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The problem of integrating the time-dependent Schrodinger equation (TDSE) describing the interac-
tion of a polyelectronic atom with a laser pulse is treated by expanding the time-dependent wave func-
tion %(r, t) in terms of wave functions 4„E computed for discrete, autoionizing, and scattering states
separately. The TDSE is transformed into a system of coupled first-order differential equations with
time-dependent coeScients, whose number (in the thousands), necessary for convergence to be reliable,
depends mainly on the degree of the contribution of the continuous spectrum, as a function of the fre-

quency and strength of the field. This approach allows the systematic incorporation of the significant
electronic structure, electron correlation, and spectral characteristics of each N-electron system under
investigation. Furthermore, since the free-electron function is computed numerically in the polarized
core potential of the remaining (N —1)-electron atom, properties such as the angular distribution and

partial above-threshold ionization (ATI) of the photoelectron are directly computable. We present re-
sults from the application of our methods to H and Li . For the applications to H, which served as test-

ing grounds for the method, the state-specific wave functions for discrete and continuum states were ob-
tained numerically, for n and I up to 12 and 5, respectively, and for positive energies up to a= 34 eV with
I up to 6. When comparisons with other time-independent and time-dependent results are possible, very

good agreement is observed. On the other hand, our calculations do not confirm recent experimental re-
sults on absolute ionization rates for laser pulses of 248 nm. For Li, our results on ATI for photon en-

ergy tie=1.36 eV demonstrate the effects of initial-state electron correlation and of final-state field-

induced coupling of open channels (the Li 1s 2s Sand 1s 2p P'), as a function of field intensity.

PACS number{s): 42.50.Hz, 32.80.Rm

I. INTRODUCTION

In recent years [1-11],it has become possible to in-
tegrate the time-dependent Schrodinger equation (TDSE)
for the hydrogen atom interacting with a strong laser
pulse. As a result, reliable information on aspects of the
physics of this interaction became available for the first
time. However, as with the time-independent
Schrodinger equation, the H atom is a special case. Thus
it is important and timely to develop approaches which
are general and practical enough to be applicable to the
challenging problem of computing the TDSE for the
response of a ground or an excited state of a polyelectron
ic atom to intense and short laser pulses.

Reviews of the progress that had been made until re-
cently regarding the solution of the TDSE for multipho-
ton atomic processes were published by Kulander,
Schafer, and Krause [12] and by Lambropoulos and Tang
[13]. Kulander, Schafer, and Krause [12] have produced
a number of results and conclusions on single deter-
minantal states where only one electron is active, either
in a pure Coulomb field (hydrogen atom) or in a mean
field (Hartree-Fock-Slater). On the other hand, Lambro-
poulos and Tang [13]have stressed the need for consider-
ing the details of atomic structure and have implemented
a specialized discrete basis set method using splines for
the computation of the multiphoton ionization of the 'S
state of two-electron atoms. The conclusion that one can

draw from these articles and from their quoted work is
that the one-electron atom can, by now, be handled accu-
rately (in principle at least up to intensities of 1X10'
W/cm and A, =1064 nm [11]),but that it remains as a
desideratum to have an approach which is applicable to
many-electron atomic states, allowing the incorporation
of the effects of electronic structure, of electron correla-
tion, of single as well as of multiple excitations, and of the
term-dependent continuum. The present work shows
how this can be achieved and how some of the aforemen-
tioned effects can in6uence observable phenomena such
as above-threshold ionization (ATI).

In the following sections, we present our approach and
a few applications to two atoms, H and Li . For hydro-
gen we used the exact discrete and scattering functions,
computed numerically. This served to check the correct-
ness of our numerical methods, in particular the accuracy
of the continuum-continuum dipole matrix elements
(computed using numerical functions), and of the overall
technique of integrating the TDSE. In addition, H
offered the opportunity of making comparisons with pre-
vious theoretical and experimental results. Applications
to the phenomena of harmonic generation (HG) and of
angular distributions are reported elsewhere [14].

On the other hand, Li 'S was chosen as a manageable
and interesting negative ion system where the singlet
discrete spectrum is missing. This implies that the result
of the major interelectronic interactions in the initial
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FIG. 1. The part of the spectrum of Li and of Li studied in

this work.

The possibility of realizing the aforementioned advan-
tage depends crucially on the availability and reliable
handling of accurate wave functions for the discrete, ao-
toionizing, and scattering states. These must contain the
important effects of the self-consistent field and of in-
terelectronic interactions. In this work, this is achieved
by employing the electronic structure methods of the
state-specific theory [17,18]. In this way, the initial state
may be closed or open shell, ground or excited; the excit-
ed states are represented by well-optimized function
spaces, and the free electron of the ionized state is
represented by numerical, term-dependent, fixed-core
(with polarization) Hartree-Fock (HF) scattering orbitals,
thus allowing the study of properties related to the angu-
lar momenta of the scattering channels, such as partial
ATI spectra and angular distribution of the photoelec-
tron.

state ought to be easily reflected on the photoelectron
spectrum. The major components of the Li 'S ground
state are the 1s 2s and 1s 2p configurations, whose
coefBcients from a multiconfigurational Hartree-Fock
(MCHF} calculation are 0.933 and 0.360, respectively. In
Sec. EV we show the effect of this initial-state
configurational mixing on the photoelectron spectra,
which is revealed as a function of the field intensity.
Another prototypical feature of the Li system is that
with only small excitation energies, more than one chan-
nel opens up in the final state (Fig. 1). Specifically, the
first ionization threshold, the Li 1s 2s S state, is 0.62 eV
above the ground state and the second threshold, Li
1s 2p P', which is coupled to the S state by the radia-
tion field, is only 2.47 eV above. In our opinion, such
basic electronic-structure and field-free spectral charac-
teristics allow the possibility of detailed and reliable ex-
perimentation with existing laser and detection systems.
At the same time, they show clearly why the theory of
multiphoton ionization must, in general, be developed
and carried out beyond the single determinantal,
independent-particle model. In fact, the same system was
used by us a few years ago for the time-independent,
many-electron many-photon computations of multipho-
ton detachment [15], which demonstrated distinct
features due to electron-structure characteristics in initial
and final states.

II. PRESENT THEORY

The conceptual framework of the approach that we
have implemented for the solution of the TDSE follows
the textbook prescription of expanding the time-
dependent wave function in terms of field-free stationary
states with time-dependent coefficients, which must be
determined from the solution of the resulting system of
coupled first-order differential equations. Such a strategy
for solving the TDSE contains, in principle, the advan-
tage that we can study the rate of convergence not only
as a function of laser characteristics but also as a function
of the free-atom (molecule) spectral characteristics, by
considering systematically the effect of the number and of
the type of states in the expansion [16].

A. Choice of the interaction operator

The aim is to solve the TDSE

where the time-dependent wave function %(r, t) contains
the information of the time evolution of the initial atomic
state due to its interaction with a pulsed laser field. In
the semiclassical dipole approximation, the total Hamil-
tonian H„,(t) is written as

H„,(t) =H„+H,„,(t), (2)

where H„ is the field-free atomic Hamiltonian.
Without posing any restrictions on the general form of

Eq. (2), we have chosen the interaction Hamiltonian to be
in the velocity form, for reasons of convenient evaluation
of continuum-continuum dipole integrals with numerical
functions (Appendix A). Thus

(3a)

with (single-frequency case)

E(t)= ——A(t) =Ea)"(t}sin(cot),
d
dt

(3b)

H;„,(t) = —r.E(t),

where the aforementioned expansion coeScients can
indeed be interpreted as probability amplitudes. Hence,
in the velocity form of the interaction [Eq. (3a)], it is the
expansion coefficients of a new function 4'(r, t),

where the vector potential A(t) contains the information
about the laser frequency (co), intensity ( -Eo ), and tem-
poral pulse shape [f(t) ]. The second term, —,

' 3 (t) in ex-

pression (3a), can be neglected, since it is just a phase fac-
tor of the time-dependent wave function %(r, t).

The gauge-invariant formulation of the interaction of
electromagnetic radiation with matter [19]shows that the
expansion coefficients of the field-free atomic states can-
not be interpreted as probability amplitudes [20]. This is
in contrast to the case of the length form
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4'(r, t)=e ' '"'0'(r, t), (3d)

which are to be interpreted as probability amplitudes
[20,21]. In addition, when using the "preferential gauge"
[22], which implies a vanishing vector potential A(t)
whenever the electromagnetic field becomes zero, the
choice of a field-free atomic state for t=0 is valid. Keep-
ing in mind the above interpretation of the expansion
coefficients of qr'(r, t), the use of the velocity form has the
important advantage that it allows a convenient numeri-
cal treatment of the singular part of the continuum-
continuum dipole moment matrix elements (see the fol-
lowing subsection).

B. The solution of the TDSE
and the calculation of observables

i a, (n, t)=s;„a;(n, t)+iA(t) QBJ(n, m)aj(m, t)
j,m

+i A (t) g f b, (E, t)D, (n, E)dE, "
J

i b, (E,t)=E—b, (E., t)+i A (t) gD; (E,m)a, (m, t)
d

j,m

+i A (t) g fbj(E', t)C; (E,E')dE', .

(5)

where c; „are the calculated energies of the bound and, if
necessary, of the multiply excited states of the atom,
B;J(n,m) is the bound-bound dipole matrix element,
D; (n, E) is the bound-continuum dipole matrix element,
and C;J(E,E) is the continuum-continuum dipole matrix
element.

From the accumulated knowledge in the field of com-
putation of wave functions and properties of polyelect-
ronic atoms, it can be deduced that solving the system of
equations (5) reliably is a very demanding problem, even
if supercomputers are available. It turns out that the use
of state-specific wave functions for the discrete or the
continuous spectrum [17,18] allows the incorporation of
the important information while keeping the overall cal-
culation manageable.

The matrix elements B,"(n,m} and D; (n, E) are calcu-.
lated numerically without any difficulty since they in-
volve bound orbitals. On the other hand, the
continuum-continuum dipole matrix elements CJ(E',E),
which play a crucial role in the understanding of ATI,
contain an on-shell singularity. For hydrogen, the exact

%e expand the time-dependent wave function of Eq.
(1}in the N-electron set of the field-free states of the atom
[16]

~'P(r, t)) = ga, (n, t)~i, n)+ g fb;(E, t)~i, E)dE, (4}
I, n

where ~i, n ) are the atomic bound states plus the multiply
excited states (autoionizing states} and ~i, E ) are the ener-

gy normalized continuum wave functions, where the in-
dex i runs over the different channels. Substituting Eq.
(4} into Eq. (1}results in the system of coupled integro-
differential equations

where P signifies the principal value. The variables e,', c
represent the positive energies of the free electrons above
the thresholds of the i,j channels correspondingly.
F,(s', e), F2(e', s) are well-behaved functions of the ener-

gy and of the phase shifts and are calculated numerically
using the energy normalized numerical HF free-electron
orbitals.

The integrals in Eq. (5) are calculated taking into ac-
count the 5 function and the principal-value integration
of Eq. (6b). In order to accomplish this, we choose a
high-energy cutoff and the resulting energy range is asso-
ciated with a mesh. The values of b (E,t) are to be found
at the mesh points. For the nonprincipal-value integrals
of the system (5) this is done by the trapezoidal rule,
which means that for energies between consecutive mesh
points the integrand is assumed to vary linearly. For the
evaluation of the principal-value integrals [Eqs. (5) and
(6b)], we apply a procedure analogous to a method fol-
lowed a long time ago by Altick and Moore [24]. This
procedure first assumes that the well-behaved part of the
integrand [b (e', t)Fz(e, s')] varies linearly with energy
between consecutive mesh points and then computes the
remainder of the integral exactly. The system (5) is thus
reduced to a system of ordinary differential equations.

The solution of Eqs. (5} gives the time-dependent
coeKcients a;(n, t) and b;(E, t) and subsequently any
quantity of interest. For example, photoionization proba-
bilities and rates can be deduced from the study of the
quantity [25]

P;„(t)=1—g(a;(n, t)( (7)

where the summation in Eq. (7) concerns only the bound
states of the atom. Furthermore, not only the total ATI
spectrum but also partial ATI spectra are directly calcu-
lated from the b, (E, t },with

dP, (t) dP', (r) = g ~b, (E, t)~', (8)

where dP', (t) is the probability that the free electron has
energy between e. and c.+dc in the channel i.

Finally, higher HG can be computed by Fourier trans-
forming the induced time-dependent dipole moment of
the atomic state

d(t)=(%(r, t)~d~%'(r, t)),

form of this singularity was recently studied using the
known analytic functions [23]. However, for the general
case of the many-electron atom, the term-dependent
scattering orbitals must be obtained numerically over a
large range of energies, a fact requiring the solution of a
different calculational bottleneck. This has been dealt
with in the following way. For H, (t} in the velocity
form [Eq. (3a)], C; (E',E) is written as (Appendix A)

Cnansingu1ar(E~ E}+Csingular(Ei E)IJ ' &J lJ

with

F2(e', e)CJ"g""'(E',E)=F&(e',s)5(s' —e)+P, , (6b)
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where d is the dipole operator. Calculations of HG based
on Eq. (9) within the model of a single active electron in a
central potential have already been published by other
researchers [11,26]. Our results on HG using the present
state-specific approach are reported elsewhere [14].

The integration of the system of differential equations
(5) has been carried out by the adaptive Bulirsch-Stoer
[27] method for ordinary differential equations and by a
Taylor-series expansion method (TSEM) (see Appendix
B), which is based on the series expansion of the time-
dependent coeScients and of the vector potential. It
turns out that in most cases, the TSEM is about 5 times
faster than the adaptive Bulirsch-Stoer method.

III. RESULTS FOR THE HYDROGEN ATOM

The validity of the approach of Sec. II was first
checked using the exact hydrogenic wave functions of the
discrete and continuous spectrum. %e focused our
efforts on the testing of our algorithms for the time in-
tegration of Eq. (5) and for the numerical evaluation of
the on-shell continuum-continuum dipole matrix element.

The calculations were done for a laser pulse envelope

f (t) [Eq. (3b)] of the form

(10)

0, t & Tf+T,q,
where T, is the time during which the pulse rises linearly,
(T& T„) is the —time interval where the pulse has con-
stant intensity, and T,z is the time interval during which
the pulse intensity falls to zero.

First we calculated the time evolution of hydrogen
prepared in its ground state, irradiated by a laser pulse of
the temporal shape (10) with frequency co=0.2 a.u. (5.44
eV) and peak intensity ID=1.75X10' W/cm~. T„was
equal to 10 optical cycles and Tf was equal to 30 cycles.
The expansion in Eq. (4) consisted of the bound states up
to principal quantum number n=4 and up to angular
momentum l=3, of energy normalized numerical wave
functions with angular momentum up to l,„(given
below), and with an upper limit of the energy integrations
in Eq. (5) equal to E,„. For the curves of Fig. 2,
E,„=1.25 a.u. (34.0 eV). Calculations where the upper
energy integration limits were greater than 1.25 a.u.
showed that the results are not significantly affected,
meaning that for E,„ofthe order of a few photon ener-
gies, stable results are obtained.

The series of Figs. 2(a) —2(f) illustrate the rate of con-
vergence of the time-dependent probability of H remain-
ing in its ground state as a function of the number of
scattering functions X, and of angular momenta I,„.
Once X, or, equivalently, the energy separation hE is
chosen, the functions b;(E, t), D, (E,m), and Cj(E. ,E')
are obtained and the energy integrations in Eq. (5) are
done by the trapezoidal rule.

Specificall, Figs. 2(a) —2(d) refer to 1,„=2 and to 1V,

from 50 to 400. Stability of the results is clearly reached
already at X, =200. These figures show that it is essen-
tial to ensure convergence as a function of X, for each
channel i [Eq. (5)]. Of course, by increasing X, the size of
the problem increases rapidly. For example, in order to
obtain Fig. 2(a) a system of 160 differential equations had
to be integrated whereas for Fig. 2(d) the number in-

creased to 1210. In other work not presented here [14],
where n =20 and 1,„=5 for the bound states and
I „=20and Em,„='70 eV for the continuum states, the
number of coupled equations reaches 27 300.

Figures 2(e) and 2(f) show results from X, =200 and
3 „=3 and 4 correspondingly. Comparing with Figs.
2(a) —2(d) we see that stable results are reached even with
low angular momentum values, although the peak inten-
sity is relatively high (ID=1.75X10' W/cm ). This is
due to the fact that the chosen frequency fico=5.44 eV
does not correspond to any excited states of the discrete
spectrum even after the field-induced energy shifts.

The photoionization rate, which is deduced from the
linear portion of the logarithm of the time-dependent
probability, was calculated to be 2.3X10' sec '. This
value is close to the value 2.9 X 10' sec ', which is the
outcome of the time-independent calculation of Chu and
Cooper [28], and to the values 3.5 X 10' sec ' of DeVries
[3] and 4.0X10' sec ' of Kulander [1].

The next application was the calculation of the photo-
ionization rates of hydrogen irradiated by a laser pulse of
248 nm, a case which has been studied before [2,7]. For
this wavelength, a recent experiment [29] produced abso-
lute values for the photoionization rate for field intensi-
ties ranging from 3X10' to 2X10' W/cm . The mea-
sured rate for total electron production was less than that
predicted by the earlier calculation of Chu and Cooper
[28].

Our computed photoionization rates are in agreement
with those of [28], (as presented in Fig. 3 of Kyrala and
Nichols [29]), especially for intensities smaller than 10'
W/cm . For example, in Fig. 3, results are shown for a
laser pulse of peak intensity ID=1.24X10' W/cm and
of temporal shape of the type of Eq. (10), with T„=130
cycles, Tf =215 cycles, and T,~=45 cycles. In particu-
lar, the probability of finding H in a bound state as a
function of time is shown in Fig. 3(a), giving a photoion-
ization rate of 1X10 a.u. , which agrees with that ob-
tained by Chu and Cooper [28] and also by us, using the
time-independent complex eigenvalue Schrodinger theory
of [15,30,31]. In Fig. 3(b) the ATI spectra, obtained from
the probability distribution [see Eq. (8)] as a function of
energy, are shown, revealing the existence of two peaks.
The basis set for the results presented in Fig. 3 consisted
of the bound states up to n = 12 and 1=4 and of scatter-
ing wave functions with I „=5,E,„=1.25 a.u. , and

X, =625 energy points.
For intensities greater than 2X10' W/cm, detailed

results will be presented in the future. A sample of these
results (time-consuming calculations are presently being
performed) is given in Fig. 4, where the ATI spectra for
ED

=—3. 1 X 10' and 5.0X 10' %/cm are presented. The
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FIG. 2. Probability, as a function of time, of H remaining in its ground state for laser frequency co=0.2 a.u. and peak intensity
ID=1. I5X10' W/cm . The state-specific basis set consisted ofbound states up to n=4 and 1=3. (a) The continuum consisted of en-
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suppression of the peak corresponding to the absorption
of three photons is due to the ponderomotive shift. The
substructures on each peak are attributed to multiphoton
ionization processes which are enhanced by excited states
populated during the laser pulse. In Figs. 4(a) and 4(b)
the ATI spectra for IO=3. 1X10' W/cm are given for
two successive instants t=50 and 73 cycles correspond-
ingly, showing that, as time progresses, the substructures
gradually become less important compared to the main
peaks (attributed to the ls ground state), while their abso-
lute values remain essentially constant. In Fig. 4(c) the
ATI spectrum for IO=S.OX10' W/cm is given for
t=29 cycles. It is seen that with a slightly larger intensi-
ty the overwhelming population of the four-photon peak

dominates at shorter times.
Recently, LaGattuta [2] considered the ionization of

hydrogen through resonant intermediate states, using a
time-dependent method which belongs to the family of
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FIG. 3. (a) Time-dependent probability of 6nding H in any
bound state, for wavelength X=248 nm and peak intensity
Io = 1.24X 10' W/cm . (b) The corresponding ATI spectrum,
at the end of the laser pulse, obtained from the probability dis-
tribution of Eq. (8).

FIG. 4. ATI spectrum of H irradiated by a laser pulse of
wavelength A, =248 nm. (a}Io=3.1X10' W/cm and t=50cy-
cles. (b) Io =3. 1 X 10' W/cm and t=73 cycles, (c)
IO=5.0X10' W/cm and t=29 cycles.
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4,(L E=—1s I 2s I c,l L, L =S P D
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42(I,L;E)= ls22p2s'l 'L, L = ll —1 I, . . . , I +1 . (12b)

The indices 1 and 2 indicate the state specific character of
the HF orbitals. The free-electron orbitals ~h, c'I are ob-
tained numerically by solving the term-dependent fixed
core (with polarization), HF equations.

By combining Eqs. (4), (11), (12a), and (12b), the time-
dependent wave function is written as

%(t)=ao(t}40+ g f P, t( et)4, ( L; E, +s)de
L —0 0

2 1+ I

+ y y f P„,(., t)e,(I,L;E2+s)ds
1=0 L = I1 —1I

(13)

E, ,E2 are the energies of the first and second Li chan-
nels, respectively, with values shown in Fig. 1. The laser
pulse has the temporal shape (10) with T„=5 cycles,
Tg =15 cycles, and T,&=0 cycles. This choice was made
after trial calculations showed that in this way saturation
phenomena are minimized. For frequency co=1.36 eV
(0.05 a.u. ) and peak intensity I0=7X10' W/cm, we
found convergent results for L& =2=L2 [see Eqs. (13),
(12a), and (12b)]. The bound-continuum matrix elements
have the form

&e,lH, „,Iis', 2s, sp 'P')

The matrix element in Eq. (15a) is evaluated by the
method developed in Appendix A applied to negative
ions [effective charge Z=O in Eq. (A4)]. The same
method is used for the computation of the singularity of
the overlap ( ss, I Es2 ) in Eq. (15b).

The integrals in the coupled equations were performed
as explained in Sec. II 8, by choosing a high-energy limit
of 0.36 a.u. , with energy separation 5 X 10 a.u. between
consecutive mesh points. The resulting system of ordi-
nary differential equations is of the order of 6000 equa-
tions.

In addition to the final-state effect through the field-
induced coupling of the two channels, an important ques-
tion that we wanted to answer is the following: How do
the effects of electronic structure and of electron correla-
tion manifest themselves as a function of field intensity on
phenomena such as ATI7 For example, in Fig. 1 it is
seen that for the first photon the 1s 2p P' channel is
closed. This is the channel that is directly connected
with the correlation correction 1s 2p of the ground state
as a virtual dipole transition. It would then be interesting
to check its influence on the overall ATI process as a
function of intensity.

Figure 6(a) shows that ATI spectrum for Io =7 X 10'
W/cm and A'co= 1.36 eV, obtained from Eqs. (8) and (13)
at t = 15 cycles as

=c,v 2(lsl ls, ) (2sl2s, )(2slH;„, lap )

+c2( —Q —', )& lsl ls, & &2plsp &&2plH;„, 2s, ),
(14a)

L2 1+1
+ g g l&z, l, L(e t}l

1=0 L =I1—I~

(16)

where the operator Q is defined in Appendix A and the
values of c„cz are given in Eq. (11). The overlaps and
one-body integrals contained in Eqs. (14} are calculated
numerically.

As an illustrative example, we give two types of
continuum-continuum dipole moment matrix elements:

( lsl2slssl 'SIH;„, IlsI2sIEp, 'P') =(EsIIH;„,Iepl ),
(iSa)

(1s,2s, ss, 'SIH;„, I ls22p2Esz 'P')

=( ls, I ls, )'(es, IEs, ) &2s, IH;„, I2p, )

+ ( ls, I is@ & & 2s, I cs2 ) ( ss I IH;„, I 2p2 ) . (15b)

&BOIH;., I»22p2ss P )

=c,v 2( lsl ls2) (2sles )(2slH;„, I2p~)

+c2( —Q —', )(lslls2) (2pl2pq)(2plH;„, ss),
(14b)

(4 IHO;„, Il 2sp «'P )

=cz( —', )( lsl ls2) (2pl2p2 &[
—t~, (t}]&2plgl«&,

(14c)

A series of peaks appear that are not separated by the
photon energy co. This fact is explained in Figs. 6(b} and
6(c). Figure 6(b) shows the partial ATI spectrum for the
first detachment threshold, given by the first term of the
right-hand side of Eq. (16). Two peaks separated by pho-
ton energy co appear, where the first peak is located at the
energy co —IE, Eo I since the —ponderomotive shift is not
appreciable. Figure 6(c), where the abscissa has a
different scale, shows the partial ATI spectrum for the
second detachment threshold, given by the second term
on the right-hand side of Eq. (16). Three peaks are ob-
served with the distance between the first and the third
peak being co. The first peak corresponds to the absorp-
tion of two photons and is located at 2' —IE2 —Eo I. The
second peak is the signature of the field-induced inter-
channel coupling [see, for example, Eq. (15b}]. The posi-
tion of this peak corresponds exactly to the position of
the first peak of the partial ATI of Fig. 6(b). The third
peak of Fig. 6(c) is due to two-photon absorption and
refers to the second threshold. Because of the different
scales, it almost disappears in the full spectrum of Fig.
6(a). These features are not expected to change by the
free Hamiltonian interchannel couphng, since this only
leads to some redistribution of the probabilities in the
final state which is independent of the field intensity.

In Fig. 7(a) the ATI spectrum is shown for co=0.05
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a.u., peak intensity ID=1.12X10' W/cm, and t=7 cy-
cles. Figure 7(b} shows the same spectrum, but now the
initial state is considered to be represented by a single
configuration function. The fourth peak, which corre-
sponds to the absorption of two photons above the first
detachment threshold, is now considerably lower. This
means that the correlation in the initial state can
have an observable efFect on the final-state probability
distribution through the dipole coupling

ls 2p ~ lsz2pzed~ lsf2s, e'd. Also, the third peak,
%co %co

which corresponds to the absorption of two photons
above the second detachment threshold, seems to be
larger due to the presence of correlation in the initial
state. The fifth peak in Fig. 7(a), which corresponds to
the absorption of three photons above the second detach-
ment threshold, is also attributable to initial-state corre-
lation.
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FIG. 6. ATI spectra of Li irradiated by a laser pulse of frequency co=1.36 eV and peak intensity I0=7X10' W/cm at t=15 cy-
cles. (a) Total ATI spectrum. Solid line, peaks corresponding to the first threshold; dashed line, peaks corresponding to the second
threshold. (b) Partial ATI above the first detachment threshold. (c) Partial ATI above the second detachment threshold.
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thousands of coupled difFerential equations of the type of
Eq. (5) is done by the method of Appendix B. The testing
of the methods was done on the H atom where the exact
wave functions were used in numerical form.

The present approach allows the possibility of under-
standing the strong laser-atom interaction in terms of the
details of the electronic structure of each state contribut-
ing to the time evolution of the system. For example, we
showed that the negative ion (Li ) ATI spectra are
affected as a function of intensity by strong ground-state
angular correlations which are combined with a closely
lying open channel of the continuum. Obviously f
ye ectronic neutral atoms, intermediate discrete levels as

we 1 as multiply excited autoionizing states can easily be
incorporated into expansion (4) allowing detailed studies
of their effect on observables. This topic mill be the sub-
ject of a future publication.

energy (a.u. ) APPENDIX A: THE FREE-FREE TRANSITION
MATRIX ELEMENT (VELOCITY FORM)

The continuum-continuum dipole matrix element
C~(E', E) is defined as

40—

C,, (E,E')= &i,E!Qj,E'&

with

!i,E&=a(e,"-"eu„).

(A 1)

(A2)

20—

li

, ;
'J

0
0.00

/

0.05 0.10 0.15

energy (a.u. )

I

0.20

V. CONCLUSION

%'e have have presented a theory and computational method
or the ab initio calculation of the response of a po-

lyelectronic atomic state, ground or excited, to a short
pulse of laser radiation. This is done by solving the
TDSE in terms of state-speci6c discrete, autoionizing,
and scattering wave functions @„z,comprising the ex-
pansion of qj(r, t) [Eq. (4)]. In order to compute the
continuum-continuum dipole interaction matrix elements
with numerical functions, we developed the method of
Appendix A. Also, the efficient solution of the system of

FIG. 7. ATI spectra of Li irradiated by a laser peak of
m=1.36 eV and ID=1.12X10' W/cm at t=7 cycles. (a) The
initial-state wave function contains the 1s 2p correlation
configuration. (b) The initial-state wave function is represented

by the HF function only. Solid line, peaks corresponding to the
first threshold; dashed line, peaks corresponding to the second
threshold.

Here A is the antisymmetrizer represents t e
X —1)-electron core wave function defining the channel

and u, j is the free-electron orbital with angular
momentum I and positive energy c. The dipole moment
operator Q is explicitly given below [Eq. (A5)]. The ma-
trix element of Eq. (Al) is separated into two parts: (a)
the nonsingular Cnonsingular(E E»
matrix elements containing a bound and a continuum or-
bital (this part presents no numerical difficulties) and (b)
the singular

C""'""'(EE')=&+'" "I@'~ "&&, !

which refers to dipole matrix elements containing two
continuum orbitals. The singularity comes from the
free-free transition matrix element & u, j j Qj u, j & and
speci6cally from the contribution to this matrix element
of the asymptotic part of the free orbitals. %e note that
the u, &

are represented up to their asymptotic region, by
numerical, term-dependent, Gxed-core Hartree-Fock
scattering orbitals. Thus the singular dipole matrix ele-
ment is also separated into two parts: the nonasymptotic,
which is calculated numerically without any difficult,
and the asymptotic, which can be treated analytically giv-
ing the correct behavior around the singularity. We
write accordingly

&u„lQlu, j &= I u, jQu, j«
C oo

u„Qu„.dr + u„Qu;j dr . (A3b)
C

Consiuer an electron moving in the field of an ion (atom).
For a sufficiently large radius R„ the short-range poten-
tials become negligible and the Hamiltonian assumes the
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hydrogenlike {or empty space) form. Thus, in the region
R &R„ the one-electron wave functions u, l are linear
combinations of the Coulomb (or Bessel} regular and ir-
regular functions, satisfying the equation

1 d 1(1+1) Z
ha = —— + ——u =su, (A4)cl

where the effective charge Z is zero for a neutral atom.
The velocity form of the dipole operator

Setting

C d d
4R cl d

c'1' c'I'
dP cl

C
4R 2 "cl"c'l'

1 d 1 d dF„(R)=—
uEl ~ Qa l' uzi Qa'I

2 dr 2 dr dr

(A8)

+ C
dr 2r

(A5)

R ZW„(R,R, )= u, & u, .l.drcc c R
(A9)

where C =l'(I'+1}—l(l +1), is used for the calculation
of the free-free transition matrix elements and

~

I' —l~
= 1.

In order to calculate these matrix elements numerically,
we transform to the acceleration form of the dipole
operator. This is achieved through the use of the "com-
mutator" relation

and making use of (A6), Eq. (A7) is written as

R 1
u, &Qu;I dr =, [W«.(R,R, )+F«.(R, )]R c c I

F„.(R) .1

E 6
(A10}

[Qh' —hQ) = Z
(A6)

where h' is the Hamiltonian (A4) with angular momen-
tum i'. Integrating the above relation by parts, one has
[33]

R R
Qcl Qcrl P = 8 f Qcl Qcrl.

C C

+F„.(R)—F„(R,), (A7)

where

The limit of the above expression for R ~~ is to be tak-
en. For the last term in (A10), this is a delicate operation
[34]. Substituting the asymptotic form of the Coulomb
wave function

' 1/2
2

sin kR +n ln(2kR )+o
& +5& —1—

hark 2
I I~

[k =~2s, n =Zlk, cr (1n)= ragl'( 1+1 +in) is the
Coulomb, and 5I is the additional phase shift], in the
definition of F„(R)Eq. (A8), one obtains

1 F«.(R)~sgn(l' —i},, sin[(k —k'}R +cr&+5I o I
5—

I ]-k' 1

F kk' k'—
I—sgn(l' —l), , sin[(k'+k)R +OI+51+o&.+51.] .

~ kk k'+k (Al 1)

Making use of the formulas

1 sinRx
lim — =5(x),

R~ao 77 X

1 —cosRx
&

1
lim

R~oo X X

(A12a)

(A12b)

f Q~(QQ&ipd r
C

1=P, [W «( 00,R, }+F «(R, )]
6

+sgn(l' —1)cos(err+5& —cr&.—5&, } 2s5(e —s') .

(A15}

W«(R, R, )+F„(R,) =F„(R),
where

(A13)

F„(R)=sgn(l' —I )—sin(cr~+5r err 5p) —. .(—A14)
k

Thus we obtain

where P denotes principal-value integration, one realizes
that the contribution of the second term in (All) is zero
since the wave vector is a positive quantity. In order to
apply Eq. (A12b) one must note that for equal energies,
Eq. (A7) gives

Now we are able to define the functions
F&(s', s),F2(e', s), which are the constituents [see Eq. (6b)
in the text] of the singular part of the free-free transition
matrix element. This is done by combining Eqs. (6b),
(A3b), and (A15), obtaining finally

F&(s', e)=sgn(1' —i)cos(o &+5, cr~. 5I )~2—e, —

F2(s', e)= W„.( ~,R, )+F„(R,)
R

+(s e)I QzrQgzir dr
0

(A16)

The quantity W„.( ao, R, ), which was defined in (A9),
is evaluated by considering that for r & R, the WKB ap-
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proximation is valid [35]. This permits the execution of
an alternative numerical technique using asymptotic ex-
pansions [36]. In the case of hydrogen, where the func-
tion F2(s', s) is given as

(85)

F2(E', 8)= W, , , ( oo, 0)

C Z 00 Z
T c r

F(t)= g F'"'(t )
n=0 n!

(A17}
The result of the above operations, after some algebra, is

the first term on the right-hand side of (A17) is evaluated
numerically.

APPENDIX B:
TAYLOR-SERIES EXPANSION METHOD

The time integration of the system of coupled
differential equations of the type of Eq. (5) is done as fol-
lows. As already mentioned in the text, the integrals
which appear in Eq. (5) are performed using the tra-
pezoidal rule. The result of this integration is the trans-
forination of Eq. (5) into the following numerical prob-
lem:

i—x(t) = [ A +F(t)B]x(t),
dt

(81)

(82)

where x'"'(to) is the nth derivative of x(t) for t = to and

x' '(t )=x(t ) . (83)

If we had a way of calculating x'"'(to), then the solu-
tion x(t) would be obtained by performing the summation
of Eq. (82) up to n =¹The ¹h(last) term of the sum-
mation (82) should then satisfy the condition

max x (to )
(N) (84)

where max means that we consider the coefBcient of the
vector in parentheses which has the maximum absolute
value. The quantity c, is a very small positive number,
which also determines the accuracy of the summation
(82). Also, the smaller the number s, the larger the in-

teger N [denoting the last term of the summation (82)]
[37].

The calculation of x'"'(to) can be done by substituting
Eq. (82) into Eq. (81},and by using two expansions

where x(t) is the vector of the unknown time-dependent
coefficients a;(n, t) and b; (E, t), 2 is the matrix represen-
tation of the free-atom Hamiltonian in the basis set of Eq.
(4), B is the matrix representation of the dipole operator
in the basis set of Eq. (4), and F(t) is the time-dependent
vector potential 3 (t) or electric field E (t) [Eqs.
(3a)—3(c)], which contains the information about the laser
pulse.

Suppose that the vector x(t) is known for a time in-
stant to. Then the vector x(t) for t =to+At is given by
expanding x(t) in a Taylor series around to

(n+() t )
(n +1}!

~ 1 1 (n)

n+1 n~

F(n —m)(t )
i — 8

n +1 0 (n —m)!
1 x' '(t }

m! p

n =0, 1,2, . . . .

from x' '(to)=x(to) we obtain x"'(to),

from x' '(to), x"'(to) we obtain x' '(to},

0

from x' '(to), x"'(to), . . . , x'" ' (to) we obtain x'"'(to) .

The above process is terminated at the point where the
condition (84) is satisfied. Then we assume that we have
found the solution of Eq. (81) at a next time t, within the
accuracy imposed by (84).

In practice, we consider that the new time t =to+6, t
coincides with the next to and that the procedure from
Eqs. (81)—(87} starts again. We note that the solution
given by Eq. (82) is analytic, meaning that we can find
x(t) at any value of t between to and to+ b t without start-
ing the procedure described above. This is important
when, for example, we wish to study high harmonic gen-
eration [Eq. (9) in the text] since, without additional com-
putational effort, we can find the induced dipole moment
d(t) at any number of time instants. The square of the
Fourier transform of d(t) is proportional to the single-
atom emission spectrum and usually for the reliable
Fourier transformation of d(t), knowledge of d(t) for a
very large number of values of the argument t is neces-
sary.

In the applications presented in this paper, we used for
the function F(t) [Eq. (81)] the vector potential A(t) in
the preferential gauge [20—22]

F(t)= A(t)= —f E(r)dr,

where E(t) is given by Eq. (3b)

cQlQrs

E(t)=f(t) g E;sin(co,.t+qr, ) (89)

The recursion formula (87) permits the calculation of the
derivatives, at any order, of the vector x(t} as shown
below:
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with temporal pulse shape f (t) of the form of Eq. (10}.
The function F( t) [Eqs. (B8) and (B9)]can be expanded in
a Taylor series [Eq. (B6}]around any value of its argu-
ment t, where the derivatives F'"'(t o) are simple analytic
functions of 71 tp m, ,E;,y; and of the parameters of Eq.

(10}. The proof is omitted since it is straightforward but
lengthy. It turned out that the present TSEM was, in
most cases, about five times faster than the adaptive
Bulirsch-Stoer [27] method for ordinary difFerential equa-
tions.
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