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The resonance spectrum of Hor 1S and 'D symmetries up to tha=4 threshold has been computed by
solving the corresponding complex eigenvalue Sdimger equation in terms of basis functions of real and
complex coordinates. These functions are chosen and optimized judiciously and systematically in order to
account for the specific details of electronic structure, electron correlation, and multistate and multichannel
couplings characterizing the problem. Large sets of Slater orbitals, extending in a regular manner to about 8000
atomic units, were employed in order to describe properly the full range and especially the kelyavior of
the localized part of these resonances, as their energy approaches their corresponding threshold. Energies,
widths, and wave-function characteristics are presented fo838ates and 3D states having widths down
to about 1X 10 °a.u. Of this total of 70 states, only 32 have been identified before via the application of
different theoretical approaches, or, for very few of them, in scattering experiments. By adopting the Gailitis-
Damburg model of dipole resonances as the relevant zero order model, we identify unperturbed and perturbed
spectral series, in analogy with the well-known spectra of neutral atoms or positive ions, where the zero-order
model is based on the Rydberg spectrum of the Qdulomb potential. For perturbed spectra, only rough
correspondence can be made with the smooth series predictions of the zero-order model. By achieving many-
digit numerical precision for our results, we demonstrate the occasional presence of unique irregularities
associated with each threshold, such as the existence of overlapping resonances and of “loner” resonances
(i.e., not belonging to any serielselow and above threshold. An example for the latter i®ashape resonance
above then=3 threshold. This state was already identified by Ho and BljRtigs. Rev. A48, 3720(1993)].

However, our values for the energy above thresholiE{0.49497 meV) and for the width I
=8.632 meV) differ significantly from theirsAE=116.94 meV and’=157 meV).

PACS numbd(s): 31.50+w, 32.80.Gc

[. INTRODUCTION then=1 to 4 hydrogen thresholds, and the adopted cutoff for
the search of resonances are width values down to about 1
This paper continues the presentation and the analysis of 10" °a.u. The above choices follow from the arguments
results on the resonance spectrum of the prototypical atomigresented in Ref.2] as to the possibility of high resolution
negative ion, H, which started in our two concurrent papers measurements of narrow Hresonances of widths much
[1,2], based on the solution of the complex eigenvaluesmaller than 5—10 meV, via two-step excitation mechanisms.
Schralinger equation for series of resonances. The symmeAccordingly, a possibly practical excitation path for the
tries of interest here artS and 'D, the energy range is from and D resonances is

one photon tunable laser
H™1s’1S — P° (below or above the Hh=2 threshold ——— S,'P,’D (resonances (1)

The 1P° states around tha=2 threshold have already the n=5 threshold and for widths down to about 1
been produced and measured below and above threshold atj o-104 .
10.172 and 10.226 eV above the H ground state respectively The implication of Eq.(1) is that the part of thé'S and
[3-7]. The even-parity states ofP symmetry were calcu- D resonance spectra which were of immediate relevance to
lated and analyzed in Rdfl], for the energy spectrum up to this work consists of the states which start aboverhe?
threshold. Nevertheless, for reasons of completeness and of
comparison with the very recent results of G{&j for H™
resonances below the=2 threshold, we also give our re-
*Electronic address: mirekb@phys.uni.torun.pl sults for the'S and D resonances up to the=2 threshold
"Electronic address: can@eie.gr and compare the positions and widths with his in Table I. In
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TABLE I. Energies above the H ground stdte a.u) and widths(in a.u) of the 'S and 1D
resonances below the=2 hydrogen threshold obtained from the solution of the complex eigen-
value Schrdinger equatiofCESE, this workand from the solution of the Harris-Nesbet algebraic
coupled-channel equatiori&ien, Ref.[8]). The notationx] means 10%.

Gien[8] This work
E r E r

15(1) 0.351 232565 1.738] 0.35122025 1.738 78]

(2)  0.37399025135 8.93] 0.373979 753 9.0939]

(©)] 0.374942 727 85 5.146] 0.374942 173 5.2298]

(4) 0.374996 717 2 2.943] 0.374 996 685 76 2.998|

(5) 0.374999811 85 1.6918) 0.374 999 809 851 1.7178)

(6) 0.3749999921 6.340] 0.374 999 989 <4[9]
D) 0.372099 877 05 3.153 0.3720726 3.2@

(20 0.3749996703 2.463] 0.374999 662 9 2[8]

Tables Il and |1l we present our results fo and 'D reso-  range, with widths down to about<110~° a.u.(As 1 a.u. for
nances below then=2 threshold, including the distance H~, we use the reduced value 27.196 58 )eVhe signifi-
from the nonrelativistic threshold,,, and the ratios for suc- cance of these predictions, as well as of those in R&fg],
cessive levelsR.=ey_;/en andRy=I"p,_,/T',. Gien[8] s associated with the fundamentals of polyelectronic theory
employed the Harris-Nesbet algebraic method, and solved ffor resonance states, as well as with the possible future ar-
high numerical accuracy the coupled-channel scatteringangements of experiments of high resolutisee Ref[2]).
(CC9 equations with 13 states. Given the reported numbeThey constitute the first very accurate resolution of a nega-
of significant digits, there is a descrepancy between thergéve ion resonance spectrum over a physically reachable en-
results and ours for the low-lying states. For these statesirgy region, and provide reliable quantitative information
short-range correlation becomes relatively more importantabout trends of spectral features of series of resonances and
We remind the reader that the energy region associated witlisight into their wavefunction characteristics.
the n=2 threshold has been searched repeatedly since the
early 1960s for the identification of resonances of different
symmetries, computationally as well as experimentélge
Refs.[2—-10], and references thergin

For the energy region of interest here, i.e., for the range
between then=2 (—0.125a.u.) anch=4 (—0.03125a.u.) Simple calculations and their analysis show that configu-
hydrogen thresholds, the existing information since therations Isnl,n=2, do not lead to variationally optimized
1960s concerns 11S and 13D resonances. The experi- localized wave functions with energies in local-energy
mental and theoretical work is cited in Sec. II. minima above the H 4 energy at—0.5a.u. Therefore, no

In the present calculations, we identified, analyzed, anghaperesonance associated with the1 threshold exists.
classified 27'S and 351D in the 2.5497 eV of this energy It is at then=2 threshold that the structure of zero-order

Il. PREVIOUS DATA ON THE E AND I’
OF H™ 'S AND D RESONANCES
BETWEEN THE n=2 AND 4 THRESHOLDS

TABLE II. Results of the present CESEomplex eigenvalue Schdinger equationcalcula-
tions for H™ resonances ofS® symmetry below the=2 thresholdE: total energy in a.u. For H,
1 a.u=27.19658eV.I": total width. e,,=E;,—E,,: the energy distance from threshol&,
=en_1/enmandRp=r,_/T,.

r

State “E(au) e (10%au) 3(10°aw R, Rr
1 0.14877975 2377975 86 935
2 0.126 020 247 102 024.7 4546.7 23.31 19.12
3 0.125057 827 5782.7 261.46 17.64 17.39
4 0.125003 314 24 331.424 14.99 17.45 17.44
5 0.125000 190 149 19.0149 0.8588 17.43 17.46
6 0.125000011 1.1 <0.2 17.3 a

The value of the ratio given by the GD model[&4] 17.429

3Because of the extreme diffuseness of this state function and of the corresponding small number
for I', the value forR did not have the same level of accuracy, and therefore it is excluded from
the list.
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TABLE Ill. As in Table II, for 1D®H™ resonances below the=2 threshold.

r
_ — 6
State —E(a.u) e (10 %a.u.) 7 (107aw R, Rr
1 0.127 927 4 2927.4 160.0
2 0.1250003371 0.3371 0.0130 8684.0 12307.0
The value of the ratio given by the GD model[34] 4422

@This energy corresponds to 10.8738eV above the !&l ground state, using 1 a.u.
=27.19658 eV and the nonrelativistic Henergy—0.5277510 a.u.. The two-photon experiment of
Stintz et al.[35] gave 10.872-0.002 eV.

configurations allows localization, and hence the appearandeave been reported. The first is the variational diagonaliza-
of resonances below the=2 threshold such as ‘€” 'S,  tion of the Feshbach-O’Malley-Geltman projecte@H Q)
“2 p?” D, etc. In fact, electron correlation also brings the real Hamiltonian in anC ? basis of hydrogen and Slater func-
2p? 3P state below the=2 threshold. Since the state does tions by Oberoi[16]. This method produces only unshifted
not mix with 1sel continua, it belongs to the discrete spec-(by the interaction with open channglenergies and no
trum of H™, together with the ground states1'S [11]. Ab  width. In spite of this incomplete identification, at the time of
initio calculations have been used to conclude that no othdheir publication(1972 the Oberoi energies constituted a
discrete states of H exist [12]. The results presented in considerable advance in the knowledge of the whereabouts
Tables I-Ill for 'S and !D states, as well as in our other two of five S states and foufD states below=3, and five'S
papers[1,2] for other symmetries, show how close to the states and fivéD states belom=4. The second category is
nonrelativistic n=2 threshold there exist nonrelativistic the diagonalization of non-Hermitian matrices to produce
complex eigenvalues. In Rg2] we commented on the pos- complex eigenvalues, the real part giviggand the imagi-
sibility that one or more such eigenvalues might survive relanhary one givingl'. Two such methods have been applied.
tivistic interactions, and therefore may correspondefativ- ~ The first is the complex coordinate rotatig@CR) method,
istic shaperesonances above the lowest relativisie2 ~ where the rotated Hamiltonigt(re ') =e '2/T+e 'V is
hydrogen threshold. diagonalized repeatedly as a function éfor one or more
Resonances ofS and 'D symmetries in the region be- large £2 basis sets, until a point of eigenvalue stability is
tween then=2 and 4 thresholds have attracted the interest ofecognized. The CCR method, as implemented and demon-
a number publications, which are briefly discussed belowstrated by Doolen and co-workef$7,18, was applied to
On the experimental side, it is electron scattering experiH™ in many publications starting in the late 1970s by Ho and
ments that have been carried out. The first measurement eb-workers[19—23, but only a few!S and D resonances
the position(but not the width of such states were made by were identified. For example, below=3 only oneS state
McGowan and co-workers in the late 19433. They found [19] and one'D state[20,27 have been reported. Also one
one S state at 11.65 eV above Hsland one'D state at D shaperesonance above the=3 threshold was found
11.89 eV. In the early 1970s, Spends8] reported a mea- [23]. Finally, belown=4, Ho[19] identified two 'S states,
surement of the B2!D state at 11.8680.030eV. Years Ho and Callaway20] two 1S states and thre&D states, and
later, Williams [14], working with a resolution below 10 Ho [21] six 'S states. Our Tables V=VII contain the CCR
meV, identified two'S and two D states belowmn=3. The  results of Refs[19-23.
positions as well as widths were measured. The same states The other method is that of solving the complex eigen-
were later detected by Warner, Rutter, and K[i§], but  value Schrdinger equation via the use of appropriate func-
only their energies were reported. The values of these enetion spaces of real and complex coordinat&ee the discus-
gies are in slight disagreement with those of Williams. Thesion in Ref.[2].) Chrysoset al. [24] reportedE andT’, and
above experimental data are presented in Table IV. also the partial widths with interchannel couplings for spe-
On the theoretical side, three categories of calculationsific resonances otS symmetry(the lowest ones below the

TABLE IV. Experimental values for H'S and !D resonances between the=2 and 4 thresh-
olds. The energiek are in eV above the H ground state, and the widthare in meV.

McGowanet al. Spence Williams Warnegt al.
[3] [13] [14] [15]
E E E r E
1S(l) 11.65£0.03 11.723 41 8 11.718-0.009
15(2) 12.026 93 12.077-0.010
1D(l) 11.89+0.02 11.866-0.030 11.805 468 11.815-0.005
D(2) 12.04 73 12.055+-0.008
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TABLE V. Positions above the H ground stdia a.u) and widths(in mau, 1Imau=10"2a.u.) of H™ 1S and D resonances below the=3 threshold, as identified in this and in
previous works.

Algebraic coupled channel R matrix Complex coordinate rotation CESE
Callaway[30] Odgerset al.[32] Ho [19] Ho and Callaway20] Bhatia and HJ 22] This work
E (a.u) I' (mau) E(au) I (mau) E(au) I (mau) E (a.u) I" (mau) E (a.u.) I' (mau) E (a.u) I' (mau)
15(1) 0.431 003 1.430 0.43100 1.52 0.431 00 1.42 0.430993 94 1.417 86
(2) 0.442 232 0.306 0.44228  0.299 0.442 21827 0.308 22
(3) 0.443872 0.0776 0.44389  0.094 0.443 860535 0.087 792
(4) 0.444 004 0.034 0.444 00 0.032 0.443993 379 0.049676
(5) 0.444 3508498 0.012 986
(6) 0.444 425055 1 0.002 7234
(7) 0.444 4404250 0.000 565 84
(8) 0.444 44361103 0.000117 33
(9) 0.44444427160 0.000024 32
(10) 0.444 444 4085 0.000 006 28
ID(1) 0.434 055 1.635 0.43404 1.68 0.4340 1.6 0.4340467 1.658 0.434 041 1.652
(2) 0.443 188 0.242 0.44321 0.242 0.4431694 0.2528
(3) 0.444 100 0.027 0.444 27 0.0214 0.444 24173 0.041 68
(4) 0.444 266 13 0.049 36
(5) 0.444 411 505 0.006 856
(6) 0.444 4390840 0.0011232
(7) 0.444 442 5339 0.000781 4
(8) 0.444 44357062 0.000183112
9) 0.444 44430197 0.000029 6
(10) 0.444 4444206  0.000011 4

S3AIVTOJIN 'V STFHLNVITO ANV IMOITAG MVISOdIN
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TABLE VI. Positions above the H ground staia a.u) and widths(in mau, 1 mae=10 2a.u.) of H 'S and D resonances below the
n=4 threshold, as identified from the implementation of four methods for the calculation of resonances.

R matrix Complex coordinate rotation Algebraic coupled channel CESE
Pathaket al.[31] Ho and Callaway 20] Ho [21] Callaway[30] This work
E(au) I'(mau) E(au.) I'(mau) E(au.) I'(mau) E(a.u.) I" (mau) E (a.u.) I' (mau)
1S(1) 0.460392 1.09 0.460 36 0.95 0.460362 0.95 0.4603 1.0 0.460364 71 0.954 66
(2) 0.465307 0.71 0.465 27 0.88 0.465 27 0.88 0.4657 0.81 0.465 276 63 0.8636
(3) 0.466475 0.27 0.466433 0.34 0.466 433 30 0.340 36
(4) 0.468005 0.093 0.467982 0.127 0.467 982 66 0.127 954
(5) 0.468483 0.045 0.468491 0.046 0.468493 13 0.04534
(6) 0.468540 0.045 0.468 53 0.07 0.468 531 196 0.069572
(7) 0.468662 0.013 0.468 664 27 0.015208
(8) 0.468 721274 0.005 134
9) 0.4687361131 0.004744
(10) 0.468 740 36 0.001720
(11) 0.468746 7663 0.0005614
(12) 0.4687489161 0.000 19548
(13) 0.468 74914414 0.000292 76
(14) 0.468 7496373 0.000 065 04
(15) 0.4687498804 0.0000202
(16) 0.46874994720 0.000018 34
(17) 0.468 749 98 0.000 02
ID(1) 0.461246 1.25 0.46125 0.95 0.4613 1.2 0.461 2636 0.9882
(2) 0.465523 0.735 0.46551 0.76 0.465501 15 0.7674
(3) 0.466829 0.210 0.466 87 0.24 0.466 838 2 0.3152
(4) 0.466943 0.272 0.466 887 15 0.22538
(5) 0.467338 0.013 0.467 332382 0.01538
(6) 0.468185 0.010 0.468 17064 0.1098
(7) 0.468475 0.0075 0.468473 18 0.004 18
(8) 0.468689 0.0075 0.468 569 8 0.052 86
(9) 0.468696 0.468 569 80 0.035506
(10) 0.468 694 66 0.000 76
(11) 0.468 693 77 0.01124
(12) 0.468 732598 0.003 50
(13) 0.4687388165 0.000 254
(14) 0.468 740 005 0.003 328
(15) 0.4687421425 0.001916
(16) 0.468 744 565 0.001 084
(17) 0.468 7477424 0.0000320
(18) 0.4687482994 0.0003374
(19) 0.4687494674 0.0001066
(20) 0.468 74950228 0.00015178
(21) 0.468 74954519 0.000 008 76
(22) 0.4687498367 0.0000390
(23) 0.4687499115 0.000002 86
(24) 0.4687499797 0.000012 66

n=3 and 4 thresholds.The same quantities were reported method to produce results for the resonances of interest was

by Themelis and Nicolaidef25] for D resonances below the direct numerical one, without and with correlation terms,

n=3 and 4.

implemented by Burke and collaborators in the 196206
The third category consists of CCS calculations of differ-28]. They identified two'S and D states below=3. Cal-
ent types, where fundamental quantities such as the phasawvay and coworkerg29,30 obtained algebraic solutions of
shift or the reaction matrix are obtained as a function of reathe CCS equations using up to 28 states. Callaway identified
energy and then are used to fit appropriate formal expredour S states and threéD states belown=3, and two!S
sions satisfied in the vicinity of a resonance. The first suctstates and one'D state belown=4 [30]. Finally, the
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TABLE VII. Energy (in 10" *eV above the Fh=3 thresholg, TABLE IX. The basis set expansion for the CESE computation
width (in 10”4 eV) and wave-function compositidin terms of the  of 1Sand D resonances. For a given total symmetry the number of
dominant symmetrigsof the H™ 1D shaperesonance above the  radial terms within the angular contributidh is given.
=3 threshold from the present CESE calculations. Comparison i
made withE andT" obtained by Ho and Bhatig23], who imple- ss pp dd ff gg hh sd pf dg fh giTotal
mented the CCR method.

1S 596 491 424 392 345 301 2549
CESE(this work) CCR[23] D 436 373 343 299 884 759 655 582 501 4832

E r dd sd pp pf ff dg E T

4.965 8.6 0.561 0.234 0.092 0.084 0.017 0.012 1171 156%arameter was also optimized within a range of a few atomic
units in order to obtain the be#t stabilization of the com-
plex roots corresponding to the sought after resonaricés.
R-matrix method was applied by Pathak, Kingston, and Bervalues of(r )i, given in Table VIII define the lowest limit
rington [31] and Odgers, Scott and Burk82]. Below the for this range.
n=3 threshold, four'S states and thre&D states were iden- Our final results for the positions and widths of ths
tified [31,32, and below then=4 threshold sevedS states and D resonances are presented in Tables I, V, and VI,
and nine!D states were foundi31]. These results are in- where they are compared with results of the most accurate
cluded in Tables V and VI. and extensive previous calculations. We give the decimal
figures which were found to be stable against variatiod.of
The completeness of the present results as regards the
resolution of the resonance spectra allow the possibility of
The theory and methodology which were applied for theanalysis of general properties of the l8pectrum and of the
present calculations were explained in the preceding papegesonance wave functions. Tables II, 1ll, and X-XIII reveal
[2]. Here we only discuss the implementation and the resultghe regularities and the disturbances of the resonance spectra.
The hydrogen states associated with the open channels, &pecifically, apart from the energies and widths, we give the
to n=4, were represented by real Slater type orbitalsenergy positions with respect to the threshold where the
(STO’s) whose exponents were chosen equal to<ld that, spectrum accumulates,e,=E,—E,, their ratio R,
when combined, they can form the exact hydrogen functions=e;,,—1/€,, and the ratio of the resonance widthRy
The real STO'’s used for the description the localized parts o&1I',,_ 1 /T",,,. Given the prediction of the dipole approxima-
the wave functions as well as those complex STO’s describtion [33], we classified the computed complex eigenvalues
ing the outgoing Gamow orbitals, were chosen so that theiinto series according to these ratios. According to the
averager values formed geometrical sequence covering the&ailitis-Damburg (GD) model [33], the ratiosR, and Ry
region from (r)min t0 (rYmax. The values of(r)., and should be the same for a given series. The model values of
(r)max @re given in Table VIII together with the number of this ratio, obtained by Pathak, Burke, and Berringi84],
localized STO’s,N;,, and complex rotated STO'$,,;,  are also given in Tables II, Ill, and X-XIII.
for each orbital symmetry, The rotated orbitals were com-  If there is only one series in a given region, the conver-
bined with the STO's representing the hydrogen target stategence of ratios to the model value is quite good. Single series
to form the two-electron configurations describing theare predicted by the mod¢B4] for D below then=2
asymptotic part of the wave function. Since in the Hipole  threshold and for'S below n=2 and 3 thresholds. Let us
resonances one electron is supposed to be, on average, clasesider the'S series below the=3 threshold. Nine mem-
to the nucleus, whereas the other one moves in very largeers of it have been identified by our computati@able X).
orbits, the whole orbital basis set was used for the outefrhere is very nice convergence of tiie and Ry to the
electron and only half of ifthe low(r) par) was used for model value. As discussed in R¢2], it is typical in such a
the inner electron. The number of configurations obtained irtase forR, to approach the model value monotonically from
this way is given in Table 1X together with the specification above, and folR to do so from below. This is due to the
of angularll” terms. The non-Hermitian Hamiltonian matri- fact that the binding of lower-lying members of the series is
ces were built from such bases, and diagonalized for 12 vakn fact stronger than that predicted by the GD model. How-
ues of 4 in the range from 0.2 up to 0.75 rad. Tke),;,  ever, here there is a clearly seen disturbance, caused by the

Ill. PRESENT CALCULATIONS AND RESULTS

TABLE VIII. The orbital basis set used in the present computatiot®fnd D resonances. The number of localized radial STO's,
Njoc, and the number of complex rotated radial STNs,,, for each orbital symmetrlyare given. The STO’s are chosen systematically
so as to have their averagdall in a regular way inside the range defined {y i, and{r)may-

S p d f g h [ <r>min <r>max
NIoc Nrot Nloc Nrot Nloc Nrot Nloc Nrot NIoc Nrot Nloc Nloc (a.u) (a-u)
s 32 34 32 33 32 32 32 30 28 1.5 8000
D 31 32 31 31 31 30 31 29 29 28 27 25 11 5500
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TABLE X. As in Table II, for 1S®* H™ resonances below the=3 threshold. Note that, apart from the seregredicted by the GD model
[34], the B state appears, which is not predicted by the model.

r
State —E(a.u.) e (10%a.u.) 7 (10 "au) R, Rr
1A1 0.069 006 06 1345050 70893
2A2 0.05778173 222617 15411 6.042 4.600
3B 0.056 139 465 58390.9 4389.6
4 A3 0.056 006 621 45106.5 2483.8 4.938 6.204
5 A4 0.055 649 150 2 9359.46 649.3 4.819 3.825
6 A5 0.0555749449 1938.93 136.17 4.827 4.76
7 A6 0.0555595750 401.94 28.292 4.824 4.813
8 A7 0.055 556 388 97 83.341 5.8665 4.823 4.823
9 A8 0.055555 728 40 17.284 1.216 4.822 4.824
10 A9 0.055555591 5 3.59 0.314 4.81 a
The value of the ratio given by the GD model[&4] 4.823

8See the footnote of Table II.

occurrence of a “loner” state, which we labeld®l This higher series has different character than that of the lowest
state, not predicted by the model, appears betweerAthe one.
and A3 states of the discussed series, and pushe®fAte Coexistence of different series leads also to the appear-
level up. This is recognized by analyzing tRe values. An-  ance of overlapping resonances. The most complicated case
other effect is that thé\3 state is more stable against auto- investigated in this work is that involving thtb resonances
ionization, as compared to what would be expected from thédelow then=4 thresholdsee Table XlI). Our computation
regular behavior of unperturbed series. identified 24 states, which are classified into four series (
The situation becomes more complicated and interestin®, C, andD), in accordance with the prediction of the GD
when, in a given region, there are two or more series ofmodel. Among them there are five pairs of overlapping reso-
resonances of the same symmetry. Then the interseries intarances. Members of such pairs belong to different series, and
action often results in the lower-lying states of higher seriegheir energy difference is comparable to the width of at least
being pushed up. As a consequence, the convergence ofe state of the pair. The most striking case is the overlap-

TABLE XI. As in Table Il, for 1S°H™ resonances below the=4 threshold. Note the existence of overlapping resonaAdeandB2.

A B

r —6
State —E(au) e (10 %a.u) z(107auw R. Rp R, Ry
1Al 0.03963529 838529 477.33
2B1 0.034 723 37 347337 431.8
3 A2 0.033566 70 231670 170.18 3.619 2.805
4 A3 0.032017 34 767 34 63.977 3.019 2.660
5A4 0.031 506 87 256 87 22.67 2.987 2.822
6 B2 0.031 468 804 21880.4 34.786 15.874 12.413
7 A5 0.03133573 8573 7.604 2.996 2.981
8 A6 0.031278726 2872.6 2.567 2.984 2.962
9B3 0.0312638869 1388.69 2.372 15.756 14.665
10 A7 0.03125964 964 0.860 2.980 2.985
11 A8 0.0312532337 323.37 0.2807 2.981 3.064
12 A9 0.0312510839 108.39 0.097 74 2.983 2.872
13B4 0.031 250 855 86 85.586 0.146 38 16.226 16.204
14 A10 0.0312503627 36.27 0.03252 2.988 3.006
15A11 0.0312501196 11.96 0.0101 3.033 3.220
16 B5 0.031 250052 80 5.280 0.00917 16.209 15.963
17 A12 0.031 25002 2 0.01 a a
The values of the ratio given by the GD model 34| 2.982 16.210

aSee the footnote of Table II.
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TABLE XII. As in Table II, for 'D®H™ resonances below the=3 threshold. Note the existence of overlapping resonaABandB1.

A B

Lo
State —E(a.u.) e (10%a.u.) 7 (107w R. Rr R, Rr
1A1 0.065 959 10403 826
2A2 0.056 8306 1275.0 126.4 8.159 6.535
3 A3 0.055 758 27 202.71 20.84 6.290 6.065
4B1 0.05573387 178.31 24.68
5A4 0.055588 495 32.939 3.428 6.154 6.079
6 A5 0.055560916 0 5.3604 0.5616 6.145 6.104
7B2 0.055557 466 1 1.9105 0.3907 93.332 63.169
8 A6 0.055556 429 38 0.87382 0.091 556 6.134 6.134
9 A7 0.055555 698 03 0.142 47 0.0148 6.133 6.186
10B3 0.0555555794 0.0238 0.0057 80.125 68.544
The values of the ratio given by the GD model &3] 6.134 80.552

ping pair ofB2 andA4 states. Within the 10/ a.u. accuracy real energy axis. However, we hasten to point out that the
obtained for the B2 state, their energies do not differ, andesonance spectrum occurs in the second Riemann sheet as
their widths are about 5210 and 35< 10 %a.u. We thus complex energies. Therefore, the meaning of the degeneracy
have a case for the two-electron Coulomb Hamiltonianmust be expanded, referring to both real and imaginary en-
where near perfect degeneracy of states seems to exist on téegies. Actually, wherg trajectories are followed, i.e., the

TABLE XIIl. As in Table Il, for 'D® H™~ resonances below the=4 threshold. Note the existence of pairs of overlapping resonances:
B2 andA4, D3 andA5, D4 andB3 B3, andC2, andB4 andD6.

A B C D
r —6
State “E(au) e (10%au) 207aW o g R, Ry R, Rr R. Rr
1Al 0.0387364 7486.4 494.1
2B1 0.034 498 85 3248.85 383.7
3 A2 0.0331618 1911.8 157.6 3.916 3.135
4C1 0.03311285 1862.85 112.69
5D1 0.032667 618 1417.618 7.69
6 A3 0.031829 36 579.36 54.9 3.300 2.871
7D2 0.031526 82 276.82 2.09 5.121 3.679
8 B2 0.0314302 180.2 26.43 18.029 14.518
9 A4 0.03143020 180.20 17.753 3.215 3.092
10D3 0.031 305 34 55.34 0.38 5.002 5.500
11 A5 0.031 306 23 56.23 5.62 3.205 3.159
12 A6 0.031 267 402 17.402 1.75 3.231 3.211
13D4 0.0312611835 11.1835 0.127 4,948 2.992
14 B3 0.031 259 995 9.995 1.664 18.029 15.883
15C2 0.0312578575 7.8575 0.958 237.079 117.630
16 A7 0.031 255435 5.435 0.542 3.202 3.229
17 D5 0.0312522576 2.2576 0.0160 4,954 7.938
18 A8 0.0312517006 1.700 6 0.1687 3.196 3.213
19 A9 0.0312505326 0.5326 0.0533 3.193 3.165
20B4 0.031 250497 72 0.49772 0.07589 20.082 21.926
21D6 0.031250454 81 0.454 81 0.004 38 4964 3.653
22 A10 0.0312501633 0.1633 0.0195 3.261 2.733
23D7 0.0312500885 0.0885 0.00143 5.139 3.063
24 B5 0.0312500203 0.0203 0.006 33 24518 11.989
The values of the ratio given by the GD model 34| 3.197 18.777 3227 4.940
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TABLE XIV. Wave-function characteristics for tht8 H™ resonances lying below the=3 threshold{r ) is the estimate for the size
of each state due to the outer electron, computed as the average of the distance of the outer electron from the center afunezg,
is the ratio of consecutive values ¢f,,). The notation{x] means 10*.

State (roup Ry ss pp dd ff gag hh
1A1 20.10 0.512 0.443 0.045 03 0.96] 0.97]
2 A2 44.92 2.235 0.465 0.467 0.068 €34 0.646] 0.247]
4 A3 100.4 2.235 0.429 0.468 0.107 @ 0.25] 0.26]
5A4 228.8 2.279 0.416 0.486 0.099 o 0.47] 0.38]
6 A5 507.1 2.216 0.409 0.488 0.103 &y 0.78] 0.49]
7 A6 1118 2.205 0.406 0.489 0.105 Bl 0.18] 0.910]
8 A7 2461 2.201 0.404 0.489 0.106 ®3 0.39] 0.710]
9 A8 5408 2.197 0.404 0.490 0.107 043 0.610] 0.411]
10 A9 11680 2.160 0.403 0.492 0.106 (0411 0.110] 0.712]
3B 29.80 0.294 0.125 0.563 0.022 P13 0.35]

dependence of the resonance eigenvalue on the rotation pa-thorough understanding of the physics, and, on the other

rameterd is determined, the roots are never degenerate, andand, can be probed by sophisticated experiments of very

in the limit of #=0, where they lie on the real axis, they are high resolution, at least in principle.

different from each other. The theory and methods that we presented and applied,
The classification of resonances into series is also sugiere and in Refs[1,2], allow a practical and quantitative

ported by the recognition of their electron correlation pat-{réatment of series of resonances in other systems as well,

terns[36]. We obtained their size due to the outer eIectronW'th two or more electrons. The identification of resonances

(foud, computed as the average of the distance of the outdp done in the conceptual framework of decaying states rather
electron from the nucleus, and the angular term contributiond1€n bY solving scattering-type equations. The solution of the

to the resonance wave functions. Resonances belonging toC mplex eigenvalue Schiimger equation involves the use

given series have common angular electron correlation paf2 .t”al functions consisting of two major parts, one opti-

terns, i.e., different states have the same contributions frorﬁ"zeq on the real energy axis _us_ing r_eal basis sets with real
various angular terms to their wave functions. The size o]coordmates, and the other optimized in the complex energy

states increases as energy increases along a series. Furtkﬁi?—ne' together with the first part, using basis sets of both real

more, the ratioR;y=(roupm+1/{rouyym CONVerges along a and complex coordinates.

given series to a well-determined value, which is character- In the _pre“sent special case OF.HV\,',e chose_ Slater-type
istic of the series. orbitals with “group-of-states-specific” properties as regards

As an example of the above, consider @ resonances their extent and their average Thus the various STO basis
below then=3 threshold. We gi\;e their wave-function char- sets covered ranges of about 1-8000 a.u., representing both

acteristics in Table XI\[37]. SeriesA, which is the only one compact, “valence™type ".‘”aShe” co_nfigurations, mostly
predicted by the model, is characterized by large contribu-releva_m for the representation O.f poss@le shape resonances,
tions from thess and pp angular terms. On the other hand and diffuse, up to extremely diffuse, intershell configura-

e pertiga st s maly cetermine by e angu- 0%, SV 0 e represeniaton of e dpole e
lar wave. Moreover, the characteristic ratio for the increasin :

size of states along the series is about 2.2, so thad ttate, Yesonance spectra is characterized by a very high numerical

which is more compact than th&2 state belowB, does not accuracy, covering the energy continuum up to the4

fit the series. A similar case of a loner state not belonging t&lhsreshdolltll:l) art1dt widths down to al;outTL‘ihf.ltJH A tgtal of 70h
any of the model series was also found in the precedin an states were uncovered, one ot Inem being a snape

paper[2]. Such states are essentially “created” by Stronggesonance af‘d f”‘few of the'f“ strongly.overlapplng, providing
mple quantitative information for series of resonances of a

correlation and exchange effects which are not taken inté e . L
account by the dipole mgodel negative ion. This fact allowed the categorization of the H

spectra into unperturbed and perturbed series with respect to

the Gailitis-Damburg model of dipole resonances.
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