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The resonance spectrum of H2 for 1S and 1D symmetries up to then54 threshold has been computed by
solving the corresponding complex eigenvalue Schro¨dinger equation in terms of basis functions of real and
complex coordinates. These functions are chosen and optimized judiciously and systematically in order to
account for the specific details of electronic structure, electron correlation, and multistate and multichannel
couplings characterizing the problem. Large sets of Slater orbitals, extending in a regular manner to about 8000
atomic units, were employed in order to describe properly the full range and especially the large-r behavior of
the localized part of these resonances, as their energy approaches their corresponding threshold. Energies,
widths, and wave-function characteristics are presented for 331S states and 371D states having widths down
to about 131029 a.u. Of this total of 70 states, only 32 have been identified before via the application of
different theoretical approaches, or, for very few of them, in scattering experiments. By adopting the Gailitis-
Damburg model of dipole resonances as the relevant zero order model, we identify unperturbed and perturbed
spectral series, in analogy with the well-known spectra of neutral atoms or positive ions, where the zero-order
model is based on the Rydberg spectrum of the 1/r Coulomb potential. For perturbed spectra, only rough
correspondence can be made with the smooth series predictions of the zero-order model. By achieving many-
digit numerical precision for our results, we demonstrate the occasional presence of unique irregularities
associated with each threshold, such as the existence of overlapping resonances and of ‘‘loner’’ resonances
~i.e., not belonging to any series! below and above threshold. An example for the latter is a1D shape resonance
above then53 threshold. This state was already identified by Ho and Bhatia@Phys. Rev. A48, 3720~1993!#.
However, our values for the energy above threshold (DE50.49497 meV) and for the width (G
58.632 meV) differ significantly from theirs (DE5116.94 meV andG5157 meV).

PACS number~s!: 31.50.1w, 32.80.Gc
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I. INTRODUCTION

This paper continues the presentation and the analys
results on the resonance spectrum of the prototypical ato
negative ion, H2, which started in our two concurrent pape
@1,2#, based on the solution of the complex eigenva
Schrödinger equation for series of resonances. The sym
tries of interest here are1S and 1D, the energy range is from
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then51 to 4 hydrogen thresholds, and the adopted cutoff
the search of resonances are width values down to abo
31029 a.u. The above choices follow from the argumen
presented in Ref.@2# as to the possibility of high resolution
measurements of narrow H2 resonances of widths muc
smaller than 5–10 meV, via two-step excitation mechanis
Accordingly, a possibly practical excitation path for the1S
and 1D resonances is
H21s2 1S ——→
one photon

1Po ~below or above the Hn52 threshold! ——→
tunable laser

1S,1P,1D ~resonances!. ~1!
1

e to
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In
The 1Po states around then52 threshold have alread
been produced and measured below and above thresho
10.172 and 10.226 eV above the H ground state respecti
@3–7#. The even-parity states of1P symmetry were calcu-
lated and analyzed in Ref.@1#, for the energy spectrum up t
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ly

the n55 threshold and for widths down to about
310210a.u.

The implication of Eq.~1! is that the part of the1S and
1D resonance spectra which were of immediate relevanc
this work consists of the states which start above then52
threshold. Nevertheless, for reasons of completeness an
comparison with the very recent results of Gien@8# for H2

resonances below then52 threshold, we also give our re
sults for the1S and 1D resonances up to then52 threshold
and compare the positions and widths with his in Table I.
©2000 The American Physical Society09-1
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TABLE I. Energies above the H ground state~in a.u.! and widths~in a.u.! of the 1S and 1D
resonances below then52 hydrogen threshold obtained from the solution of the complex eig
value Schro¨dinger equation~CESE, this work! and from the solution of the Harris-Nesbet algebra
coupled-channel equations~Gien, Ref.@8#!. The notation@x# means 102x.

Gien @8# This work
E G E G

1S(1) 0.351 232 565 1.736@3# 0.351 220 25 1.738 70@3#

~2! 0.373 990 251 35 8.93@5# 0.373 979 753 9.0934@9#

~3! 0.374 942 727 85 5.145@6# 0.374 942 173 5.2292@6#

~4! 0.374 996 717 2 2.943@7# 0.374 996 685 76 2.998@7#

~5! 0.374 999 811 85 1.6915@8# 0.374 999 809 851 1.7176@8#

~6! 0.374 999 992 1 6.34@10# 0.374 999 989 ,4@9#
1D(1) 0.372 099 877 05 3.153@4# 0.372 072 6 3.20@4#

~2! 0.374 999 670 3 2.462@8# 0.374 999 662 9 2.6@8#
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Tables II and III we present our results for1S and 1D reso-
nances below then52 threshold, including the distanc
from the nonrelativistic threshold,em , and the ratios for suc
cessive levels,Re[em21 /em and RG[Gm21 /Gm . Gien @8#
employed the Harris-Nesbet algebraic method, and solve
high numerical accuracy the coupled-channel scatte
~CCS! equations with 13 states. Given the reported num
of significant digits, there is a descrepancy between th
results and ours for the low-lying states. For these sta
short-range correlation becomes relatively more importa
We remind the reader that the energy region associated
the n52 threshold has been searched repeatedly since
early 1960s for the identification of resonances of differ
symmetries, computationally as well as experimentally~see
Refs.@2–10#, and references therein!.

For the energy region of interest here, i.e., for the ran
between then52 (20.125 a.u.) andn54 (20.03125 a.u.)
hydrogen thresholds, the existing information since
1960s concerns 111S and 13 1D resonances. The exper
mental and theoretical work is cited in Sec. II.

In the present calculations, we identified, analyzed, a
classified 271S and 35 1D in the 2.5497 eV of this energy
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range, with widths down to about 131029 a.u.~As 1 a.u. for
H2, we use the reduced value 27.196 58 eV.! The signifi-
cance of these predictions, as well as of those in Refs.@1,2#,
is associated with the fundamentals of polyelectronic the
for resonance states, as well as with the possible future
rangements of experiments of high resolution~see Ref.@2#!.
They constitute the first very accurate resolution of a ne
tive ion resonance spectrum over a physically reachable
ergy region, and provide reliable quantitative informati
about trends of spectral features of series of resonances
insight into their wavefunction characteristics.

II. PREVIOUS DATA ON THE E AND G

OF HÀ 1S AND 1D RESONANCES
BETWEEN THE nÄ2 AND 4 THRESHOLDS

Simple calculations and their analysis show that confi
rations 1snl, n>2, do not lead to variationally optimized
localized wave functions with energies in local-ener
minima above the H 1s energy at20.5 a.u. Therefore, no
shaperesonance associated with then51 threshold exists.

It is at then52 threshold that the structure of zero-ord
6

umber
from
TABLE II. Results of the present CESE~complex eigenvalue Schro¨dinger equation! calcula-
tions for H2 resonances of1Se symmetry below then52 threshold.E: total energy in a.u. For H2,
1 a.u.527.19658 eV. G: total width. em[Eth2Em : the energy distance from threshold.Re

[em21 /em andRG[Gm21 /Gm .

State 2E (a.u.) e (1028 a.u.)

G

2
~1028 a.u.!

Re RG

1 0.148 779 75 2 377 975 86 935
2 0.126 020 247 102 024.7 4 546.7 23.31 19.12
3 0.125 057 827 5782.7 261.46 17.64 17.39
4 0.125 003 314 24 331.424 14.99 17.45 17.44
5 0.125 000 190 149 19.014 9 0.858 8 17.43 17.4
6 0.125 000 011 1.1 ,0.2 17.3 a

The value of the ratio given by the GD model is@34# 17.429

aBecause of the extreme diffuseness of this state function and of the corresponding small n
for G, the value forRG did not have the same level of accuracy, and therefore it is excluded
the list.
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TABLE III. As in Table II, for 1De H2 resonances below then52 threshold.

State 2E (a.u.) e (1026 a.u.)

G

2
~1026 a.u.!

Re RG

1 0.127 927 4a 2927.4 160.0
2 0.125 000 337 1 0.3371 0.0130 8684.0 12307

The value of the ratio given by the GD model is@34# 4422

aThis energy corresponds to 10.8738 eV above the H2 1S ground state, using 1 a.u
527.19658 eV and the nonrelativistic H2 energy20.5277510 a.u.. The two-photon experiment
Stintz et al. @35# gave 10.87260.002 eV.
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configurations allows localization, and hence the appeara
of resonances below then52 threshold such as ‘‘2s2’’ 1S,
‘‘2 p2’’ 1D, etc. In fact, electron correlation also brings t
2p2 3P state below then52 threshold. Since the state do
not mix with 1se l continua, it belongs to the discrete spe
trum of H2, together with the ground state 1s2 1S @11#. Ab
initio calculations have been used to conclude that no o
discrete states of H2 exist @12#. The results presented i
Tables I–III for 1S and 1D states, as well as in our other tw
papers@1,2# for other symmetries, show how close to th
nonrelativistic n52 threshold there exist nonrelativist
complex eigenvalues. In Ref.@2# we commented on the pos
sibility that one or more such eigenvalues might survive re
tivistic interactions, and therefore may correspond torelativ-
istic shaperesonances above the lowest relativisticn52
hydrogen threshold.

Resonances of1S and 1D symmetries in the region be
tween then52 and 4 thresholds have attracted the interes
a number publications, which are briefly discussed bel
On the experimental side, it is electron scattering exp
ments that have been carried out. The first measureme
the position~but not the width! of such states were made b
McGowan and co-workers in the late 1960s@3#. They found
one 1S state at 11.65 eV above H 1s, and one1D state at
11.89 eV. In the early 1970s, Spence@13# reported a mea-
surement of the 3p2 1D state at 11.86060.030 eV. Years
later, Williams @14#, working with a resolution below 10
meV, identified two1S and two 1D states belown53. The
positions as well as widths were measured. The same s
were later detected by Warner, Rutter, and King@15#, but
only their energies were reported. The values of these e
gies are in slight disagreement with those of Williams. T
above experimental data are presented in Table IV.

On the theoretical side, three categories of calculati
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have been reported. The first is the variational diagonal
tion of the Feshbach-O’Malley-Geltman projected (QHQ)
real Hamiltonian in anL 2 basis of hydrogen and Slater func
tions by Oberoi@16#. This method produces only unshifte
~by the interaction with open channels! energies and no
width. In spite of this incomplete identification, at the time
their publication~1972! the Oberoi energies constituted
considerable advance in the knowledge of the whereab
of five 1S states and four1D states belown53, and five1S
states and five1D states belown54. The second category i
the diagonalization of non-Hermitian matrices to produ
complex eigenvalues, the real part givingE and the imagi-
nary one givingG. Two such methods have been applie
The first is the complex coordinate rotation~CCR! method,
where the rotated HamiltonianH(re2 iu)[e2 i2uT1e2 iuV is
diagonalized repeatedly as a function ofu for one or more
large L 2 basis sets, until a point of eigenvalue stability
recognized. The CCR method, as implemented and dem
strated by Doolen and co-workers@17,18#, was applied to
H2 in many publications starting in the late 1970s by Ho a
co-workers@19–23#, but only a few 1S and 1D resonances
were identified. For example, belown53 only one1S state
@19# and one1D state@20,22# have been reported. Also on
1D shaperesonance above then53 threshold was found
@23#. Finally, belown54, Ho @19# identified two 1S states,
Ho and Callaway@20# two 1S states and three1D states, and
Ho @21# six 1S states. Our Tables V–VII contain the CC
results of Refs.@19–23#.

The other method is that of solving the complex eige
value Schro¨dinger equation via the use of appropriate fun
tion spaces of real and complex coordinates.~See the discus-
sion in Ref.@2#.! Chrysoset al. @24# reportedE andG, and
also the partial widths with interchannel couplings for sp
cific resonances of1S symmetry~the lowest ones below the
TABLE IV. Experimental values for H- 1S and 1D resonances between then52 and 4 thresh-
olds. The energiesE are in eV above the H ground state, and the widthsG are in meV.

McGowanet al. Spence Williams Warneret al.
@3# @13# @14# @15#

E E E G E

1S(1) 11.6560.03 11.723 4168 11.71860.009
1S(2) 12.026 963 12.07760.010
1D(1) 11.8960.02 11.86060.030 11.805 4668 11.81560.005
1D(2) 12.04 763 12.05560.008
9-3



TABLE V. Pos nd 1D resonances below then53 threshold, as identified in this and in
previous works.

Algebr ate rotation CESE
C ay@20# Bhatia and Ho@22# This work

E (a. (mau) E (a.u.) G (mau) E (a.u.) G (mau)

1S(1) 0.431 0.430 993 94 1.417 86
(2) 0.442 0.442 218 27 0.308 22
(3) 0.443 0.443 860 535 0.087 792
(4) 0.444 0.443 993 379 0.049 676
(5) 0.444 350 849 8 0.012 986
(6) 0.444 425 055 1 0.002 723 4
(7) 0.444 440 425 0 0.000 565 84
(8) 0.444 443 611 03 0.000 117 33
(9) 0.444 444 271 60 0.000 024 32

(10) 0.444 444 408 5 0.000 006 28
1D(1) 0.434 1.6 0.434 046 7 1.658 0.434 041 1.652

(2) 0.443 0.443 169 4 0.2528
(3) 0.444 0.444 241 73 0.041 68
(4) 0.444 266 13 0.049 36
(5) 0.444 411 505 0.006 856
(6) 0.444 439 084 0 0.001 123 2
(7) 0.444 442 533 9 0.000 781 4
(8) 0.444 443 570 62 0.000 183 112
(9) 0.444 444 301 97 0.000 029 6

(10) 0.444 444 420 6 0.000 011 4
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052509-4
itions above the H ground state~in a.u.! and widths~in mau, 1mau51023 a.u.) of H2 1S a

aic coupled channel R matrix Complex coordin
allaway@30# Odgerset al. @32# Ho @19# Ho and Callaw

u.) G (mau) E (a.u.) G (mau) E (a.u.) G (mau) E (a.u.) G

003 1.430 0.431 00 1.52 0.431 00 1.42
232 0.306 0.442 28 0.299
872 0.0776 0.443 89 0.094
004 0.034 0.444 00 0.032

055 1.635 0.434 04 1.68 0.4340
188 0.242 0.443 21 0.242
100 0.027 0.444 27 0.0214
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TABLE VI. Positions above the H ground state~in a.u.! and widths~in mau, 1 mau51023 a.u.) of H2 1S and 1D resonances below the
n54 threshold, as identified from the implementation of four methods for the calculation of resonances.

R matrix Complex coordinate rotation Algebraic coupled channel CESE
Pathaket al. @31# Ho and Callaway@20# Ho @21# Callaway@30# This work
E (a.u.) G (mau) E (a.u.) G (mau) E (a.u.) G (mau) E (a.u.) G (mau) E (a.u.) G (mau)

1S(1) 0.460 392 1.09 0.460 36 0.95 0.460 362 0.95 0.4603 1.0 0.460 364 71 0.954 6
(2) 0.465 307 0.71 0.465 27 0.88 0.465 27 0.88 0.4657 0.81 0.465 276 63 0.8636
(3) 0.466 475 0.27 0.466 433 0.34 0.466 433 30 0.340 36
(4) 0.468 005 0.093 0.467 982 0.127 0.467 982 66 0.127 954
(5) 0.468 483 0.045 0.468 491 0.046 0.468 493 13 0.045 34
(6) 0.468 540 0.045 0.468 53 0.07 0.468 531 196 0.069 572
(7) 0.468 662 0.013 0.468 664 27 0.015 208
(8) 0.468 721 274 0.005 134
(9) 0.468 736 113 1 0.004 744

(10) 0.468 740 36 0.001 720
(11) 0.468 746 766 3 0.000 561 4
(12) 0.468 748 916 1 0.000 195 48
(13) 0.468 749 144 14 0.000 292 76
(14) 0.468 749 637 3 0.000 065 04
(15) 0.468 749 880 4 0.000 020 2
(16) 0.468 749 947 20 0.000 018 34
(17) 0.468 749 98 0.000 02

1D(1) 0.461 246 1.25 0.461 25 0.95 0.4613 1.2 0.461 263 6 0.9882
(2) 0.465 523 0.735 0.465 51 0.76 0.465 501 15 0.7674
(3) 0.466 829 0.210 0.466 87 0.24 0.466 838 2 0.3152
(4) 0.466 943 0.272 0.466 887 15 0.225 38
(5) 0.467 338 0.013 0.467 332 382 0.015 38
(6) 0.468 185 0.010 0.468 170 64 0.1098
(7) 0.468 475 0.0075 0.468 473 18 0.004 18
(8) 0.468 689 0.0075 0.468 569 8 0.052 86
(9) 0.468 696 0.468 569 80 0.035 506

(10) 0.468 694 66 0.000 76
(11) 0.468 693 77 0.011 24
(12) 0.468 732 598 0.003 50
(13) 0.468 738 816 5 0.000 254
(14) 0.468 740 005 0.003 328
(15) 0.468 742 142 5 0.001 916
(16) 0.468 744 565 0.001 084
(17) 0.468 747 742 4 0.000 032 0
(18) 0.468 748 299 4 0.000 337 4
(19) 0.468 749 467 4 0.000 106 6
(20) 0.468 749 502 28 0.000 151 78
(21) 0.468 749 545 19 0.000 008 76
(22) 0.468 749 836 7 0.000 039 0
(23) 0.468 749 911 5 0.000 002 86
(24) 0.468 749 979 7 0.000 012 66
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n53 and 4 thresholds.! The same quantities were reporte
by Themelis and Nicolaides@25# for 1D resonances below
n53 and 4.

The third category consists of CCS calculations of diff
ent types, where fundamental quantities such as the p
shift or the reaction matrix are obtained as a function of r
energy and then are used to fit appropriate formal exp
sions satisfied in the vicinity of a resonance. The first su
05250
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method to produce results for the resonances of interest
the direct numerical one, without and with correlation term
implemented by Burke and collaborators in the 1960s@26–
28#. They identified two1S and 1D states belown53. Cal-
laway and coworkers@29,30# obtained algebraic solutions o
the CCS equations using up to 28 states. Callaway identi
four 1S states and three1D states belown53, and two1S
states and one1D state belown54 @30#. Finally, the
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R-matrix method was applied by Pathak, Kingston, and B
rington @31# and Odgers, Scott and Burke@32#. Below the
n53 threshold, four1S states and three1D states were iden
tified @31,32#, and below then54 threshold seven1S states
and nine 1D states were found@31#. These results are in
cluded in Tables V and VI.

III. PRESENT CALCULATIONS AND RESULTS

The theory and methodology which were applied for t
present calculations were explained in the preceding pa
@2#. Here we only discuss the implementation and the resu

The hydrogen states associated with the open channel
to n54, were represented by real Slater type orbit
~STO’s! whose exponents were chosen equal to 1/n so that,
when combined, they can form the exact hydrogen functio
The real STO’s used for the description the localized part
the wave functions as well as those complex STO’s desc
ing the outgoing Gamow orbitals, were chosen so that th
averager values formed geometrical sequence covering
region from ^r &min to ^r &max. The values of^r &min and
^r &max are given in Table VIII together with the number o
localized STO’s,Nloc , and complex rotated STO’s,Nrot ,
for each orbital symmetry,l. The rotated orbitals were com
bined with the STO’s representing the hydrogen target st
to form the two-electron configurations describing t
asymptotic part of the wave function. Since in the H2 dipole
resonances one electron is supposed to be, on average,
to the nucleus, whereas the other one moves in very la
orbits, the whole orbital basis set was used for the ou
electron and only half of it~the low ^r & part! was used for
the inner electron. The number of configurations obtained
this way is given in Table IX together with the specificatio
of angularl l 8 terms. The non-Hermitian Hamiltonian matr
ces were built from such bases, and diagonalized for 12
ues ofu in the range from 0.2 up to 0.75 rad. The^r &min

TABLE VII. Energy ~in 1024 eV above the Hn53 threshold!,
width ~in 1024 eV) and wave-function composition~in terms of the
dominant symmetries! of the H2 1D shaperesonance above then
53 threshold from the present CESE calculations. Compariso
made withE and G obtained by Ho and Bhatia@23#, who imple-
mented the CCR method.

CESE~this work! CCR @23#

E G dd sd pp p f f f dg E G

4.965 8.6 0.561 0.234 0.092 0.084 0.017 0.012 1171 1
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parameter was also optimized within a range of a few ato
units in order to obtain the bestu stabilization of the com-
plex roots corresponding to the sought after resonances.~The
values of^r &min given in Table VIII define the lowest limit
for this range.!

Our final results for the positions and widths of the1S
and 1D resonances are presented in Tables I, V, and
where they are compared with results of the most accu
and extensive previous calculations. We give the decim
figures which were found to be stable against variation ofu.

The completeness of the present results as regards
resolution of the resonance spectra allow the possibility
analysis of general properties of the H2 spectrum and of the
resonance wave functions. Tables II, III, and X–XIII reve
the regularities and the disturbances of the resonance spe
Specifically, apart from the energies and widths, we give
energy positions with respect to the threshold where
spectrum accumulates,em[Eth2Em , their ratio Re
[em21 /em , and the ratio of the resonance widths,RG

[Gm21 /Gm . Given the prediction of the dipole approxima
tion @33#, we classified the computed complex eigenvalu
into series according to these ratios. According to
Gailitis-Damburg~GD! model @33#, the ratiosRe and RG

should be the same for a given series. The model value
this ratio, obtained by Pathak, Burke, and Berrington@34#,
are also given in Tables II, III, and X–XIII.

If there is only one series in a given region, the conv
gence of ratios to the model value is quite good. Single se
are predicted by the model@34# for 1D below the n52
threshold and for1S below n52 and 3 thresholds. Let u
consider the1S series below then53 threshold. Nine mem-
bers of it have been identified by our computation~Table X!.
There is very nice convergence of theRe and RG to the
model value. As discussed in Ref.@2#, it is typical in such a
case forRe to approach the model value monotonically fro
above, and forRG to do so from below. This is due to th
fact that the binding of lower-lying members of the series
in fact stronger than that predicted by the GD model. Ho
ever, here there is a clearly seen disturbance, caused b

is

9

TABLE IX. The basis set expansion for the CESE computat
of 1S and 1D resonances. For a given total symmetry the numbe
radial terms within the angular contributionl l 8 is given.

ss pp dd f f gg hh sd p f dg f h giTotal

1S 596 491 424 392 345 301 2549
1D 436 373 343 299 884 759 655 582 501 483
’s,
lly
TABLE VIII. The orbital basis set used in the present computation of1S and 1D resonances. The number of localized radial STO
Nloc , and the number of complex rotated radial STO’s,Nrot , for each orbital symmetryl are given. The STO’s are chosen systematica
so as to have their averager fall in a regular way inside the range defined by^r &min and ^r &max.

s p d f g h i ^r &min ^r &max

Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nloc ~a.u.! ~a.u.!

1S 32 34 32 33 32 32 32 30 28 1.5 8000
1D 31 32 31 31 31 30 31 29 29 28 27 25 1.1 5500
9-6
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TABLE X. As in Table II, for 1Se H2 resonances below then53 threshold. Note that, apart from the seriesA predicted by the GD mode
@34#, theB state appears, which is not predicted by the model.

State 2E (a.u.) e (1028 a.u.)

G

2
~1028 a.u.!

Re RG

1 A1 0.069 006 06 1 345 050 70 893
2 A2 0.057 781 73 222 617 15 411 6.042 4.600
3 B 0.056 139 465 58390.9 4389.6
4 A3 0.056 006 621 45106.5 2483.8 4.938 6.204
5 A4 0.055 649 150 2 9359.46 649.3 4.819 3.825
6 A5 0.055 574 944 9 1938.93 136.17 4.827 4.76
7 A6 0.055 559 575 0 401.94 28.292 4.824 4.813
8 A7 0.055 556 388 97 83.341 5.8665 4.823 4.823
9 A8 0.055 555 728 40 17.284 1.216 4.822 4.824
10 A9 0.055 555 591 5 3.59 0.314 4.81 a

The value of the ratio given by the GD model is@34# 4.823

aSee the footnote of Table II.
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occurrence of a ‘‘loner’’ state, which we labeledB. This
state, not predicted by the model, appears between theA2
and A3 states of the discussed series, and pushes theA3
level up. This is recognized by analyzing theRe values. An-
other effect is that theA3 state is more stable against aut
ionization, as compared to what would be expected from
regular behavior of unperturbed series.

The situation becomes more complicated and interes
when, in a given region, there are two or more series
resonances of the same symmetry. Then the interseries i
action often results in the lower-lying states of higher ser
being pushed up. As a consequence, the convergenc
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e
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er-
s
of

higher series has different character than that of the low
one.

Coexistence of different series leads also to the app
ance of overlapping resonances. The most complicated
investigated in this work is that involving the1D resonances
below then54 threshold~see Table XIII!. Our computation
identified 24 states, which are classified into four seriesA,
B, C, andD), in accordance with the prediction of the G
model. Among them there are five pairs of overlapping re
nances. Members of such pairs belong to different series,
their energy difference is comparable to the width of at le
one state of the pair. The most striking case is the over
TABLE XI. As in Table II, for 1Se H2 resonances below then54 threshold. Note the existence of overlapping resonancesA4 andB2.

A B

State 2E (a.u.) e (1028 a.u.)

G

2
~1026 a.u.!

Re RG Re RG

1 A1 0.039 635 29 838529 477.33
2 B1 0.034 723 37 347337 431.8
3 A2 0.033 566 70 231 670 170.18 3.619 2.805
4 A3 0.032 017 34 767 34 63.977 3.019 2.660
5 A4 0.031 506 87 256 87 22.67 2.987 2.822
6 B2 0.031 468 804 218 80.4 34.786 15.874 12.413
7 A5 0.031 335 73 8573 7.604 2.996 2.981
8 A6 0.031 278 726 2872.6 2.567 2.984 2.962
9 B3 0.031 263 886 9 1388.69 2.372 15.756 14.665
10 A7 0.031 259 64 964 0.860 2.980 2.985
11 A8 0.031 253 233 7 323.37 0.2807 2.981 3.064
12 A9 0.031 251 083 9 108.39 0.097 74 2.983 2.872
13 B4 0.031 250 855 86 85.586 0.146 38 16.226 16.204
14 A10 0.031 250 362 7 36.27 0.032 52 2.988 3.006
15 A11 0.031 250 119 6 11.96 0.0101 3.033 3.220
16 B5 0.031 250 052 80 5.280 0.00917 16.209 15.963
17 A12 0.031 250 02 2 0.01 a a

The values of the ratio given by the GD model are@34# 2.982 16.210

aSee the footnote of Table II.
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TABLE XII. As in Table II, for 1De H2 resonances below then53 threshold. Note the existence of overlapping resonancesA3 andB1.

A B

State 2E (a.u.) e (1026 a.u.)

G

2
~1026 a.u.!

Re RG Re RG

1 A1 0.065 959 10403 826
2 A2 0.056 830 6 1275.0 126.4 8.159 6.535
3 A3 0.055 758 27 202.71 20.84 6.290 6.065
4 B1 0.055 733 87 178.31 24.68
5 A4 0.055 588 495 32.939 3.428 6.154 6.079
6 A5 0.055 560 916 0 5.360 4 0.561 6 6.145 6.104
7 B2 0.055 557 466 1 1.910 5 0.390 7 93.332 63.169
8 A6 0.055 556 429 38 0.873 82 0.091 556 6.134 6.134
9 A7 0.055 555 698 03 0.142 47 0.014 8 6.133 6.186
10 B3 0.055 555 579 4 0.023 8 0.005 7 80.125 68.544
The values of the ratio given by the GD model are@34# 6.134 80.552
n
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ping pair ofB2 andA4 states. Within the 1027 a.u. accuracy
obtained for the B2 state, their energies do not differ, a
their widths are about 5231026 and 3531026 a.u. We thus
have a case for the two-electron Coulomb Hamilton
where near perfect degeneracy of states seems to exist o
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n
the

real energy axis. However, we hasten to point out that
resonance spectrum occurs in the second Riemann she
complex energies. Therefore, the meaning of the degene
must be expanded, referring to both real and imaginary
ergies. Actually, whenu trajectories are followed, i.e., th
ces:
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TABLE XIII. As in Table II, for 1De H2 resonances below then54 threshold. Note the existence of pairs of overlapping resonan
B2 andA4, D3 andA5, D4 andB3 B3, andC2, andB4 andD6.

A B C D

State 2E (a.u.) e (1026 a.u.)

G

2
~1026 a.u.!

Re RG Re RG Re RG Re RG

1 A1 0.038 736 4 7486.4 494.1
2 B1 0.034 498 85 3248.85 383.7
3 A2 0.033 161 8 1911.8 157.6 3.916 3.135
4 C1 0.033 112 85 1862.85 112.69
5 D1 0.032 667 618 1417.618 7.69
6 A3 0.031 829 36 579.36 54.9 3.300 2.871
7 D2 0.031 526 82 276.82 2.09 5.121 3.67
8 B2 0.031 430 2 180.2 26.43 18.029 14.518
9 A4 0.031 430 20 180.20 17.753 3.215 3.092
10 D3 0.031 305 34 55.34 0.38 5.002 5.50
11 A5 0.031 306 23 56.23 5.62 3.205 3.159
12 A6 0.031 267 402 17.402 1.75 3.231 3.211
13 D4 0.031 261 183 5 11.183 5 0.127 4.948 2.99
14 B3 0.031 259 995 9.995 1.664 18.029 15.883
15 C2 0.031 257 857 5 7.857 5 0.958 237.079 117.630
16 A7 0.031 255 435 5.435 0.542 3.202 3.229
17 D5 0.031 252 257 6 2.257 6 0.016 0 4.954 7.93
18 A8 0.031 251 700 6 1.700 6 0.168 7 3.196 3.213
19 A9 0.031 250 532 6 0.532 6 0.053 3 3.193 3.165
20 B4 0.031 250 497 72 0.497 72 0.075 89 20.082 21.926
21 D6 0.031 250 454 81 0.454 81 0.004 38 4.964 3.65
22 A10 0.031 250 163 3 0.163 3 0.019 5 3.261 2.733
23 D7 0.031 250 088 5 0.088 5 0.001 43 5.139 3.06
24 B5 0.031 250 020 3 0.020 3 0.006 33 24.518 11.989

The values of the ratio given by the GD model are@34# 3.197 18.777 3227 4.940
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TABLE XIV. Wave-function characteristics for the1S H2 resonances lying below then53 threshold.̂ r out& is the estimate for the size
of each state due to the outer electron, computed as the average of the distance of the outer electron from the center of mass~in a.u.!. R^r &
is the ratio of consecutive values of^r out&. The notation@x# means 102x.

State ^r out& R^r & ss pp dd f f gg hh

1 A1 20.10 0.512 0.443 0.045 0.3@3# 0.8@6# 0.5@7#

2 A2 44.92 2.235 0.465 0.467 0.068 0.2@3# 0.6@6# 0.2@7#

4 A3 100.4 2.235 0.429 0.468 0.107 0.2@2# 0.2@5# 0.2@6#

5 A4 228.8 2.279 0.416 0.486 0.099 0.4@4# 0.4@7# 0.3@8#

6 A5 507.1 2.216 0.409 0.488 0.103 0.7@5# 0.7@8# 0.4@9#

7 A6 1118 2.205 0.406 0.489 0.105 0.1@5# 0.1@8# 0.8@10#

8 A7 2461 2.201 0.404 0.489 0.106 0.3@6# 0.3@9# 0.2@10#

9 A8 5408 2.197 0.404 0.490 0.107 0.6@7# 0.6@10# 0.4@11#

10 A9 11680 2.160 0.403 0.492 0.106 0.1@7# 0.1@10# 0.7@12#

3 B 29.80 0.294 0.125 0.563 0.022 0.3@4# 0.3@5#
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dependence of the resonance eigenvalue on the rotation
rameteru is determined, the roots are never degenerate,
in the limit of u50, where they lie on the real axis, they a
different from each other.

The classification of resonances into series is also s
ported by the recognition of their electron correlation p
terns @36#. We obtained their size due to the outer electr
^r out&, computed as the average of the distance of the o
electron from the nucleus, and the angular term contributi
to the resonance wave functions. Resonances belonging
given series have common angular electron correlation
terns, i.e., different states have the same contributions f
various angular terms to their wave functions. The size
states increases as energy increases along a series. Fu
more, the ratioR^r &5^r out&m11 /^r out&m converges along a
given series to a well-determined value, which is charac
istic of the series.

As an example of the above, consider the1S resonances
below then53 threshold. We give their wave-function cha
acteristics in Table XIV@37#. SeriesA, which is the only one
predicted by the model, is characterized by large contri
tions from thess andpp angular terms. On the other han
the perturbingB state is mainly determined by thedd angu-
lar wave. Moreover, the characteristic ratio for the increas
size of states along the series is about 2.2, so that theB state,
which is more compact than theA2 state belowB, does not
fit the series. A similar case of a loner state not belonging
any of the model series was also found in the preced
paper @2#. Such states are essentially ‘‘created’’ by stro
correlation and exchange effects which are not taken
account by the dipole model.

IV. SYNOPSIS

Together with the results and conclusions of@1,2# for H2

resonances of1P, 1Po, 1Do, and 1Fo symmetries, the
present work on1S and 1D resonances constitutes a com
prehensive determination of the H2 resonance spectrum fo
an energy range which, on the one hand, is sufficient to al
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a thorough understanding of the physics, and, on the o
hand, can be probed by sophisticated experiments of v
high resolution, at least in principle.

The theory and methods that we presented and app
here and in Refs.@1,2#, allow a practical and quantitative
treatment of series of resonances in other systems as
with two or more electrons. The identification of resonanc
is done in the conceptual framework of decaying states ra
then by solving scattering-type equations. The solution of
complex eigenvalue Schro¨dinger equation involves the us
of trial functions consisting of two major parts, one op
mized on the real energy axis using real basis sets with
coordinates, and the other optimized in the complex ene
plane, together with the first part, using basis sets of both
and complex coordinates.

In the present special case of H2, we chose Slater-type
orbitals with ‘‘group-of-states-specific’’ properties as regar
their extent and their averager. Thus the various STO basi
sets covered ranges of about 1–8000 a.u., representing
compact, ‘‘valence’’-type intrashell configurations, most
relevant for the representation of possible shape resonan
and diffuse, up to extremely diffuse, intershell configur
tions, relevant for the representation of the ‘‘dipole res
nances’’ below each threshold. The resolution of these2

resonance spectra is characterized by a very high nume
accuracy, covering the energy continuum up to then54
threshold and widths down to about 1029 a.u. A total of 70
1S and 1D states were uncovered, one of them being a sh
resonance and a few of them strongly overlapping, provid
ample quantitative information for series of resonances o
negative ion. This fact allowed the categorization of the H2

spectra into unperturbed and perturbed series with respe
the Gailitis-Damburg model of dipole resonances.
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