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Low-temperature asymptotics of isotropic ferromagnetic chains at nonzero fields
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We derive the leading-order asymptotics of classical one-dimensional isotropic ferromagnets near zero
temperature in the context of two models with short-range interactions, namely the Heisenberg and the loga-
rithmic chain. It is shown that the thermodynamics, in both cases, asymptotically reduce to the same differ-
ential equation, which also describes the azimuthally symmetric quantum motion of a rigid rotator in an
external field. The result reflects the deep-rooted analogy between thermal and quantum fluctuations in clas-
sical d-dimensional and quanturd -1)-dimensional systems, respectively. Explicit analytical expressions
given in the limiting cases of high and low fields agree with the full numerical solution to within a few percent.
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Understanding the low-temperature thermal properties ofsingle-parametér Schralinger-like equation, which de-
one of the simplest categories of condensed-matter systenggribes the quantum mechanics of a rigid rotator. Moreover,
the one-dimensional isotropic ferromagnets, has been a ré-will be seen that the limit is independent of the details of
markably slow process. One of the major milestones was ththe interaction, and manifests the deep-rooted formal anal-
numerical implementation of the thermodynamic Bethe anogy between thermal and quantum fluctuationsdirand
satz for theS=1/2 Heisenberg case’ which revealed that d—1 dimensions, respectively. The derivation is as follows:
the zero-fieldsusceptibilitybehaves in a classical-like fash- ~ The model Hamiltoniams given by
ion, i.e., xo(T)*x1/T?2

The extension of the theory to nonzero fields revealed . a2 2z
scaling behavior and a restricted universality with respect to Hij= _Z R(S: S*l)_hz S @
the value of the spin(i) the magnetizatiorof the Heisenberg .
model was numerically shown to schles p=h/T” (where  where the classical unit spin vectofS;} are placed in an
h denotes the magnetic field and=2); moreover, the scal- external fieldh in the z direction, energies and fields are
ing function was shown to be independent of the value of theneasured in units of the exchange constgnt and
spin. (i) the same scaling property was shown to hold for theR(x) =x—1 (Heisenberg model, cagein what follows, or
field-dependent part of thieee energy(and thus for thermo- R(X)= —2In[(1+x)/2] (IHFF model® caseB).

dynamics as a whole[The demonstration ofii) was made The original Tl equation$ave the form

within the context of the related, sgliton-bearing Ishimori-

Haldane-Faddeev ferromagnéHFF),” and therefore sug- fl » p(x+Xx" )N . o

gests thatclassical-liké scaling might be directly linked to _1dx e Ko(X,X" ;M (X)=Nih(x),  (2)

the presence of classical-like solitons, i.e., solitons with high
values of magnetization, which dominate field-dependentvhere

phenomeng. .

At nonzero fields there are no analytical nonperturbative<o(X,x";n)
results for the thermodynamics of classical isotropic mag- axx' 2 — o2
nets. There is numerical evidefiCethat field-dependent e Fo(NV1-x"V1-x"52) - (A) (Ref. §
thermodynamic propertiegclassical and quantumnear = X+x" " [14+xx 3
T=0 are characterized by a uniquely defined limiting 2 " Ix+x'] (B) (Ref. 5,

(“scaling™) function of p. The value of the scaling exponent

o=2, as well as some general properties of the scaling funcvhere n=2T"*, and I, P, denote Bessel and Legendre

tion have been deriv8don the basis of general thermody- functions, respectively.

namic arguments. Asymptotic expansionsWe are interested in the
In order to obtain the exact form of the scaling function limiting form of casesA and B in Eq. (3) in the limit

(as well as a complete description of low-temperature asn—. In_this limit, the asymptotic expansion

ymptotics of isotropic ferromagnets, including correlations 14(z) ~1/\2mz€&[1+1/(82) + O(1/z?)] (Ref. 7 can be

one must explicitly incorporate the scaling property “at theused. We have not been able to find an analogous asymptotic

source,” i.e., perform theT—0 limit on the constituent expansion for the Legendre functigmalid for large values

equation of classical statistical mechanics, i.e., the transfewef (noninteger n, and including the relevant first-order cor-

integral (Tl) equation. This recasts the problem in terms ofrection] in the standard tables. Our derivation in c&eests

the single state variable=h/T?; the limit of the (two-  on the validity of the asymptotic expansion for the Legendre

parameter ferromagnetic Tl equation will turn out to be a function,
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1 1 Transformation of Eq. (2) to the original polar coordi-
P (2)~ =——(z+JZZ—1)"" 12 1 — (1— = — nates x= cos, x'=cos?’ leads to
2mn 4n 2 22—
+0O 1) IZ|>1 (4) (cosr+ cosin| SO | M2
s V4 y p(cosf+co n ! ’
= f do'e Sm&) ®(8',0)4i(0')
which we have derived for integer values of (There is —\ p 5
no such restriction in cas&). The leading term is in agree- =Mi(9), ®)
ment with published resulfs;so are the values of
lim,_..{z""P,(2)}. where

e nsir?[(6" — 6)/2)] (A)

1
[1+ 4nsingsing’

P(0",6)= {1 1( 1+c039cos9’)

, (6)
co§““(¥) (B).

4n singsing’

The presence ofi as an exponent in the kern@) means field-dependent and field-independent aspects of statistical
that, in the limith—c, only a very narrow region of typical mechanlcs can be best understood within the soliton
width 1/\/n aroundé’ = 6 can contribute to the integral. This picture?®

allows us to make a second-order Taylor expansion of In the limit of largep, we find that the two lowest states
¥(6") and the other, slowly varying parts of the kernel, andof Eq. (7) are given by

evaluate the resulting Gaussian integrals by extending the

limits to =oo. Keeping terms of order &/everywhere, we +p 1
arrive at MO(p —ptVp— Z_ 64\/— (9)
i (0)+cotdyy (0) +2[ pcosh+ w ]4(0)=0,  (7)
~—p+3yp—=— 10
where u;=lim,_.[(n/2)(1-n\;/2)]—c and ¢ equals 0 #a(p) p \/— 4 64\/— (10

(A), or 1/2 B). This completes our derivation of E(/) as , :
the (common limit of Eq. (2) asn—voe. In physical terms, The first two terms |rg) the aboye equations have been re-
the ground state of thézero-dimensionalquantum rotator, POrted by von Meyenf{: The leading-order term comes from
described by Eq(7) is directly linked to the highest eigen- the complete or_lentatlon of the rqtator along mams. The _
state of Eq.(2), i.e., to the field-dependent part of thermal next term describes the low-amplitude oscillations of the hin-
fluctuations of the classicdbnd by virtue of Refs. 4,5 the

guantum isotropic one-dimensional chain neadr=0. The 0.265
precise content of the asymptotic mapping of E).to Eq. '

(7) is that the field-dependent part of the free enedfy

*
1

A technical comment is in order here, regarding (tig-

feren) values of the constamtin casesA andB. The values o
are correct, in the sense that they reproduce the low- .
temperature expansions »§(0), obtained from the exact Tl 0.250 L

| | | | |
values, including?(T?) terms; in particular, the absence of 03 04 05
powers of T (beyond the firstin the energy of the Heisen- p'l/2
berg model is confirmed. The different values af also

imply that the field-independent properties are sensitive t0 F|G. 1. Numerical results fofminus the lowest eigenvalue of

the details of the interaCtiOR(X) and one should be careful Eq.(7) vs 1/\/; for largep (squares Note that we have subtracted
in the use oB to describeA beyond leading order. It should away the two leading terms in E¢Q). The data of Ref. 10 are also
be further noted that field-independent properties are sensghown (solid diamonds The dotted line represents the known
tive to the value of the spin; this “dichotomy” between terms of the asymptotic expansion E@).

satisfies .
ro(p) Q 0.260 o -

—2 _ 1 olp _ Q . i

T 5f(P)— T In{ )\0(0) ] MO(P): (8) -ilé. ° —

c oo ]

to leading order in 11, for both case#\ andB. ‘;?0.255 o S ]
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FIG. 2. (Minus) the lowest eigenvalue of E7) vs p? (squarel FIG. 3. The susceptibility(squares and correlation length

Also shown are(i) the (first three terms of thepower expansion (circles vs p. Both quantities are divided by their zero-field values.
(12) (dashed lingand the extrapolation of a sixth-order asymptotic Also shown are our results in terms of the asymptotic expansions
expansion obtained by polynomial regression from the numericak(p)/x(0)~3/8p~ ¥2+9/512 5" (dotted line, and
data of Fig. 1. £(p)/£(0)~12pY?— 1/2— 1/8p~ 2] (dashed ling

dered rotator around=0 for high values of the field. We hg first term in Eq(12) reproduces Fisher's zero-field sus-
have derived the next two terms using second-order pertUse yinility: the second term has been recently derived in a

e e e coraned anealy o e Soninear susepibity cacaichin ig 2 we plot the
as G.=lim [~ uo(p)+2pul(p)+p] and is consistent. apprOX|me_1t|or(12), along_ with the numerlcal results and the
with Uzhe naao;ricgorgsultspgfo Igef p10 where a value Ofextrapolanon from the higl- asymptotics.

Co We conclude our account of the asymptotic thermody-

0.02525 is reported gt=50 (note the slightly different no- : : .
tations; suo(p) corresponds to-g(x) of Ref. 5. namics of Eq(1) with the results for the susceptibilify and

We have performed a numerical evaluatiorggf(p) and ~ correlation length¢. In Fig. 3 we plotT?x=— pe(p) and
its derivatives and reproduced the thermodynamics presentddt = 1/(1— o) VS p. Asymptotic expansions to next-to-
as “scaling limit” in Ref. 5 within numerical accuracy. In leading ordefreadily obtainable from Eq$9) and(10)] are
Fig. 1 we plotug(p) vs 1Ap. also plotted(cf. caption for details The dependence of the
At low values ofp, it is possible to exploit the expansion correlation length as h in the high-field regime allows us
of #o(6) in terms of Legendre polynomials; the expansionto look at scaling behavior as the competition of two physi-

coefficients{A;} satisfy the recurrence relationship cal length scales¢y>1/T (Ref. 3 and &,x1/\h. At any
) _ finite value of the field, the system interpolates between the
2p _J A —[i(+D)+2u]A +2p J.+1 A, =0 two regimes; the field dependence of thermodynamic func-
2j—-1"" . 2j+3" tions thus occurs via the dimensionless ratig/é.

D o= 1.
Truncating after a fixed, finite number of terms produces a In summary, we have shown that, in the asymptotic limit
matrix eigenvalue problem; successive iteration can be useti— 0, the transfer integral equations describing the classical
analytically, to produce a systematic expansion for the lowstatistical mechanics of two exemplary isotropic ferromag-
est eigenvalugug(p) (alternatively, truncating after a large netic chains, reduce to the eigenvalue equation of the quan-
number of terms, yields a direct numerical resuWe give  tum rotator, where the scaling varialpe=h/T? is the only

the first three terms: parameter. As a consequence, thermal fluctuations in one-
, 1, 8-47 dimensional isotropic systems correspond, near absolute
—mo(p)= 3P 325" + 3.45.63" +.... (12 zero, to the ground state of the quantum rotator.
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