  Also, R ( x , , . . . ,  x~e) <~ 
T(xTq ,..., xk,r ) for all nr-subsequences of (xl .... , x%), for all such n~-tuples, and 
T(x~  ,..., xJ,,r ) ~ V ( x %  ,..., x ~ v  ) for all nv-subsequences of (xq ' "7  xJ~r) and 
for all such elements of A ~r, but therefore for all such nv-subsequenees of 
(x l , . . . ,  X~R), for all nR-tuples. By transitivity in Q, we thus have R(xa .... , x**R) <~ 
V ( x %  ,.., x~ , v  ) for all nv-subsequences of (x 1 .... , x~R), for all such nR-tuples. 
Hence, R --+ V. Q.E.D. 

As noted above, we take P to be the operational definition of the system of 
objects, and Z¢(P) to be the theoretical model for the system. Now the experi- 
menter generally does not observe the relations of P directly. Rather, he infers 
(largely through consistency with a proposed definition) that he is observing 
a system characterized by P from a (finite) list of real numbers that represent 
empirical evaluations of certain functions defined on P, the system. That  is, the 
result of experiment is an "estimate" or evaluation e(X)  of some function 
X: P -+ R 1. 

Notice that we consider here functions defined on the relational system poser P, 
and not directly on the "objects". This  reflects, of course, our attitude that fhe 
"objects" can only be operationally defined via relations--"manifestations of 
properties". Quantum theorists have long been aware of the difficulties of 
defining "isolated" objects, for the act of observing (according to the usual 
interpretations at least (Jammer,  1974)) constitutes an interaction between object 
and observer. During the time of interaction--the only time when we can be 
sure there exists an object without further metaphysical assumptions-- the  
object is really "par t"  of the observer. Thus,  direct interpretation of the observed 
properties as those of  the object is meaningless. I t  is, however, less obvious that 
the relations the "objects" satisfy among themselves are so closely related to the 
act of observation. For example, position and momentum observations on 
individual electrons are so interaction-dependent as to lead some physicists to 
the conclusion that the properties thus manifested do not simultaneously exist 
in "nature"  (Landau and Lifshitz, 1965). On the other hand, ensembles of 
"identically prepared" electrons can be discussed in quantum theory by 
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measuring position and momentum separately on different electrons. As these 
electrons all belong to the same equivalence class of electrons by nature of their 
preparation, it is possible to attribute position and momentum to the system 
or class, rather than to the individuals in that class (Belinfante, 1975). In  fact, 
the position and momentum are not precise, but define an average position and 
average momentum associated with this preparation which we can understand 
more clearly as evaluations of position and momentum functions defined on 
the class of electrons (represented by a one-dimensional subspace of Hilbert 
space for "pure states"). 

We thus propose that the objects of measurements are relational posets P, 
that "theories" are their "cut  completions" 5Y(P), and that the objective of 
measurements is the evaluation of real-valued functions defined on P. 

Let us now turn to the evaluations. Clearly an evaluation e(X) depends on the 
function X. (We assume throughout a fixed P and ~a(p).) It  is obvious from 
everyday usage that in order to evaluate a function we require an information 
input (e.g., the "preparation" or "state" of the quantum system). In  particular, 
if an information ] ~ Z(~Lf(P)) can somehow be chosen to represent the measure 
of this data input, the evaluation depends on J. We shall outline below how 
the data can be associated with a measure of the information it provides about 
the "propositions" in ~ ( P ) .  Thus  we assert that e(X) = G(X, J). We call G 
the evaluation procedure. Among the obvious properties G(X, J) must satisfy are: 

G(N, J) = x0, for all J ~  Z ( y ( P ) ) ,  if X(a) = Xo, for all a ~ P  (3.1) 

G(X, J) <~ G(Y, J), for all J ~ Z(~q°(P)), if for all a ~ P 
X(a) <~ Y(a) (3.2) 

If  X(a) is replaced by X'(a) =- bX(a) + c, b, c reals, for all a ~ P, then we expect 
that e(X) should be replaced by be(X) + c: 

G(bX ~- c, J) = bG(X, J) -+- c, for all J ~ Z(~f(P)). (3.3) 

These conditions will, of course, restrict the possible forms that G can assume. 
We have not investigated to what extent G can be determined by (3.1)-(3.3), 
however. 

We shall digress in the next section to consider some special cases of this 
approach, and will continue our general discussion in Section V. 

IV. SOME SPECIAL CASES 

Let us first suppose that ~L~°(P) is orthocomplemented: There exists a unary 
mapping on 5~(P) to itself that satisfies 

E A E  ± = ¢ ;  E v E =  = P  (4.1a) 
( E A F )  - L = E  ~ v F ± ;  ( E v F )  ~ = E  ± n F  ± (4.1b) 

(E~-) ± = E (4.1c) 
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for all E, F ~ Y(P) .  Again, the lattice of all subspaces of Hilbert space demon- 
strates this concept. Also, the lattice of all subsets of a set, any Borel algebra, 
in fact, any Boolean algebra are examples. Note, however, that a Brouwerian 
lattice is not orthocomplemented. 

DEFINITION 4.1. An information on ~o(p) is weakly composible if E 3_ F 
(i.e., E _CF a) implies J(E v F)  = T(J(E), J(F)). It is composible if E n F = ¢ 
implies J(E v F) = T(J(E), J(F)). 
Clearly using induction one can define both species of composibility for any 
finite set of E~'s in AF(P) that satisfy the requirements of definition 4.1. 

DEVlNITION 4.2. If J is weakly-composible on ~ (P) ,  it is weakly a-composible 
if for every sequence {E n ~ ~ ( P )  : E n ~_ E m (n ~ m)} 

J ( V = I E ~ ) = L i m J Q V = I E ~ )  (4.2) 

exists. J is a-composible if the limit (4.2) holds for each sequence {E n ~ ~ ( P )  : 
E~ n E,~ = ¢ (n # m)}. 

DEFIS-ITION 4.3. Let T : [0, oo] @ [0, oo] -+ [0, oo] be continuous. It is a 
regular operation of composition (ROC) if it satisfies: 

T(x, y) = T(y ,  x) (4.3a) 

rCx, T(y ,  z)) = TCTCx, y), z) (4.3b) 

T(x, oo) = x (4.3c) 

x 1 < x 2 implies T(x l ,  y) ~ T(x2, y) (4.3d) 

T(x, y) ~ Inf(x, y). (4.3e) 

THEOREM 4.1. Let T be a ROC. Define Tl(xl) = x 1 and for all n >~ 1, 
T.+l(X 1 ,..., x,,+l ) = T(T~(x 1 ,..., x~), x,~+l ). Then the limit of TN(X 1 ,..., XN) as ~V 
becomes infinite exists. 

Theorem 4.1 is only part of a more comprehensive list of results in (Kamp6 
= V n de Ffriet and Benvenuti, 1972). Note that T~(x~ ,..., x~) J( ~=~ ETa) when 

xk =- ](E~) and the E~ are orthogonal in pairs. The real significance of ROCs 
resides in the following result (Kamp6 de Ffiriet, Forte, and Benvenuti, 1969): 

THEOREM 4.2. Let T be a ROC and A*  = {z c [0, oo] : T(z, z) = z}. Then 
[0, or] - -  A* = O~M (am, b~), M being empty, finite, or countable. The R o e  
is specified by: 

t lnf(x,y), i f  x , y  ~ [0, oo] -- U (a~, b~) 
T(x, y) = n ~ M  (4.4) 

[¢~(07~(x) + 07X(y)), i f  x, y ~ [a,, b,] 
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where 
~o~(~), i f  ~ ~ [0, ~] ~(~) (4.5) 
~a~ , i f  x c [ai  , oo] ,  ui < 0% 

and 0 < ~ <~ oo, and where 0~: [0, ~i] ~ [a~, b~] is continuous and strictly 
de~reasing w i th  0~(0) = b~ and  0~(~) = a~ . 

A a-composible information is of type M if A* = {0, or} and ff < or; it is 
of type M '  if A* = {0, oo} and z7 = oo. The  Shannon information O(x) -~ 
- -c  log x is of type M, while O(x) = 1Ix is of type M '  (hyperbolic information). 
While there is obvious interest in considering more general informations on 
5P(P), it is not the purpose of this paper to do so. Rather, we accept the existence 
of a-composible informations of type M on the quantum lattice ~ ( P )  and on 
Borel lattices. 

Let us therefore assume henceforth that f ( P )  is an ortholattice with a 
weakly a-composible type M information such that p ~ O-l(J) defines 
a weakly a-additive probability measure on 5~(P). While our discussion below 
parallels quantum physics in many respects, we believe that our explicit intro- 
duction of P and functions X on P is novel and brings new understanding to this 
well-developed theory. Moreover, it suggests how one might generally construct 
models starting with an empirical relational system P and imbedding this in 
a (continuum) theory. 

Let X: P - +  R 1 be given and consider X - I ( A ) =  { a ~ P : X ( a )  cA}  for 
A ~ B(R1), the Borel algebra on R 1. We have probability measures defined on 
5f(P)  but not, in general, on 2 p. Hence, it is advantageous to consider ~(A) ~- 

X-I(A) E ~ ( P )  rather than X-I(A). Clearly more than one X can define the 
same ~, but each ~ defines a unique X v i a  N(A) = X-I(A), for all A ~ B(Rt). We 
call such functions observables from their origin in quantum physics (Jauch, 
1968). 

LEMMA 4.1. X is an observable iff ~: B(R 1) -+ 5~(P) is a cr-morphism. 

Proof. If  X is observable and A~ are given, ~(U A e ) ~  X- I (U ATe ) 
U X-I(Ak) = V ~(Ae) as X - I ( U  A,~) is closed. Also, ~(0  A,~) • X - l ( 0  A,,.) = 

N x-l(~,0) = N ~(&), 
Conversely, suppose ~ is a ¢-morphism and X - I ( A ) C  ~(A). Then  there 

exists a ¢ X-I (A)  such that a E ~(A). But, a ~ X- I (A  ') and A n A' =- q~, so 
a E ~(A) ~ ~(A') = x(4) = q~, a contradiction. Thus  we conclude ~(A) = 
X-~(A). Q.E.D. 

These observables have many strange and useful properties. For one, it is 
clear that the image of ~ in ~o(p) must be a Borel sub-algebra of S ( P ) .  This 
means that ~o(p) must be infinite and must admit Borel sub-algebras if observ- 
ables are to exist. In particular, as B(R 1) possesses an "orthocomplement" 
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- - n a m e l y  the set complement  E * for E ~ B(RZ)-- i t  is straightforward to verify 1 

us ing (4.1) that ~(E *) = ~(E) ±. We demonstra te  some other properties:  

LEMMA 4.2. I f  X is observable and a <~ b, X(a)  = X(b).  In  particular, i f  

I ~ P,  then X(a)  = x o for  all a ~ P.  

Proof. I f  a ~ E a ~ ( P ) ,  {a}_CE and  thus I(a)  C E .  T h u s  if b ~<a,  then  
b a E. Us ing  this, suppose a ~< b and X is observable. T h e n ,  if z ~ X(b) ,  
a a X-~{z}, so X(a)  = z. Clearly, if I ~ P,  X (a )  -~ X(I)  for all a ~ P.  Q.E.D.  

Note that there can be no observable informat ion  Je  defined on P if 0 and I 

are in P,  as ye(0) = co =/= 0 = 0re(I). We  now consider the case where £,a(p) 

is an atomic lattice. 

DEFINITION 4.4. A n  element  w in a lattice ~,~ with universal  b o u n d  0 is an 
atom if 0 ~ x ~ w implies that either x = 0 or x = w; a complete lattice ~q~ is 
atomic if for each a a • there exists an atom w ~ a and if a ~ Vw~ a w. 
I f  ~,~(P) is atomic (with Y2 ~ {w ~ P : I(w) is an atom of • (P)}) ,  then  observables 
are de termined by  their values on the atoms Q: 

LEMMA 4.3. Let  X be an observable and let ff2 be its restriction to Y2. Then X 

is determined by _Y[. 

Proof. Let  X~I(A) ~ {w ~ 12 : w <~ t, t ~ X-I(A)}. Then ,  for all A e B(R1), 
X[21(A) C_ fd- l (A)  using l emma 4.2. Were  the inclus ion strict, there would be an 

atom w 0 ~ )~'-I(A) such that  w o 4; t for any t i c X - Z ( A ) .  Thus ,  w o ~ t o for 
t o ~ X-I(Ac),  so X(wo) ~ A c, a contradict ion.  Thus ,  X~I (A)  = f~- l (A) .  

N0w for any ag ~ ~ ' ( P ) ,  E = Vt~E I ( t )  Vt~E [ Vw~n,w<t I(w)] = Vw~e~ I(w) 
with En  = {w ~ Y2: ~v ~ t}. Thus ,  /~ = E n ,  and in  part icular  it follows that 

Xz~{X} = ~f2-~{x}, for all real x. : ' Q.E.D.  

Re tu rn ing  to the more  general case (non-atomic) ,  let B be a Borel subalgebra 
of c~(p).  Then ,  there is a set V, a a-field B ( V )  of subsets  of V, and a ~ -morph i sm 
)~: B ( V ) - +  B that i s  onto ((Birkhoff, 1973),  page 255, T h e o r e m  3). For  each 
probabi l i ty  p on ~q'(P), let m~ = p×. Th i s  defines a a-addit ive measure on B ( V ) .  
Note, however,  that Pl  ~= Pz with disagreement  only outside B leads to m ~  = 

m , .  T h e  measure m~ is a probabi l i ty  on B ( V ) i f f  )¢(~) = ~ and x(V) = P ;  we 
assume these condi t ions  in the sequel. 

A real-valued funct ion  f is ~ said tO be a Borel  function on V if its domain  
c B ( V )  and if for all A ~ B(RZ), f - l ( A )  ~ B ( V ) .  I f f i s  such a funct ion,  ~(A) = 

x ( f - ~ ( A ) )  clearly defines a a -morph i sm,  and related observable X on P via 
~( ,J)  - :  x - ~ ( ~ ) .  

1 Note that ~($) = X-l(qS) ~ $ and .~(P) = X-I(P)  = P. For an arbitrary e-morphism 
X: B(R1) --+ ~W(P) not of the form X-~(A) this fails, and )¢(E *) =/= x(E) ± as (4.1a) fails. 
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Suppose instead that we begin with an observable X on P. As X: B(V) -+ B 
is onto, for each A ~ B(R 1) there exists E(A)~ B(V) defined by X-I(A) 
x(E(A))--remember, the range of ~ is a Borel subalgebra of ~o(p). Define 
f - l (A)  = E(A). This defines a Borel function almost everywhere. That  is, in 
order t h a t f b e  a function on V, f - l {y}  n f - l { z }  = ¢ w h e n y  ~= z. But although 
{y} (3 {z} = ¢, we can only conclude tha t f - l{y}  o f- l{z} e Ker X (the kernel of X 
is the set of elements of B(V) which are mapped by X onto ¢). But in this case, 
m~(f-l{y} c~ f-l{z}) = 0, so the set of points in V on w h i c h f  is not a function 
has measure zero. Call this set N. As N e B ( V ) ,  £2-~ V -- N e B( V) and 
f~(v) = f(v)  thus defines a Borel function with domain ~. Thus,  any observable 
on P is associated with a Borel function on D. 

Note that if f l  and f2 are two Borel functions such that ~(A) = g(f~1(A)) = 
x(fKl(A)), then in particular ~{x} ~ x(f~l{x} nf~-l{x}). However, it is possible 
that f~-l{x} = f-~l{x} (~ N(x), where N(x) ~ Ker X. Thus  f l  and f2 are only equal 
up to sets in Ker X. Clearly, however, f l  = f2 almost everywhere in the sense 
that the measure m~ of the set of points on which they are not equal is zero. 

An especially interesting observable is generated by the characteristic function 
CE: V -+ {0, 1} defined by ~ 

I£e(A) = x(C~)(A)), E e B(V). (4.6) 

Clearly ~e{1} = x(E),/£~{0} = 2(E ~) ~- KE{1} ±. This defines the observable 

I1, if a~x(E) 
K~(a) = 0, if aE x(E c) = x(E) ±. (4.7) 

Note that K~I{0, 1} = K~I{0} k) K~I{1} = P, so that P = x(E) k) x(E) ±. Thus,  
(4.7) can be considered an observable characteristic function on P. 

As is well-known (Munroe, 1953), any Borel function on V is expressed as 
the limit of a sequence of "simple functions": 

f("U) ~---Lii~m ,'=1 [ = ~ ]  C'-I[(I¢--I)]2N'Ic/2N>(V) ~- NCy-I[N'~]('7)) (4.8> 

Thus,  lettingfN(v) represent the Nth  such simple function and with the obvious 
shorthand notation: 

fN(v) = E a~C]-~,e,)(v) (4.9) 

:,'<,> = u =:-'( u ,.). 
ns.t.anc~A (aneA) 

we find 

2 Again, this only works if X(¢) = ¢ and x(V) = P. 
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Thus, for every N, 

X(f  NI(A)) = V x(f-I(E*O) -= f x (A)  =- FTv~(A), (4.11) 
( anna  ) 

where the observable~ Fx  = ~ a~Ks-~(~). As X is a ~-morphism, this holds 
for infinite N, so we propose that every Borel function on V defines an observable 
on P of the form 

X(a) = L im Z a,Kucl,E,~(a) • (4.12) 

But any observable X on P defines a Borel funet ionfx and thus an observable Fx  
expressed by (4.12). As X-I (A)  =- X ( f  xt(A)) = Fxt(A) holds for all A ~ B(R~), 
we conclude that X = F x ,  i.e., that every observable on P has representation 
(4.12). (The non-uniqueness o f f x  is irrelevant.) 

Now Ke is an observable, provided E ~ B(V)  and X(4) = ~, x(V) - P. We 
might as well have denoted K~ by Kx(~). More generally, we ask when is KA 
a "characteristic observable" for A ~ Z('(P). Certainly if A and A ± are contained 
in some Borel sub-algebra B of Y(P) ,  we can associate A with x(E) and the 
desired properties follow. I.e., A n A ± = ~, A v A -L = P ~ B and X being 
onto assures us that us that X(~) = ~ and that x(V)  ~ P for the a-morphism 
X: B (V)  -+  B. In  this case every K A defined by 

tl ,  if a ~ A  
KA(a) ~ O, if a ~ A "  (4.13) 

defines an observable characteristic function on P. This leads us to study the 
evaluation e(KA), A ~ ~ ( P ) .  

Let us now assume that the valuation e(K~) = F(J(A)) ,  where A ~ ~o(p) 
and J is weakly ¢-composible. In  other words, as K A is a characteristic function 
associated with set A,  it is reasonable to anticipate that our evaluation of this 
function depend solely on the information content of A. In  addition, if J (d )  
is changed to J'(A) where I J ' ( A ) -  J(A)I is "small", we do not expect our 
evaluation to change by much. (We ignore possibilities related to questions about 
extraterrestrial life, for example,where small changes in our information can 
lead to drastic changes in functions related to our beliefs.) Thus,  we suppose 
F(x) is continuous on [0, ~ ] .  I f x  :# y, we assumeF(x) ~ F(y) ,  so that we forbid 
the case that two informations disagree on A yet yield the same evaluation. 

LEMMA 4.4. F(x) is strictly decreasing on [0, oo] --~ [0, 1] with F(O) = 1 and 
F(o~)  = o. 

3 Certainly F~a(A) = (J(%e,~) x(f-a(En)) C x(f~/l(A)). Were the inclusion strict, there 
would be an element a e P such that a eF~i(A °) t~ x(fTcI(A)). But, F~i(A ~) C_ x(f~a(A~)) 
precludes this, so (4.11) follows. 
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Proof. Since e(Ke) = 1 = F(J(P)), F(O) -- 1; as e(K,) = 0 = F(J(¢)), 
F(oo) = 0. (Note that Kp(a) -~ 1, for all a ~ P and K~(a) = 0, for all a ~ P.) 
As F is 1 - -  1 and continuous on [0, oo], it must be strictly monotonic, and 
hence strictly decreasing. Let F = 0 -1. Q.E.D. 

From lemma 4.4 and the weak a-composibility of J, if J is of type M, then 
e(KA) = O-~(J(A)) = p(A) is a weak a-additive probability measure on ~ ( P ) .  
Note that if A = &(A), A ~ B(Rt), ~ a a-morphism, then p~ is a probability 
measure on the Borel sets of the reals. 

We now propose the following property of the evaluation procedure: 

e a~KA~ = ~ a~e(KA,) (4.14) 

for all finite N, where a n are reals and {A~ ~ ~¢'(P) : A~ _[_ A~ (n ¢- m)} is 
contained in some Borel subalgebra of ~,a(P). Clearly {A~ ~ k(E~)} for the En 
defined by (4.8) satisfies these conditions. Using (4.12) and (4.14) we define 

e(X) = Lim ~ a.pde(E~) ~- Lira ~ a,~m~(f-xX(En)), ( 4 . 1 5 )  
N---) ~ 

where X is given by (4.12) with Kr~l(~ ) = K~(1-1(e) ) = K~(e) as explained 
. X 

above. Following (Munroe, 1953) we conclude that if X is an observable on P, 

e(X) = G(X, J) = ff_~ t dp ~ = fv fx  dm~ (4.16) 

where J is weakly a-composible of type M on ~ ( P ) ,  p =  F(J), and m~ = PX. 
Note that if X and Y are observables which do not relate to a common space 

V, then e(X + Y) is meaningless. I f  the two Observables do refer to a common 
space--i.e., ~ and 33 have ranges in a common Borel subalgebra of ~ ( P ) - - ,  then 
f x  + f r  is a well-defined Borel function on the space V, and one can define 
e( X -~ Y) -= f v ( f  x + f r )  dm~ = e( X)  + e( Y). In  this case we say that X and Y 
are compatible observables, again following quantum theory (Jauch, 1968). 
Clearly if ~o(p) is a Borel algebra, all observables on P are compatible. 

There is one last case of special interest, namely that where P (and thus ~ ( P ) )  
is finite. I f  one considers B(R 1) to be the Boolean algebra of subsets of R 1 
generated by its open sets, then ~(A) = X-I(A) defines what we call a finitary 
observable (f-0bservable). Lemma 4.1 remains valid with ~ a morphism. (Lemmas 
4.2 and 4.3 are independent of the cardinality of P, so are unaffected.) Suppose 
that ~qo(p) is a Boolean algebra. Then  it turns out that ~o(p) is isomorphic to 
the power set of its atoms (see Theorem 17, p. 119 of (Birkhoff, 1973)) and that 
the isomorphism associates each E ~ 2 P with its completion E (x (E)= E = 
Vw~ ~ I(w)). Now any function f :  s9 --~ R 1 determines a unique f-observable F 

on P (lemma 4.3) as fx~(A) is in 1 - -  1 correspondence with fx~(A) =-Fx*(A) 
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for all A ~ B(R1). Thus,  every observable is associated with a unique function 
on £2. Obviously, f (w)  ~ 2w~a f(wk) C(%}(w) and x(f-~(A)) ~ F-~(A) = 

-1 V(1(%)~a) x(C{w~}(A)) where, as before, -~ x(C{wT~}(fl)) is an observable 
characteristic function on P, and F(a) = ~, f(w~) K{%}(a). Finally, 

e ( X )  = = (4.17) 

with m~ = PX. In  particular, 0-1m~ defines an observable information .[, on P 
and 

e(Je) = ~ (O-lm~(wk)) m~(wk). (4.18) 

We have already stated that if P is the lattice of finite-dimensional Hilbert 
sub-spaces, GO(P) is the complete lattice of all subspaees of the Hilbert space. 
Suppose P is a poset all of whose elements are incomparable in the order. Then  
P = ~2 defines the atoms of G°(P). If  we demand that GO(P) be a completely 
distributive complete Boolean algebra (this includes the finite case), then GO(P) 
is isomorphic to 2 P. In  particular, every function on P is a function on a set £2 
of points, while the probabilities on GO(P) are actually (via the isomorphism) 
probabilities on 2 a (trivially a Borel algebra). Note that this is why in the above 
example F(a) = ~ f(wk) K{%i(a) = f(wk), for a = wT~ , and ~ 0  if a is not 
an atom is an observable: The  only elements of P are the atoms, so in particular 
there is no a ~ P, a > w k to conflict with the requirements of Lemma 4.2. 

\7, MEASUREMENT, THEORY, AND INFORMATION (Continued) 

In  Section I I I  we argued that an empirical system is operationally defined by 
the poset P of its (relevant) empirical relations ordered by "implication". 
Functions on P are to be evaluated by associating with experimental data an 
information J E Z(~'(P)) in an unambiguous manner, fn this section we will 
consider this problem. 

Once the system P is defined, we know ~ ( P )  and the complete lattice of all 
informations definable on GO(P). In general, the laboratory provides us with 
evaluations of some appropriate functions )2 on P. These serve to limit Z(SC~(P)) 
to some subset Q of informations all consistent with the given data. For example, 
Q = {J~ Z(GO(P)):G(X, J ) - -x0} .  That  this situation is typical is evident 
from probability theory with e(X) the mathematical expectation: e(X) = x o 
does not determine probability uniquely. Clearly Z ( Y ( P ) )  may contain informa- 
tions not of type M (not related to probabilities). Thus, one must a priori define 
a suitable class K = (Q ~ Z(GO(P))} such that each Q ~ K can be associated 
uniquely with some relevant laboratory datum. That  is, the result of each 
measurement should correspond to some ~ c K, and there should be no Q ~ K 
that cannot be related to any measurement. 

643/4~13-4 
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Beyond this correspondence, it is also necessary that to each Q ~ K we can 
assign a unique .fo E Q that serves to Characterize or "label" Q. The  reason, 
of course, is that from this measurement we want to be able to unambiguously 
evaluate any function X on P - - a t  least any of a class of functions (eg. "observ- 
ables") that the overall consistency of the model permits. Thus, e(X//Q) = 
G(X, Jo) is the required procedure. 

Hence, we require a priori P (system definition), G (evaluation procedure), 
K (class of information sets corresponding to experimental outcomes), a class F 
of allowed functions 32 on P, and an algorithm to choose exactly one Jo ~ Q 
for each Q a K. I f  either Aje 0 J or Vj~ o J exist in Q, either of these is unique 
and serves the purpose. Another approach is given by: 

DEFINITION 5.1. A family K ~ {QeZ(~ (P) ) }  is G-admissible if there 
exists go: K - *  [0, oo] such that for each QeK the set {JeQ:  G(Je, ]) = 
)¢c(Q)} is the singleton {Jo}. 

We call G(Jv, J) the entropy and H(Q) = G((Jo)~, Jo) the entropy of Q. 
The motivation for definition 5.1 is that K is thus associated intimatelywith the 
evaluation procedure G and the information measures. No doubt other algo- 
rithms can be devised. The  criterion of G-admissibility is of special interest, 
however, as it leads to the generalization of the MEP below. 

As an illustration of a "metatheory" that synthesizes these ideas, consider 
the following. Let v~(a, X)  be a rule or procedure that associates with an object 
a e A some real number valid at time t which represents the value of X for a. 
We do not claim that the object a actually has this value at t, or at any other 
time, for that matter. As experiments are of finite duration, t is hardly well- 
defined. Hence, we simply agree that at t it is appropriate--valid--to say 
v~(a, X) ~ x. An "experiment" or "measurement" consists in the simultaneous 
determination of some finite set of values for functions in a class: 

E('r(al ,..., aN ; X1 ,..., XN) = {v~(a~, Xk) : an ~ A, X~ e 1", k = 1 ..... N} (5.1) 

for N finite. The class of all possible measurements is 

E = {E~N(al ,..., aN ; X1 ,..., Xx) : l, N finite, ak e A, X~ ~ P}. (5.2) 

Note that while the measurements of E can be considered in terms of empirical 
relations, we assume here that these relations are not part of the family of 
empirical relations that define the system class A. As noted above, one generally 
assumes a model P (defining relations for the system are hypothesized) and 
"measures" functions 32 defined on P. Overall consistency of observations, 
model, and predictions provides verification for the model. 

Let  qs: E--~ K uniquely associate with each experiment a subset Q E K, 
where K is G-admissible, and ~ is onto. At this point _P is restricted by requiring 
that q~(E,N(al,..., aN ; X1,..., Xz~)) :/- 6, for all a~ ~ A and X~ ~ _P. Thus,  only 
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functions whose values correspond to nonempty subsets of K are allowed. Such 
a model is still not very specific, but reflects the ideas we are proposing. We trust 
that the reader will see also the reflection of a reasonable skeleton for a measure- 
ment-theory-information model of science. 

In  fact, one may consider the "scientific method" in terms of a sequence 
Tk = {Pk, GT.~, K k ,  X%, /'~} where the definition of the system, method of 
evaluation, concept of data input, allowed function class evolve. Certainly the 
transition from classical to quantum physics is a dramatic example of this evolu- 
tion. 

The reader should beware of the obvious temptation to call the elements 
of the class K "evidences". This word--"evidence"- - i s  much abused and 
rarely defined by writers on measurement theory and "classical" probability. 
(Indeed, in a recent book entitled "A Mathematical Theory of Evidence" 
(Shafer, 1976), one never finds any attempt to define or even characterize 
"evidence".) (Carnap, 1950) at least stipulates that "evidence" is a proposition, 
defined by being the second argument in the "degree of belief" p(h/e), where 
the first argument (h) is the hypothesis, another proposition. In  the case where 
our informations are of type M, our model might be considered as a means of 
defining "degrees of belief" p(h//Q) for "propositions" h ~ ~ ( P )  given "evi- 
dence" Q a K. We will consider this possibility in the next section. 

We now- turn to a generalization of Jaynes' MEP. 

THEOREM 5.1. Let g: Z'--+ W be a 1 --  1 correspondence such that Z '  C 
Z ( ~ ( P ) )  and W is a topological space in which S~,b = {w ~ W : w =- tWa 4- 
(1 - -  t)wb , t ~ [0, 1]} is an arc. Moreover, let g(Q) = R be convex and compact 
for all Q ~ K. Finally, let I t ( w ) =  H(g(J))  - G(Jp,  J)  be continuous on R 
(for all R) and strictly convex down. Then, the only choice of Xa for which 
K is generally G-admissible is 

xa(Q) = sup{H(w) : w ~g(Q)}. (5.3) 

Proof. (A) Proof that (5.3) makes K G-admissible. 
For K to be G-admissible, for all Q e K {jr e Q : G(]p, J) = )a(Q)} must be 

a singleton. Le t fa (R)  = xa(Q) where R = g(Q). Then, 

{w ~ R : re(R)  = Er(w)} = {g(J) : J ~ Q, xc(Q) = G(Je , J)} 

= g{J e Q:  xG(Q) = G(Je ,  J)}. 

Thus, K is G-admissible iff for all Q ~ K {w ~ R = g(Q) :  fc(R) = H(w)} is a 
singleton (g is a 1 - -  1 correspondence). 

By strict convexity and continuity of H(w) over a compact, convex set R, if 
f c (R)  = sup{Er(w) : w ~ R}, it is clear that (w ~ R : f~(R) = H(w)} is a singleton, 
as H attains it supremum over R at exactly one point of R. Thus, (5.3) suffices 
for K to be G-admissible. 

(B) Proof that only (5.3) admits K to be G-admissible in all cases. 



296 JOHN F. CYRANSKI 

A priori there are three cases: (i) R is a single point of W; (ii) R is an arc 
(contains two distinct points, and thus the connecting line); (iii) R contains at 
least three distinct points, not all on the same arc. 

Consider case (iii): Let  w~, w~, w~ be three points with wa q~ S~3, w., q! $31, 
w~ ~ S2a. In  particular, consider that H ( w l ) =  s u p { H ( w ) : w  e R}. Suppose 
fG(R) v a H(wl). Then,  if f c (R)  > / ~ ( w l ) ,  there is clearly no w E R such that 
fa(R)  = Er(w). Such a choice cannot make K G-admissible. Thus,  assume 
fa(R)  < H(wl). Assuming fG(R) = R(wz), for K to be G-admissible, H(wa) =/= 
fG(R). Suppose, therefore, that H(wa) < fc (R)  < H(wl). Continuity of H on $31 
means there exists t o such that iq(t0w a @ ( 1 -  t o ) w 1 ) = f a ( R ) =  H(w~); as 
wz ~ Sad, K is clearly not G-admissible. Suppose we take fa(R)  < H(wa). 
Ei therfa(R ) = inf{H(w) : w e R} or not. I f  not, continuity on the line connecting 
w a with any point at which ~r attains its inf leads to a contradiction similar to 
the above. Finally, iff~(R) = inf{H(w) : w ~ R}, in general more than one element 
in R satisfies H(w) = f~(R). Thus,  in general, for case (iii), (5.3) alone admits 
G-admissibility of K. 

Thus  we conclude that (as (5.3) suffices in cases (i) and (ii) to make K 
G-admissible), that the only choice for X~ that makes K G-admissible in all 
cases is given by (5.3). Q.E.D. 

We now illustrate this theorem by formulating the usual version of the MEP. 
Let  P = -(2 be a finite set of non-comparable elements and ~ ( P )  a Boolean 
algebra; X: 2n--~ ~cp(p) is an isomorphism. I f  Je(Wk)= O(q~), where qk = 
m~{w~}, then JR is an observable information. Let  W = {q} : h = 1, 2,... I1PIL, 
q1~ >~ 0, ~ qk = 1}, and let Z '  = {jr ~ Z ( ~ ( P ) )  : J = op, p a probability on 
~(P)} .  Then,  g: W - - + Z '  is a 1 -  1 correspondence. For, each {q}E W 
determines an unique J as J ( E ) =  Op(E) ~- 0 ( ~ . % ~  qk) and 0 -1 is a 1 - -  1 
correspondence. Also, every J = Op is defined by some {q} ~ W, since 
J(I(w~)) = O(qT~) defines {q} ~ W and J(E) = O ( 2 % ~  q~) fixes J on ~ ( P )  
Finally, g is 1 -  1 since {q} v ~ {q'} implies for some wT~ ~ P, ] ( I ( w e ) ) =  
O(qk) ~ O(q~) = J'(I(wk) ). 

Now W is closed and bounded in ]] P li-dimensional Euclidean space. I t  is 
thus compact (Theorem 33, page 89, (Bushaw, 1963)). We define R(x 1 ,..., xlv) = 
{{q} ~ W : x~ ~- F.w,~P X~,(w,~)q~ , n = 1 .... , N) .  This is, of course, the closed, 
bounded subset of W (and hence compact) of distributions consistent with 
e(X~,) = x~ , n = 1 .... , N.  Note that R(x 1 ,..., x:v) is obviously convex, and the 
line segment S ~  = { q ( t ) : q ~ ( t )  = tqe ~ + ( 1 - t ) q k  b, t~[O, 1]} is an arc 
(problem 154, page 101, (Bushaw, 1963)). Now H ( q ) =  ~%~e q~O(qk) is 
certainly continuous, so it remains to pose conditions on O(x) such that Er is 
strictly convex down. The  usual O ( x ) = - - c  log x certainly satisfies these 
demands. Thus,  the MEP algorithm for choosing {q} ~ W emerges as the only 
choice which makes the class K = {g(R(x~ ,..., XN))} G-admissible for the usual 
a(x ,  J) = E~,~ x(~,3 o-~(j(;r(~,0))). 
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To illustrate that we need not restrict the " M E P "  to probability-related 
informations, we now consider a rather interesting example of topological 
space W. 

THEOREM 5.2. Let  W be any complete convex lattice. The interval topology ~ is 
defined by having as subbasis of closed sets the family  [w~ , %] : {w ~ W : w~ 
w ~ wb}. Let  K W be a family  of closed, convex subsets of W, and let H(w)  be 
continuous and strictly convex down on R ~ K w .  Then, {w ~ R : f ( R )  ~ H(w)} is 
a singleton in general i f f f ( R )  = sup{H(w) : w ~ R}. 

Proof. According to (Birkhoff, 1973), page 250, W is a compact topological 
space. Thus, the closed sets in K w  are compact - -Theorem 21, page 77 (Bushaw, 
1963). We show below in Lemmas 5.1 and 5.2 that Sab is an arc. Thus, according 
to the proof to theorem 5.1, the conclusion follows. Q.E.D. 

LEMMA 5.1. I f  .;~b is the topology induced on S~b by % then the subbasis of  
closed sets for 7~b is given by 

S~b (3 [w~ , Wu] = {w(t) : t c [t', t"]} (5.4) 

where w(t)  = tw o q- (1 - -  t ) %  and [t', t"] C [0, 1]. 

Pro@ Let T* = {t ~ [0, 1] : w z ~ w(t)  ~ Wu}. Then the result follows once 
we have shown that T* == [At,~T, t*, Vj,~r, t*]. 

Now if t I <~ t2 , t iE  T*, then It 1 , t2] _C T* : Let  s12 be the segment uw~ @ 
(1 - -  u)w2, u E [0, 1], where w~ <~ w i = tlw ~ + (1 - -  ti)w b ~ w u . Then wz ~< 
w 1 A wz ~ s12 ~< W 1 v w 2 ~< w~. Also, it is clear that as u varies over [0, 1], 
s12 represents a variation of t over It 1 , Q]. 

Next, let {t~(a)} be any non-increasing sequence in T* such that A tl(a ) = A t* 
and let {t2(b)} be any non-decreasing sequence in T* such that V t2(b ) = V t*. 
Finally, choose tx(ao) ~ t2(bo). Define I(a,  b) =- [ta(a), t2(b)]. By the first part, 
I(a,  b) C_ T*, for all a, b. Thus, as I(a,  b) under inclusion is a non-decreasing 
chain, sup{I(a, b)} = [A tl(a), V t2(b)] _C T*. Obviously, T* _C [AS,~T . t*, 
V~',~T, t*], so we are done. Q.E.D. 

L~MMA 5.2. S~b is an arc. 

Proof. The map w: [0, I] ~ S~b defined byw(t)  = tw~ q- (1 - -  t)wb is clearly 
N~ f 1 - -  1, onto. Every closed set on Sab is of the form K = N~A (U%=l %), 

' ,go"]  where K% = {w(t) : t c [t;o, t~J} is the subbasis element Sob n [w,~ a ~bJ 
--(Bushaw, 1963), chapter 4. Thus, the pre-image of any closed set of S~b 

N a 
under w is the set Na~,~ (Un~:-I T ; )  which is closed on [0, 1] as T~* 
[t;o, r '  1 ~o (by lemma 5.1) is in the subbasis of closed sets on [0, 1]. Thus,  w is 
continuous. 
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Now wit1, ta] = [w(tl) ^ w(t2), w(tl) v w(t2) ] c3 S~b, so it follows that the 
pre-image of any closed set on [0, 1] under w -1 is a closed set in S~b, i.e. that 
w - t  is continuous. 

We therefore conclude that w is a homeomorphism [0, 1] -+ Sao and that S~b 
is an arc--page 100, (Bushaw, 1963). Q.E.D. 

Theorem 5.2 is of special interest because Z(~Z~(P)) is itself a complete convex 
lattice. Any family of closed sets in the interval topology will thus define a 
G-admissible class of informations provided one can construct H(w) ~- G(]e, J) 
continuous and strictly convex down. Once one such class is found, one can ask 
about the effects of the group of automorphisms on Z(~q~(P)) on this class. We 
will pursue this study elsewhere. 

VI. BAYE8' RULE 

In  the Introduction we raised a question concerning the use of Bayes' rule in 
relating "evidences" and "hypotheses". The  question is whether evidence is 
a proposition in the same "language" as is the hypothesis, at least when 
"evidence" is of the form required by the 1V[EP. We established in the preceding 
section that the MEP is concerned with G-admissible classes K of subsets 
of informations in Z(~q~(P)), and warned that these sets Q are not "evidences" 
in the traditional sense of the word. It  is clear, in fact, that Q (together with G 
and Xc) serves to fix the "degree of belief" p(h//Q) for all h E ~(P) ,  while 
p(h, e) is not "fixed" given h and e (problem of "priors") in classical Bayesian 
theory. Also, it is not clear that ~ can be associated with any language ~ ,  
although is apparent that Q cannot be associated with propositions in ~qo(p). 
For example, L]P/! < oo in the MEP case of the preceeding section, but 
I! K II = c~, as there is a continuum of different allowed sets R(x I ,..., xs) 
corresponding to the continuum range of the probabilities. Thus, the "evidences" 

~ K do not serve as part of the definition of the system, i.e..L~°(P). More 
generally, it is hardly reasonable to expect that the choice of G (evaluation 
procedure) should have bearing on the "attributes" in ~ ( P ) .  We further 
illustrate this point by noting that a list of mutually exclusive and exhaustive 
states of an atom defines the atom, while the expected value of its hamiltonian 
(energy) does not correspond to any particular state or subset of states, but serves 
only to provide a family of density matrices consistent with the expected 
energy. 

Let us then suppose that there exists some "language" ~ whose propositions 
d o correspond in a 1 - -  1, onto way with Q e K. In  other words, we consider 
some lattice ordering of K as the "language" ~ .  An immediate problem presents 
itself: Just how is ~ to be defined? We suggest three alternatives for the 
ordering: 
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(i) a~ ~< do, iff 9 ~ _ Q' in Z(5"(P)); 

(ii) d o <~ d o, iff Jo <~ Jo" in z(d~(P));  

(iii) d o <~ d o, iff xa(Q) >~ xa(Q'). 

The  first ordering represents a "quality" grading of evidence-- the more 
restrictive the evidence (smaller allowed set in Z(~(P) ) )  the better the "grade".  
Ordering (ii) essentially imbeds £a in Z(S(P) ) .  The  last possibility follows 
Shannon's intuitive idea that "entropy" is "uncertainty",  and grades evidence 
inversely according to its uncertainty level. 

Each of these order ings--and one can probably conceive of others--has  
intuitive appeal and seems natural, so unless in certain circumstances they are 
equivalent, there is no unique £a available. Still, in some situations a suitable 
choice for G a may present itself, despite the general ambiguity. Let  us therefore 
suppose we have such a well-defined ~ with universal bounds d~ and dK. 

Let  us consider ~1 = ~qo(p) and ~ = ~c~, and define the lattice product 
~°l @ ~q2 = {(al,  a2) : al ~ d¢~, a 2 ~ Z,~2} ordered by 

(a l ,  a2) ~<r2 (b~, b2) iff al ~<1 bl and a~ ~<2 b2" (6.1) 

Then  ~-ca 1 @ £ a  is a lattice with universal bounds (01,02) and (I~, /2) .  Let  
J12 ~ z(~'¢1 @ £¢2) satisfy 

J~2(ol,  z.) = ]~.(±~, o~) = ~ .  (6.2) 

Then  we may easily verify that J i  c Z(~qa~) and J2 c Z(~,2) with 

L(a l )  = J~2(al, I2), for all a 1 ~ 501 (6.3a) 

L(a2) = L2(I1,  a.,), for all a2 ~ ~g~2. (6.3b) 

Consider the relation 

.J,~(al, a2) = Ja(al) + S(a2/al) = L(a2) + T(a,/az) (6.4) 

defining S and T for all ( a l ,  a2) ~ ~ @ oW 2 . Provided Jlz satisfies 

]12(al ,  02) = y,,~(o~, a2) = 0% for all (~1, a2) ~ G ® G (6.5) 

we can verify that S(aJal) ~ Z(~2) for all a 1 4= 01 in ~qa, and that T(al/a2) ~ Z ( ~ )  
for all a2 :/= 02 in ~q'g2- 

We claim that (6.4) defines the natural generalization of Baycs' rule. I f  
~qa 1 _ ~ = ~,a, then any J ~ Z(~,¢) defines J12 ~ Z( oga @ og°) that satisfies (6.5) 
and is also symmetric in its arguments. One simply takes 

Jx2(a, b) = J(a ^ b), for all a, b ~ ~ .  (6.6) 
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I f  J = - c  logp ,  c > 0, then (6.4) reduces to 

p(a ^ b) = p(a) p(b/a) =- p(b) p(a/b) (6.7) 

where S(b/a) = --c log p(b/a) and T(a/b) = --c log p(a/b). Thus,  (6 .4) indeed 
generalizes Bayes' rule. 

Returning to the more general case ;~° 1 = ~ ( P ) ,  ~ ~ 5~, let us suppose 
that there exists J12 E Z(5¢ 1 @ ~W2) satisfying (6.5). We must  now face the problem 
of choosing Jl~, assuming there are more than one. The  obvious way we might 
t ry to specify the assignment is by setting 

T(n/do) = Jo(A), for all A e ~ ( P ) .  (6.8) 

Tha t  is, the information specified by the evidence do(Jo ~ Q) is the "conditional 
information",  Jlz(.d, do) - j2(do). This  leads to 

J(A, do) = JI(A) + S(do/A ) = A(do) + Jo(A) (6.9) 

where once J ~ Z(£~(P) @ 2 )  is known, all informations in (6.9) are determined. 
Clearly, if we know Jo(A)  and J2(do), we can find J(A, do). 

Expressed in terms of probabilities (assuming Shannon informations), (6.9) 
reduces to 

p(A, do) = Pl(A)  ps(do/A) = P~(do) Po(A). (6.10) 

Note that px(A) --~ p(A, dK) and p2(do) = p(P, do). From (6.10) it is clear that 
the proposition (./1, do) behaves strikingly like the expression "A  & do" cited 
in the Introduction,  but  is not the same object. Indeed,  (6.10) i s - -we  be l ieve- -  
the correct way to formalize Bayes' rule in terms of "degrees of belief".  4 The  
"pr iors"  P l  and P2 are based on "background evidence" /)  which asserts the 
existence and structure of P,  £~, G, X~, and F ;  also, in order to f ixp  we must  
include additional "pr ior  evidence". Thus,  the infamous "prob lem of priors" 
returns in a new formulation. 

4 The correct statements of some typical Bayesian results follow: Equation (1), page 27, 
of (Jeffreys, 1961) becomes 

p((.4 ,, B, do)) = po(.4/B) Po(B) p(do). 

The "principle of inverse probability"--equation (4), page 28 of the same reference-- 
becomes 

p(dot(A, 11)) oc p(Al(do , H)) p(dofH) 

where H E ~L,~2 is "prior evidence" and d o e coc~ 1 is additional evidence on ~(P) .  There 
appears to be no mathematical loss in considering &C(P) @ .o@ rather than assuming that 
"A & do" is a legitimate proposition per se. However, (A, do) v ~ (do, .//), so that it is 
not a priori clear that results based on the "symmetry" of "A & do" will remain valid. 
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Of course, in the procedure we presented earlier, there is no need to delve 

into the problems associated with (6.10) for Po is all that we really need to 
evaluate functions for a given theory. Can our procedure be extended to solve the 
"problem of priors"? In  order to calculate a unique ,t r E Z ( ~ ( P )  @ G 9) we need 

some consistent criterion, which in turn is related to the nature of such informa- 
tions. I t  is not sensible to propose an "evidence class" analogous to K, as this 
leads to an infinite regress problem--we would then have a lattice ~ '  of evidences 

about 5q (P )@ ~ ,  and thus require an information on .~q~(P)@ ~ @ ~b,; ad 

infinitum. We thus tend to believe that our method cannot solve this problem. 5 
A similar difficulty arises if one considers the indended application of Bayes' 

rule. For is "evidence" that defines the structure cS(P)@ ~ legitimately a 
proposition in even this "language" ? Clearly not, so it is necessary to consider 
a third "language", ~ ' ,  that contains "background evidence" defining the 
models ~ ( P )  @ ~ .  Each element of this "meta-language" is thus a "scientific 
theory", in the sense we have described. But, evidence in favor of one theory 
over another cannot belong to ~ ' ,  so we must consider a "language" of evidences 
for the theory. And so on... 

These considerations suggest a need for a careful review of the foundations 
of inductive logic, based on the distinction between "attributes" and "evidences". 

While Bayes' rule is correct as a mathematical condition its interpretation and 

application are not correct in Bayesian theories. 

VII. CONCLUSIONS 

In  this paper we have presented an answer to the following question: How 
are measurement, theory, and information inter-related? We have tried to 
formulate the answer in a very general fashion, the result being a mathematical 
model of interest in itself. 

_Among the results we feel of special importance are the following: that the 
empirical relations serving to define a class of systems naturally form a poset; 

that functions defined on such a poset can be related to "observables" and a 

5 It is not certain, however, that there is a "prior" problem for the constraints expressed 
by (6.10) are powerful. Thus, for example, pl(~/) = pK(-,'l) provided d K corresponds to 
some "maximal" set in K. In the MEP example, d K refers to W, in which case pK(A) is 
the usual "prior probability." In fact, (6.10) gives the ratio ps(do/.d):p~(do) for all (_d, do) 
in terms of the known ratio po(A): pK(A). There is hope that additivity properties of the 
probability measures on .LP can be used to determine the remaining unknowns. Indeed, 
this is the essence of the attempt in (Friedman and Shimony, 1973) to fault the MEP. 
The choice of ordering of evidences in this paper is rather peculiar: If d~ is defined by 
e(X/i~) = z, the order is assumed to be da < a*v iff x < y. Moreover, p~ is understood 
to be a probability measure on the Borel subsets {d~}. (See Appendix of (Cyranskl, 1978).) 
Together with a technical assumption, these conditions imply that P2({dx}) = 1, if 
x ~ E(X/ /W) and =0  otherwise. 
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probabil i ty theory based on its "cut  completion";  that the MEP can be divorced 
from "randomness"  concepts and greatly extended; that "at t r ibutes"  and 
"evidences" do not coexist as propositions in a common "language" but  can be 
treated as "pairs"  (h, e) in a lattice product,  and that Bayesian "degrees of belief" 
should be based on such an approach. 

As suggested in the introduction, much of the material we have presented is 
not original, but  our synthesis of it in a consistent viewpoint is the essential 
contribution. Nevertheless, we have in several cases extended existing theories 
and, perhaps more important,  our approach has raised questions for further 
work. For  example, the study of automorphisms on the complete lattice of 
informations--especial ly witb regard to G-admissible classes--has been noted. 
(Present work indicates some surprising results concerning "dynamics"  based 
on information theory.) We have not fully understood the nature of "ent ropy":  
In  the "classical" continuum case in particular, our approach should help the 
characterization of "en t rop ies" - -a t  least those defined essentially as expecta- 
tions of observable informations. The  brief study of a lattice product  of 
"languages" indicates a way towards a deeper understanding of communication 
theory, following the methods of rate distortion theory (Berger, 1971) and the 
"Mutua l  Information Principle" (Tzannes and Noonan, 1973)--a method 
similar to the MEP. 

Fur ther  applications include the definition of "ent ropy"  on computer  pro- 
grams--see  a statistical a t tempt in (Hehner,  1977). We also mentionned a 
similar possibility for relativistic spacetime (Carter, 1971). Naturally, the 
ultimate goal of the measurement theory is successful application. The  model  
we have presented i s - -we  hope--genera l  enough to admit non-statistical models 
in social sciences, for example, where standard mathematics is often incongruous. 
We hope this paper serves to stimulate both further research into the basic 
questions raised and useful application of the philosophy and methods. 
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N o t e  added  in proof.  Since submission of this manuscript we have modified certain 
ideas presented here. For example, Definition 3.2 has been extended to permit O to be a 
quoset and to relax the constraint nR >/ n r  • Also, scales X: .// --* R 1 lead to relations 
A X s  P where A is a "fuzzy" subset of R 1 (A: R ~ -~ Q' c p). These results will appear 
in Cyranski, J. (1979), Measurement theory for physics, Found.  Phys . ,  in press. 
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