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Low-temperature asymptotics of isotropic ferromagnetic chains at nonzero fields

N. Theodorakopoulos and N. C. Bacalis
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation,

Vas. Constantinou 48, GR - 116 35 Athens, Greece
~Received 6 May 1996!

We derive the leading-order asymptotics of classical one-dimensional isotropic ferromagnets near zero
temperature in the context of two models with short-range interactions, namely the Heisenberg and the loga-
rithmic chain. It is shown that the thermodynamics, in both cases, asymptotically reduce to the same differ-
ential equation, which also describes the azimuthally symmetric quantum motion of a rigid rotator in an
external field. The result reflects the deep-rooted analogy between thermal and quantum fluctuations in clas-
sical d-dimensional and quantum (d21!-dimensional systems, respectively. Explicit analytical expressions
given in the limiting cases of high and low fields agree with the full numerical solution to within a few percent.
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Understanding the low-temperature thermal properties
one of the simplest categories of condensed-matter syst
the one-dimensional isotropic ferromagnets, has been a
markably slow process. One of the major milestones was
numerical implementation of the thermodynamic Bethe
satz for theS51/2 Heisenberg case,1,2 which revealed that
the zero-fieldsusceptibilitybehaves in a classical-like fash
ion, i.e.,x0(T)}1/T

2.3

The extension of the theory to nonzero fields revea
scaling behavior and a restricted universality with respec
the value of the spin:~i! themagnetizationof the Heisenberg
model was numerically shown to scale4 asr[h/Ts ~where
h denotes the magnetic field ands52); moreover, the scal
ing function was shown to be independent of the value of
spin.~ii ! the same scaling property was shown to hold for
field-dependent part of thefree energy~and thus for thermo-
dynamics as a whole!. @The demonstration of~ii ! was made
within the context of the related, soliton-bearing Ishimo
Haldane-Faddeev ferromagnet~IHFF!,5 and therefore sug
gests that~classical-like! scaling might be directly linked to
the presence of classical-like solitons, i.e., solitons with h
values of magnetization, which dominate field-depend
phenomena.#

At nonzero fields there are no analytical nonperturbat
results for the thermodynamics of classical isotropic m
nets. There is numerical evidence4,5 that field-dependen
thermodynamic properties~classical and quantum! near
T50 are characterized by a uniquely defined limiti
~‘‘scaling’’ ! function ofr. The value of the scaling exponen
s52, as well as some general properties of the scaling fu
tion have been derived5 on the basis of general thermod
namic arguments.

In order to obtain the exact form of the scaling functi
~as well as a complete description of low-temperature
ymptotics of isotropic ferromagnets, including correlation!
one must explicitly incorporate the scaling property ‘‘at t
source,’’ i.e., perform theT→0 limit on the constituent
equation of classical statistical mechanics, i.e., the trans
integral ~TI! equation. This recasts the problem in terms
the single state variabler5h/T2; the limit of the ~two-
parameter! ferromagnetic TI equation will turn out to be
550163-1829/97/55~1!/52~4!/$10.00
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~single-parameter! Schrödinger-like equation, which de
scribes the quantum mechanics of a rigid rotator. Moreov
it will be seen that the limit is independent of the details
the interaction, and manifests the deep-rooted formal a
ogy between thermal and quantum fluctuations ind and
d21 dimensions, respectively. The derivation is as follow

The model Hamiltonianis given by

H/ j52(
i
R~Ŝi•Ŝi11!2h(

i
Ŝi
z, ~1!

where the classical unit spin vectors$Ŝi% are placed in an
external fieldh in the z direction, energies and fields ar
measured in units of the exchange constantj , and
R(x)5x21 ~Heisenberg model, caseA in what follows!, or
R(x)522ln@(11x)/2# ~IHFF model,5 caseB).

The original TI equationshave the form

E
21

1

dx8er~x1x8!/nK0~x,x8;n!c l~x8!5l lc l~x!, ~2!

where

K0~x,x8;n!

5H enxx8/2I 0~nA12x2A12x82/2! ~A! ~Ref. 6!

U x1x8

2 UnPnS 11xx8

ux1x8u D ~B! ~Ref. 5!,
~3!

where n52T21, and I 0, Pn denote Bessel and Legend
functions, respectively.

Asymptotic expansions. We are interested in the
limiting form of casesA and B in Eq. ~3! in the limit
n→`. In this limit, the asymptotic expansio
I 0(z);1/A2pzez@111/(8z)1O(1/z2)# ~Ref. 7! can be
used. We have not been able to find an analogous asymp
expansion for the Legendre function@valid for large values
of ~noninteger! n, and including the relevant first-order co
rection# in the standard tables. Our derivation in caseB rests
on the validity of the asymptotic expansion for the Legend
function,
52 © 1997 The American Physical Society
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Pn~z!;
1

2pn
~z1Az221!n11/2H 12

1

4n S 12
1

2

z

Az221
D

1OS 1n2D J , uzu.1, ~4!

which we have derived for integer values ofn. ~There is
no such restriction in caseA). The leading term is in agree
ment with published results;8 so are the values o
limz→`$z2nPn(z)%.
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Transformation of Eq. (2) to the original polar coordi
nates x5cosu, x85cosu8 leads to

1

Apn
E
0

p

du8er~cosu1cosu8!/nS sinu8

sinu D 1/2F~u8,u!c l~u8!

5l lc l~u!, ~5!

where
F~u8,u!5H F11
1

4nsinusinu8Ge2nsin2[ ~u82u!/2] ~A!

F12
1

4n S 12
11cosucosu8

sinusinu8 D Gcos2n11S u82u

2 D ~B!.

~6!
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The presence ofn as an exponent in the kernel~6! means
that, in the limitn→`, only a very narrow region of typica
width 1/An aroundu85u can contribute to the integral. Thi
allows us to make a second-order Taylor expansion
c(u8) and the other, slowly varying parts of the kernel, a
evaluate the resulting Gaussian integrals by extending
limits to 6`. Keeping terms of order 1/n everywhere, we
arrive at

c l9~u!1cotuc l8~u!12@rcosu1m l #c l~u!50, ~7!

where m l5 limn→`@(n/2)(12nl l /2)#2c and c equals 0
(A), or 1/2 (B). This completes our derivation of Eq.~7! as
the ~common! limit of Eq. ~2! asn→`. In physical terms,
the ground state of the~zero-dimensional! quantum rotator,
described by Eq.~7! is directly linked to the highest eigen
state of Eq.~2!, i.e., to the field-dependent part of therm
fluctuations of the classical~and by virtue of Refs. 4,5 the
quantum! isotropic one-dimensional chain nearT50. The
precise content of the asymptotic mapping of Eq.~2! to Eq.
~7! is that the field-dependent part of the free energyd f
satisfies

T22d f ~r![2T21lnH l0~r!

l0~0! J ;m0~r!, ~8!

to leading order in 1/n, for both casesA andB.
A technical comment is in order here, regarding the~dif-

ferent! values of the constantc in casesA andB. The values
are correct, in the sense that they reproduce the l
temperature expansions ofl0(0), obtained from the exact T
values, includingO(T2) terms; in particular, the absence
powers ofT ~beyond the first! in the energy of the Heisen
berg model3 is confirmed. The different values ofc also
imply that the field-independent properties are sensitive
the details of the interactionR(x) and one should be carefu
in the use ofB to describeA beyond leading order. It shoul
be further noted that field-independent properties are se
tive to the value of the spin; this ‘‘dichotomy’’ betwee
f
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field-dependent and field-independent aspects of statis
mechanics can be best understood within the soli
picture.9,5

In the limit of larger, we find that the two lowest state
of Eq. ~7! are given by

m0~r!;2r1Ar2
1

4
2

1

64Ar
, ~9!

m1~r!;2r13Ar2
3

4
2

9

64Ar
. ~10!

The first two terms in the above equations have been
ported by von Meyenn.10 The leading-order term comes from
the complete orientation of the rotator along thez axis. The
next term describes the low-amplitude oscillations of the h

FIG. 1. Numerical results for~minus! the lowest eigenvalue o
Eq. ~7! vs 1/Ar for larger ~squares!. Note that we have subtracte
away the two leading terms in Eq.~9!. The data of Ref. 10 are als
shown ~solid diamonds!. The dotted line represents the know
terms of the asymptotic expansion Eq.~9!.
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dered rotator aroundu50 for high values of the field. We
have derived the next two terms using second-order pe
bation theory around the exact hindered rotator states.
coefficient 1/4 has also been obtained numerically in Re
as G`[ limr→`@2m0(r)12rm08(r)1r# and is consisten
with the numerical results of Ref. 10, where a value
0.02525 is reported atr550 ~note the slightly different no-
tations;m0(r) corresponds to2g(x) of Ref. 5!.

We have performed a numerical evaluation ofm0(r) and
its derivatives and reproduced the thermodynamics prese
as ‘‘scaling limit’’ in Ref. 5 within numerical accuracy. In
Fig. 1 we plotm0(r) vs 1/Ar.

At low values ofr, it is possible to exploit the expansio
of c0(u) in terms of Legendre polynomials; the expansi
coefficients$Aj% satisfy the recurrence relationship

2r
j

2 j21
Aj212@ j ~ j11!12m#Aj12r

j11

2 j13
Aj1150.

~11!

Truncating after a fixed, finite number of terms produce
matrix eigenvalue problem; successive iteration can be u
analytically, to produce a systematic expansion for the lo
est eigenvaluem0(r) ~alternatively, truncating after a larg
number of terms, yields a direct numerical result!. We give
the first three terms:

2m0~r!5
1

3
r22

11

3•45
r41

8•47

3•45•63
r61 . . . . ~12!

FIG. 2. ~Minus! the lowest eigenvalue of Eq.~7! vsr2 ~squares!.
Also shown are~i! the ~first three terms of the! power expansion
~12! ~dashed line! and the extrapolation of a sixth-order asympto
expansion obtained by polynomial regression from the numer
data of Fig. 1.
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The first term in Eq.~12! reproduces Fisher’s zero-field su
ceptibility; the second term has been recently derived i
nonlinear susceptibility calculation.4 In Fig. 2 we plot the
approximation~12!, along with the numerical results and th
extrapolation from the high-r asymptotics.

We conclude our account of the asymptotic thermod
namics of Eq.~1! with the results for the susceptibilityx and

correlation lengthj. In Fig. 3 we plotT2x52m0
9(r) and

Tj51/(m12m0) vs r. Asymptotic expansions to next-to
leading order@readily obtainable from Eqs.~9! and~10!# are
also plotted~cf. caption for details!. The dependence of th
correlation length as 1/Ah in the high-field regime allows us
to look at scaling behavior as the competition of two phy
cal length scales,j0}1/T ~Ref. 3! and j`}1/Ah. At any
finite value of the field, the system interpolates between
two regimes; the field dependence of thermodynamic fu
tions thus occurs via the dimensionless ratioj0 /j`

}Ah/T@[Ar#.
In summary, we have shown that, in the asymptotic lim

T→0, the transfer integral equations describing the class
statistical mechanics of two exemplary isotropic ferroma
netic chains, reduce to the eigenvalue equation of the qu
tum rotator, where the scaling variabler[h/T2 is the only
parameter. As a consequence, thermal fluctuations in o
dimensional isotropic systems correspond, near abso
zero, to the ground state of the quantum rotator.

al

FIG. 3. The susceptibility~squares! and correlation length
~circles! vs r. Both quantities are divided by their zero-field value
Also shown are our results in terms of the asymptotic expans
x(r)/x(0);3/8r23/219/512r25/2 ~dotted line!, and
j(r)/j(0);1/@2r1/221/221/8r21/2# ~dashed line!.
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