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He2 is examined in the second state of the
3Pg symmetry. This state is shown to be one of the two ‘‘parent’’

states of the lowest known stable negative ionic He2
2 state of the4Fg symmetry. It is compared with the other

parent neutral He2 state, which is the lowest of the
3Du symmetry, with a consequence that the negative ionic

state be a closed channel resonance with respect to both of its neutral parent states. Furthermore the third
He2

3Pg and the second He2
3Du states are shown to be the parents of the second He2

2 4Fg resonance.

PACS number~s!: 31.15.Ar, 31.50.1w, 31.15.Pf, 31.25.Nj

I. INTRODUCTION

Following the discovery of the metastable negative ion
He2

2 by Bae, Coggiola, and Peterson in 1983@1#, its
theoretical identification by Michels @2# as 4Pg

(1sg
21su2sg1pu), and the analysis of its autodetachment

spectrum to He2 a3Su
1 and to He2 X

1Sg
1 @3–6#, Adamowicz

and Pluta@7,8# have investigated the possibility of the for-
mation of other He2

2 metastable states. These are based on
two-electron attachment to two possible cores (1sg

21su), @7#
and (1sg

22sg) @8#. All He2
2 ionic states calculated in Refs.

@7,8# obey the simple underlying physics that the outer elec-
trons are comparably far from the molecular center; this
seems to be a necessary condition for the formation of a
negative ionic molecule because otherwise the electron
closer to the nuclei would be attracted even more, and would
screen out the outer electron, leaving it free to detach.

If this is true, one should expect the outer orbitals of both
neutral parent states to be comparably diffuse before the for-
mation the negative resonance, and to suffer no substantial
deformation after forming the resonance. The stability of
these negative ionic states with respect to their neutral parent
states has also been examined in Refs.@7# and @8#, but the
above expectation, strangely enough, seems not always to be
fulfilled. It will be clear from this work that this unexpected
feature is largely due to an erroneous interpretation of the
results obtained by the numerical Hartree-Fock method
~NHF! @9,10#, because the method does not provide any
simple way of node counting, or checking a converged re-
sult.

Generally the negative ionic states of Refs.@7# and @8#
may be separated in two classes: Those with equilibrium
internuclear distanceR0 5 2 a.u., emerging from the core
(1sg

21su), @7# which results to He2
2 4Pg ,

4Fg , and
4I g

negative ionic states@7#, and those withR0 5 1.2 a.u. emerg-
ing from the core (1sg

22sg), @8# which results to He2
2

4Pu ,
4Fu , and

4I u negative ionic states@8#.
The present work concentrates on the first class, in par-

ticular on the formation of4Fg . The essence of the paper is
the following: Given that the outer two electrons of the ionic
He2

2 4Fg state resonate at about 17 bohr from the molecu-
lar center@7#, ~it is shown that! the extent of the outer orbital
in each of the two neutral parents is not about 5 and 23 bohr

as claimed in Ref.@7#, but rather about 12 and 13 bohr. The
neutral state of Ref.@7# with the 23-bohr outer orbital is one
of the parents of another similar negative ionic4Fg reso-
nance, which has the outer two electrons at about 32 bohr.
The two negative ions have almost the same energy with
their parents, differing by only 0.002–0.005 a.u.~they are
not substantially different, by10.030 and20.070 a.u., as
claimed in Ref.@7#!, and both are closed channel resonances
below their parents~instead of open as claimed in Ref.@7#
for the first one!. The other neutral state of Ref.@7#, with the
5-bohr outer orbital, does not seem to be a parent of any
4Fg negative ionic state.
Hence this paper has the following framework:~i! The

unexpected feature of the substantial deformation of the
~outer! electron orbitals forming the negative ion is identified
in the calculation of Ref.@7#. ~ii ! The issue of~i! is resolved
by calculating the correct neutral parents of4Fg as neces-
sary, with the NHF method@9,10#, thus reassesing the ques-
tion of the boundedness of4Fg with respect to its neutral
parent states.~iii ! The results of~ii ! are verified by introduc-
ing another method of calculation, based on variational glo-
bal minimization of the energy of a configuration interaction
~CI! using one-electron diatomic molecular orbitals
~DMO’s!. ~iv! One further4Fg negative ionic state and its
neutral parents are discovered via this method.~v! The ques-
tion of the existence of the4Fg negative ionic state as la-
beled in Ref.@7# is addressed.

In Sec. II all relevant definitions and descriptions are pre-
sented; then the present work is analyzed: Sec. III shows the
correct identification of the orbitals in4Fg of Ref. @7#, and in
the remaining sections the calculation and the results are ex-
posed.

II. DEFINITIONS AND DESCRIPTIONS

In order to avoid ambiguities, all states in this section will
be identified by three quantities in brackets~label, energy,
extent!: i.e., their symmetry label, their equilibrium energy
E0 5 E(R0), and the root-mean-square~RMS! distance~s! of
the outer electron~s! from the molecular center atR0 ~in
a.u.!. Thus the states considered in this work are as follows:

He2 1
3Pg :@(1sg

21su1pu),25.05,5#;
He2 2

3Pg :@(1sg
21su2pu),24.98,13#;

He2 1
3Du :@(1sg

21su1dg),24.98,12#;
He2

2 14Fg :@(1sg
21su2pu1dg),24.98,(16,19)#;
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He2 3
3Pg :@(1sg

21su3pu),24.95,24#;
He2 2

3Du :@(1sg
21su2dg),24.95,23#;

and
He2

2 24Fg :@(1sg
21su3pu2dg),24.95,(32,33)#.

(a) Identification of the unexpected feature in
Ref. [7]. Adamowicz and Pluta in Ref.@7# have
calculated the negative ionic state He2

2 14Fg :
@(1sg

21su2pu1dg),24.98,(16,19)#, which they labeled as
(1sg

21su1pu1dg). Furthermore, in an attempt to identify
its neutral parents, they also calculated two neutral He2

states, 13Pg :@(1sg
21su1pu),25.05,5# and 23Du :

@(1sg
21su2dg),24.95,23#, which they labeled in Ref.@7# as

3Pg :(1sg
21su1pu) and

3Du :(1sg
21su1dg) and which they

considered as its neutral parents. Thus they conclude that the
negative ion in this state is bound with respect to one of its
parents and unbound with respect to the other one. Their
calculations were performed via the NHF method@9,10# in a
single-configuration approximation. However, these states
exhibit the following unexpected features@7#: the RMS dis-
tance from the diatomic center,^R2&1/2, for the 1pu orbital
in the He2

3Pg state is about 5 a.u. whereas in the He2
2

4Fg state it is about 16 a.u. Correspondingly, the RMS ex-
tent for the 1dg orbital in the He2

3Du state is about 23 a.u.,
whereas in the He2

2 4Fg state it is about 19 a.u. The core
orbitals in all three states have the same RMS extent, about
1.3 a.u.. In other words, the outer orbitals are reported in Ref.
@7# to be substantially deformed in order to form the negative
ion.

(b) Description of the resolution of (a). The
following statements can be made about the
above three states of Ref.@7#: ~i! The He2

2 14Fg :
@(1sg

21su2pu1dg),24.98,(16,19)# state seems to be the
lowest state of this symmetry, but it is erroneously identified
in Ref. @7#; this is shown in the present work by node count-
ing and by comparing the orbitals of that NHF calculation
with corresponding one-electron DMO@11#. ~ii ! The He2 2
3Du :@(1sg

21su2dg),24.95,23# state is also erroneously
identified in Ref.@7#; this has been shown in Ref.@12#. ~iii !
Finally the He2 13Pg :@(1sg

21su1pu),25.05,5# state of
Ref. @7# is correctly labeled in Ref.@7# and is indeed the
lowest state of the3Pg symmetry.

Since the neutral states given in Ref.@7# He2 13Pg :
@(1sg

21su1pu),25.05,5#, and He2 23Du :@(1sg
21su2dg),

24.95,23], are rather irrelevant to the negative ion, He2
2 1

4Fg :@(1sg
21su2pu1dg), 24.98,(16,19)], the latter should

be compared with its true parents, namely, He2 23Pg :
@(1sg

21su2pu),24.98,13# and He2 1
3Du : @(1sg

21su1dg),
24.98,12], among which one is known in the literature and
one is unknown:~i! The latter, 13Du , is known as the lowest
state of the3Du symmetry; it has been calculated in Ref.
@12#. ~ii ! However, the other one, 23Pg , is the second state
of the 3Pg symmetry, is unknown, and is calculated here.

(c) The calculations of the present work. ~i! The
state He2 23Pg :@(1sg

21su2pu),24.98,13# is examined
here in relation to the other parent, He2

13Du :@(1sg
21su1dg),24.98,12# and to their negative

daughter, He2
2 14Fg :@(1sg

21su2pu1dg),24.98,(16,19)#
—the lowest state of the4Fg symmetry, as calculated in
Ref. @7#.

Thus it is shown here that thesecondHe2
3Pg state~this

work!, and thelowestHe2
3Du state@12# are the parents of

the lowestHe2
2 4Fg resonance@7#. This result was obtained

via the same NHF method@9,10# as in Ref.@7#. It is also
verified via a straightforward variational method~global en-
ergy minimization! developed here for this purpose~called
GRAM below!, because the verification with other standard
basis-set methods failed~they do not converge!.

~ii ! Furthermore it will be shown by the
variational ~GRAM! method that thethird He2 33Pg :
@(1sg

21su3pu),24.95,24# and the second He2 23Du :

@(1sg
21su2dg),24.95,23# states are the parents of thesec-

ond He2
2 24Fg :@(1sg

21su3pu2dg),24.95,(32,33)# reso-
nance. For this result NHF and other attempted standard
basis-set methods failed~did not converge!.

III. ORBITAL IDENTIFICATION

In this section a correct identification of the orbitals of
He2

2 14Fg :@(1sg
21su2pu1dg),24.98,(16,19)# @7# is pre-

sented.
The state was recalculated here with the same method

~NHF! @9,10#. An examination of the NHF orbitals by node
counting and by a comparison with appropriate one-electron
DMO @11# reveals that the state He2

2 4Fg of Ref. @7# is
actually (1sg

21su2pu1dg). The examination uses the fol-
lowing knowledge:

~i! As recalled@11#, the DMO’s, if expressed in spheroi-
dal prolate coordinates (j,h,f) ~see Appendix!, are sepa-
rated into thej, the h, and thef parts: CDMO(j,h,f)
5J(j)H(h)eimf. The DMO’s may be labeled by the
united-atom-limit quantum numbers~UAQN! (nlm); then
the number of nodes of the functionsJ(j) andH(h) are
n2 l21, and l2m, respectively @11#. Hence 1pu with
UAQN ~211! and 1dg with UAQN ~322!, have no nodes,
while 2pu with UAQN ~311! has one node.

~ii ! As mentioned in Ref.@7#, the orbitals involved in the
above resonance are separated in two classes: the first two
core orbitals 1sg and 1su , which are almost identical to the
orbitals of the positive ion He2

1 2Su
1 :(1sg

21su) with an
RMS distancêR2&1/2 from the molecular center of typically
1.3 a.u., and the second two outer and diffuse orbitalspu and
dg in which the electrons, on the average, are comparably far
from the center, with a typical RMS extent of 16–19 a.u@7#.
As will be seen, the outer orbitals of both neutral parent
states are comparably diffuse in order to form a negative
resonance. Evidently, only the outer orbitals will be consid-
ered.

Thus for the ionic state He2
2 4Fg of Ref. @7#, its self-

consistent~SCF! outer orbitalspu and dg are satisfactorily
approximated by corresponding and appropriately screened
DMO’s. This is intuitively evident and in practice means that
the main termX1(j) of a partial wave expansion@9#, ex-
pressed in spheroidal prolate coordinates,CSCF(j,h,f)
5S lmXl(j)Ylm(h,f), @9# is quite similar to appropriate
pu anddg DMO’s. As seen from Figs. 1 and 2 these orbitals
are 2pu and 1dg .

Figure 1 shows the main~the first! term X1(j) of the
outer SCF orbitalspu anddg of the above He2

2 4Fg state
recalculated with the same method~NHF! @9,10#. The num-
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ber of nodes are clearly seen as well as the extent of the
orbitals. On the other hand Fig. 2 identifies the twopu SCF
orbitals of interest with the DMO’s 2pu ~the dashed line! and
1pu ~the solid line!, defined by UAQN~311! and ~211!, re-
spectively, computed with effective nuclear charges
za*5zb*50.4147 and 0.5 a.u. respectively, atR0 5 2 a.u.
@The value 0.4147 has been determined in single configura-
tion by the variational~GRAM! method and makes it almost
identical to the SCF 2pu orbital.#

Thus by comparing with corresponding SCF orbitals of
the parent neutral He2 states

3Pg ~see Fig. 1! and 3Du ~see
Ref. @12#! as well as with corresponding pure DMO’s~Fig.
2! it is immediately seen that the SCFpu orbital of the
He2

2 4Fg , state, with one node, may be identified as the
2pu , corresponding to a DMO with UAQN~311!, rather
than the 1pu , which would correspond to a DMO with
UAQN ~211!, and which would have no nodes, while the
SCFdg orbital is indeed shown to be 1dg ~without nodes! as
correctly claimed in Ref.@7#.

Hence the above negative ionic molecular state is practi-
cally the He2

2 4Fg :(1sg
21su2pu1dg) state. Nevertheless it

seems to be thelowest ionic He2
2 state of the

4Fg symmetry @7#, instead of the ‘‘reasonably’’
expected (1sg

21su1pu1dg). In the following the state
(1sg

21su2pu1dg) will be denoted by 14Fg .
The parents of this state, which will determine its stability

with respect to neutral He2 , will be denoted in the following

as 23Pg (1sg
21su2pu), calculated below, and 13Du

(1sg
21su1dg), known from Ref.@12#.

IV. CALCULATION AND APPROXIMATIONS

The state 23Pg , like 1
4Fg @7# and 13Du , @12# was origi-

nally calculated by the programPWMSCCFof McCullough@9#
in the NHF approximation using as initial input the following
atomic Slater-type orbitals,xnlm

z (r ,u,f):x100
1.6 for the 1sg

and 1su orbitals, and ax211
0.32bx311

0.1 , with a5b50.71,
for the 2pu orbital ~Fig. 3!. @The combinations
(a,b)5(0.99,0.14) and (0.14,0.99) converge to the 13Pg ,
with E0525.05 a.u., and to 33Pg , with E0524.95 a.u., at
R 5 2 a.u., respectively#. Because the results~the bounded-
ness of 14Fg with respect to 2

3Pg , and 1
3Du , as discussed

later! were contradicting the existing literature@7#, an at-
tempt was made to verify them by standard basis-set meth-
ods, which failed due to the large diffuseness of the outer
orbitals in these excited states. Then a new method was de-
veloped for this verification. The new method also enabled
the exploration of further aspects of the negative ion forma-
tion, i.e., the discovery of the previously unreported in the
literature second4Fg and its neutral parents. This method is
a global ~randomly applied! minimization ~GRAM! of a CI
total energy within the variational principle, in which all or-
bitals, expressed as DMO’s, are varied simultaneously using
their effective nuclear chargesza* ,zb* as nonlinear variational
parameters.~The results from the GRAM method are shown
in Figs. 4 and 5.!

Since the original calculation was performed by Mc-

FIG. 1. The self-consistent~SCF! 2pu ~dotted line! and 1dg

~chain-dotted line! orbitals of the ionic He2
2 4Fg :

(1sg
21su2pu1dg) state @7# compared with the SCF orbitals

2pu ~solid line! of the neutral He2
3Pg :(1sg

21su2pu) state
~present work! and 1dg ~dashed line! of the neutral He2
3Du :(1sg

21su1dg) @12#. The 2pu orbitals have one node and the
negative ion orbitals are the more diffuse ones.X1(j) is the main
~the first! term in a partial wave expansion@10# of the SCF orbital
wave function expressed in spheroidal prolate coordinates. The in-
ternuclear distance is 2 a.u.

FIG. 2. The SCF orbital 2pu ~chain-dotted line! of the second
neutral He2

3Pg :(1sg
21su2pu) state@present work# along with the

SCF orbital 1pu ~chain-dashed line! of the first neutral He2
3Pg :(1sg

21su1pu) state@7# compared with corresponding DMO’s
2pu ~dashed line! and 1pu ~solid line!, defined by (nlm) UAQN
~311! and~211! respectively. The 2pu orbitals have one node. The
terminology is as in Fig. 1.J(j) is the radial-like part of the DMO
wave function.
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Cullough’s programPWMCSCF @9# only an outline of the
variational~GRAM! calculation is given here, and more de-
tails will be given in the Appendix.

For the diatomic state of interest a CI wave function is
formed, consisting of the main configuration plus~usually!
single and double excitations from it to other configurations;
possible lower-lying open decay channels~also determined
by the GRAM method! are excluded@13#.

For each excitation all linearly independent symmetry-
adapted configurations are used@14#.

For each configuration the Slater determinants are com-
posed of spin orbitals derived from orthogonalization of the
DMO’s, each of the appropriate symmetry and nature—
specified by their UAQN’s (nlm). This fixes the nature of
the desired state.

For each DMO different effective nuclear charges
za* ,zb* are randomly chosen in a reasonable range, and are
varied. At each newz* point the diatomic one-electron
Schrödinger equation is solved numerically@11#, the new
DMO’s are produced~Appendix of Ref.@15#!, are orthogo-
nalized, and the Hamiltonian matrix is diagonalized in the CI
space for the linear part of the minimization.

Then the lowest eigenvalue is led to the global minimum
either by the standard global minimization strategy of simu-
lated annealing~SA! @16#, or, if the orbitals are few, by re-
peated random application of SA’s final step, i.e., of a con-
ventional multidimensional minimization.

With the variational~GRAM! method all states in this
work have been calculated both in single and in multicon-
figuration using 12 DMO’s with single and double excita-
tions from the dominant configuration.

V. RESULTS

Both NHF and GRAM methods in single configuration
exhibit the same features as it concerns the boundedness of
the daughter state with respect to its neutral parents, and the
relative position of the parent energy curves at large internu-
clear separations~where a crossing occurs!. The RMS dis-
tances of the various electrons are the same in both methods.
However, the NHF energies lie between the single and the
multiconfiguration GRAM values~Figs. 3, 4, and 5!. The
NHF results are shown in Tables I and II. The GRAM results
are shown in Tables III–IX. Table III shows the state He2

1 3Pg :(1sg
21su1pu) ~calculated for completeness!, Tables

IV–VI refer to the first negative ionic resonance and its par-
ents, and Tables VII–IX refer to the second negative ionic
resonance and its parents.

A. He2 2 3Pg : „1sg
21su2pu…

The total NHF energy, the orbital energies of the three
orbitals, 1sg

2 , 1su , 2pu , and the corresponding electrons’
RMS distanceŝR2&1/2 of the 23Pg state, for various inter-
nuclear separations, are shown in Table I for comparison
with the daughter ionic state of Ref.@7# and the other parent
Ref. @12# ~all are NHF calculations in single configuration!.
A summary from Refs.@7,12# and the present work is given
in Table II. The RMS distances of the core electrons are,
near equilibrium, about 1.3 a.u., whereas that of the 2pu

FIG. 3. The NHF energy as a function of the internuclear sepa-
rationR ~in a.u.!. The neutral states He2

3Pg :(1sg
21su2pu) ~this

work!, and He2
3Du :(1sg

21su1dg) @12# are the parents of the ionic
state He2

2 4Fg :(1sg
21su2pu1dg) ~which seems to be the lowest

resonance in the4Fg symmetry@7#!.

FIG. 4. He2
2 1,4Fg :(1sg

21su2pu1dg) and He2
2 2

4Fg :(1sg
21su3pu2dg) calculated in single configuration with the

GRAM method are bound with respect to their neutral parents
$He2 23Pg :(1sg

21su2pu), 13Du :(1sg
21su1dg)% and $He2

33Pg :(1sg
21su3pu), 23Du :(1sg

21su2dg)%. The lowest He2
13Pg :(1sg

21su1pu) state is also shown.
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electron is about 13 a.u., and increases with the nuclear sepa-
ration less rapidly than that of the core electrons. This less
rapid increase is intuitively understandable because the outer
electrons, being quite far from the center, are not so sensitive
to the~geometrical! details near the center. The core orbitals
are almost identical in both the ionic and the parent states as
shown by a comparison of the corresponding tables from
Refs. @12# and @7# for the states 13Du and 14Fg , respec-

tively ~and from Table II!. The outer electrons are at compa-
rable RMS distances from the diatomic center in both of the
parent states~11–13 a.u.!.

Table IV shows the same 23Pg state, calculated with the
GRAM method. In the CI expansion the DMO’s with the
following UAQN’s (nlm) were used: 100, 210, 311, 411,
322, 321, 422, 432, 200, 433, 310, and 543. The three lead-
ing CI terms are 0.988 (1sg

21su2pu) 1 0.098 ~1sg
2 2su

2pu)20.064(1sg
2 1su 3pu).

B. Boundedness of He2
2 1 4Fg : „1sg

21su2pu1dg…

In the daughter He2
2 the outer electrons are still at com-

parable RMS distances from the diatomic center, which,
however, are now larger~16–19 a.u.! than those of the neu-
tral parents. This is consistent with intuition: one electron
can be held closer to the nuclei than two electrons, and the
two should be comparably far from the nuclei in order to
form a negative ion. The 1dg orbital is affected slightly more
than the 2pu orbital by the formation of the resonance. These
are also indicated in Fig. 1, where it is seen that the character
of the orbitals remains unchanged, while the outer electrons
move farther from the nuclei in forming the negative reso-
nance.

Figures 3 and 4 show that the 23Pg state in single con-
figuration, either NHF or variational~GRAM!, lies energeti-
cally slightly lower, by about 0.002 a.u.~Table II!, than the 1
3Du state at most of the internuclear separations, while their
energy difference increases with CI~Fig. 5!. Also in both
NHF and GRAM single-configuration solutions~but not in
CI! a crossing occurs at large internuclear separations,Rab
. 3.5 a.u. However, their daughter ionic state 14Fg is
bound with respect tobothof its neutral parents at all inter-
nuclear separations (,7 a.u.!, which makes it a closed chan-
nel resonance with respect to its neutral parents@17#, and
explains why it affects more the 1dg orbital of the higher
neutral He2

3Du state than the 2pu orbital of the energeti-
cally closer neutral He2

3Pg state. The boundedness of the
ionic daughter with respect to its neutral parent states is

FIG. 5. Same as in Fig. 4 but with configuration interaction~CI!
via the GRAM method, using 12 DMO’s in single and double ex-
citations from the main configuration.

TABLE I. Total Hartree-Fock~NHF! energies, occupied orbital energies, and the RMS distance of the
electrons from the diatomic center,^R2&1/2, at various internuclear separationsRab , for the state He2
3Pg :(1sg

21su2pu), which is the second state in the3Pg symmetry~and is one of the parent states of
He2

2 4Fg :(1sg
21su2pu1dg) @7#!. All quantities are in a.u.

Rab ENHF e(1sg) e(1su) e(2pu) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (2pu)

1.0 -4.567284 -2.28036 -0.85448 -0.06055 0.883 1.480 12.238
1.4 -4.891906 -1.87092 -1.13123 -0.05854 1.058 1.365 12.671
1.6 -4.949317 -1.74204 -1.22571 -0.05786 1.142 1.378 12.825
1.8 -4.973932 -1.64261 -1.29564 -0.05725 1.226 1.412 12.967
2.0 -4.979795 -1.56426 -1.34649 -0.05669 1.310 1.460 13.103
2.2 -4.975439 -1.50150 -1.38292 -0.05614 1.395 1.518 13.237
2.4 -4.966022 -1.45059 -1.40858 -0.05561 1.482 1.582 13.369
2.6 -4.954608 -1.40885 -1.42627 -0.05509 1.569 1.652 13.500
3.0 -4.932002 -1.34555 -1.44551 -0.05409 1.747 1.804 13.760
4.0 -4.895515 -1.25607 -1.44989 -0.05178 2.208 2.224 14.400
5.0 -4.881303 -1.21338 -1.43837 -0.04968 2.680 2.678 15.025
6.0 -4.875795 -1.19002 -1.42786 -0.04778 3.157 3.149 15.635
7.0 -4.873041 -1.17553 -1.42038 -0.04605 3.639 3.628 16.230
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probably an intrinsically natural property of the He2
2

4Fg :(1sg
21su2pu1dg) state. In order to check this further,

another CI calculation, implementing a ‘‘state specific’’
technique~SST! @15# has been performed@13#.

Figure 5 and Tables IV–VI show the same states calcu-
lated with the GRAM method, using 12 DMO’s in single and
double excitations from the main configuration. Lower-
lying open decay channels such as (1sg

21su2sg1fu) or
~1sg1su

21dg1pg) ~in which one of the outer orbitals turns
out to be much more diffuse than the other! have been ex-
cluded in order to avoid contributions from fictitious states.

The state He2 1
3Du :(1sg

21su1dg) was calculated using
the following DMO’s: 100, 210, 322, 422, 311, 321, 411,
432, 200, 433, 310, and 543. The three leading CI
terms are 0.995 (1sg

21su1dg) 1 0.086 ~1sg
2 2su 1dg)

1 0.031~1su
2 2su 1dg).

The state He2
2 14Fg :(1sg

21su2pu1dg) was calcu-
lated using the following DMO’s: 100, 210, 311, 322,
411, 422, 321, 432, 200, 433, 310, 543, and 410. The three
leading CI terms are 0.988 (1sg

21su2pu1dg)20.118
(1sg

21su3pu1dg) 10.046 ~1sg1su2su3pu1dg). The last
term is, namely,

0.046@~1sgA1suA2suB3pu1A1du1A!

1~1sgA1suA2suA3pu1A1du1B!

1~1sgA1suA2suA3pu

1B1du1A!23~1sgA1suB2suA3pu1A1du1A!],

whereA denotes spin up andB spin down. The orbital ‘‘1’’
sign refers to the component of the orbital angular momen-
tum along the positive internuclear axis.

C. He2
2 2 4Fg: „1sg

21su3pu2dg…

Since 2pu and 1dg orbitals form a negative resonance, it
is interesting to examine whether 3pu and 2dg can form a
resonance too. Figures 4 and 5 and Tables VII–IX show
that this is indeed the case: He2 33Pg :(1sg

21su3pu)
and 23Du :(1sg

21su2dg) are the parents of He2
2

24Fg :(1sg
21su3pu2dg). They have been calculated by the

GRAM method~NHF does not converge for 24Fg) again
with 12 DMO’s in single and double excitations from the
main configuration.

The state He2 3
3Pg :(1sg

21su3pu) was calculated using
the following DMO’s: 100, 210, 411, 431, 322, 321, 422,
432, 200, 433, 310, and 543. The three leading CI
terms are 0.967 (1sg

21su3pu) 1 0.146 ~1su
2 2su 3pu)

TABLE II. The same quantities as in Table I atRab 5 2 a.u. for the lowest neutral He2
3Pg :(1sg

21su1pu) @7#, the ionic He2
2 4Fg :(1sg

21su2pu1dg), which seems to be the lowest resonance of
this symmetry@7#, the second neutral He2

3Pg :(1sg
21su2pu) ~this work!, and the lowest neutral He2

3Du :(1sg
21su1dg) @12#. The latter two states are the parents of the above resonance. The lastfour columns

represent the RMS distance of the electrons from the diatomic center.

State ENHF e(1sg) e(1su) e(pu) e(1dg) ^1sg& ^1su& ^pu& ^1dg&

He2
3Du :(1sg

21su1dg) -4.9779 -1.57 -1.35 -0.055 1.31 1.46 11.4
He2

3Pg :(1sg
21su2pu) -4.9798 -1.56 -1.35 -0.057a 1.31 1.46 13.1a

He2
2 4Fg :(1sg

21su2pu1dg) -4.9818 -1.52 -1.30 -0.012a b -0.005 1.31 1.46 17.5a b 18.8
He2

3Pg :(1sg
21su1pu) -5.0512 -1.42 -1.21 -0.128c 1.32d 1.47d 5.25 c

a2pu .
bThis orbital was assigned as 1pu in Ref. @7#, it is actually 2pu .
c1pu .
dNot given in the literature.

TABLE III. The effective nuclear chargesza*5zb* and the RMS electron distances from the molecular
center, of the DMO’s in the main configuration of He2 1

3Pg :(1sg
21su1pu). All quantities are in atomic

units.

Rab z* (1sg) z* (1su) z* (1pu) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (1pu)

1.4 1.29642 1.85263 0.52943 1.049 1.317 5.219
1.6 1.25639 1.94837 0.55688 1.133 1.340 5.014
1.8 1.23325 2.00897 0.54722 1.218 1.381 5.109
2.0 1.23821 2.05299 0.53644 1.297 1.435 5.211
2.2 1.21671 2.09476 0.53005 1.385 1.496 5.279
2.4 1.21553 2.13586 0.53012 1.470 1.563 5.299
2.6 1.21883 2.18375 0.53017 1.556 1.635 5.321
3.0 1.23663 2.28071 0.53023 1.733 1.789 5.369
4.0 1.27911 2.49205 0.53031 2.194 2.210 5.517
5.0 1.29155 2.57736 0.53031 2.667 2.634 5.701
6.0 1.26053 2.58121 0.53031 3.146 3.112 5.919
7.0 1.19009 2.58116 0.53031 3.629 3.599 6.171
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20.136 ~1sg1su2sg3pu), where the last term is, namely,
20.136@(1sgA1suA2sgB3pu1A)1~1sgA1suA2sgA3
pu1B!1~1sgA1suB2sgA3pu1A) 23 ~1sgB1suA2
sgA3pu1A!#. The state He2 23Du :(1sg

21su2dg) was
calculated using the following DMO’s: 100, 210, 422,
522, 311, 321, 411, 432, 200, 433, 310, and 543. The
three leading CI terms are 0.971 (1sg

21su2dg)20.136
~1sg1su2sg2dg)20.114(1sg

22su2dg). The second
term is, namely, 20.136@(1sgA1suA2sgB2dg1A)
1(1sgA1suA2sgA2dg1B) 1~1sgA1suB2sgA2dg1A)
23(1sgB1suA2sgA2dg1A)#.

The state He2
2 24Fg :(1sg

21su3pu2dg) was calculated
using the following DMO’s: 100, 210, 411, 422, 431, 522,
321, 432, 200, 433, 310, 543, and 410. The three
leading CI terms are

0.972 ~1sg
21su3pu2dg!10.130~1sg1su2sg3pu2dg!

10.108 ~1sg1su2sg3pu2dg!,

where the last two terms are actually

0.130@~1sgA1suA2sgB3pu1A2dg1A!

1~1sgA1suA2sgA3pu1A2dg1B!

1~1sgA1suA2sgA3pu1B2dg1A!

1~1sgA1suB2sgA3pu1A2dg1A!

24~1sgB1suA2sgA3pu1A2dg1A!]

10.108@~1sgA1suA2sgB3pu1A2dg1A!

2~1sgA1suA2sgA3pu1A2dg1B!#.

The ionic daughter 24Fg is also bound with respect to
both of its neutral parents. The RMS distances of the reso-
nating electrons from the diatomic center are 24 a.u. in the
3pu and 23 a.u. in the 2dg orbitals of the neutral parents,
whereas they increase to 32 and 33 a.u., respectively in the
negative daughter. The core orbitals 1sg and 1su still remain
similar to those of 14Fg .

D. Does He2
2 4Fg : „1sg

21su1pu1dg… exist?

The first neutral He2
3Pg :(1sg

21su1pu) state lies as
much as 0.070 a.u. lower than 14Fg and its parents~Figs. 4
and 5!. With the GRAM method it was calculated using

TABLE IV. Same as in Table III but for He2 2
3Pg :(1sg

21su2pu).

Rab z* (1sg) z* (1su) z* (2pu) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (2pu)

1.4 1.32355 1.85324 0.54771 1.045 1.314 12.535
1.6 1.28404 1.91326 0.54417 1.129 1.337 12.689
1.8 1.25813 1.96756 0.54124 1.213 1.379 12.835
2.0 1.24213 2.02005 0.53850 1.297 1.432 12.981
2.2 1.23498 2.07262 0.53594 1.381 1.493 13.128
2.4 1.23476 2.12569 0.53359 1.466 1.560 13.273
2.6 1.24045 2.17941 0.53137 1.553 1.632 13.418
3.0 1.26154 2.28803 0.52753 1.730 1.786 13.703
4.0 1.36075 2.54165 0.52039 2.188 2.210 14.386
5.0 1.41552 1.83596 0.51544 2.662 2.651 15.040
6.0 1.37150 1.83602 0.51284 3.143 3.127 15.645
7.0 1.30678 1.83602 0.51095 3.627 3.611 16.234

TABLE V. Same as in Table III but for He2 1
3Du :(1sg

21su1dg).

Rab z* (1sg) z* (1su) z* (1dg) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (1dg)

1.4 1.32449 1.85604 0.50138 1.044 1.313 11.276
1.6 1.28772 1.91509 0.50049 1.129 1.336 11.323
1.8 1.26270 1.96889 0.49946 1.212 1.378 11.368
2.0 1.24755 2.02131 0.49899 1.296 1.431 11.412
2.2 1.24077 2.07485 0.49851 1.380 1.492 11.455
2.4 1.24120 2.12686 0.49817 1.465 1.560 11.499
2.6 1.24742 2.18057 0.49791 1.552 1.631 11.542
3.0 1.27278 2.28897 0.49769 1.729 1.785 11.630
4.0 1.36479 2.54306 0.49744 2.187 2.209 11.865
5.0 1.42977 2.66476 0.49681 2.661 2.647 12.142
6.0 1.38532 1.82951 0.49764 3.142 3.127 12.436
7.0 1.32105 1.82951 0.49768 3.626 3.611 12.757
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the following DMO’s: 100, 210, 211, 311, 322, 321, 422,
432, 200, 433, 310, and 543. The first three leading terms
in the CI expansion are 0.986 (1sg

21su1pu)
20.102(1sg

22su1pu) 20.061(1sg1su2sg1pu). The last
term is actually

20.061@~1sgA1suA2sgB1pu1A!

1~1sgA1suA2sgA1pu1B!

22~1sgA1suB2sgA1pu1A!#.

There remains an open question whether a lower ionic
He2

2 4Fg :(1sg
21su1pu1dg) state exists, which would

have as parents He2 13Pg :@(1sg
21su1pu),25.05,5# and

He2 13Du :@(1sg
21su1dg),24.98,12#. NHF does not find

this state. Considering the RMS distances in the parents, it is
anticipated that it is unlikely that the two outer orbitals,
while retaining their character 1pu and 1dg , may be so
much deformed so as to keep the outer electrons at compa-
rable separations from the nuclei in order to form the desired
negative ion. Therefore, it is expected that this state does not
exist. Nevertheless this needs a proof.@A proof is under con-
sideration@18# via the variational~GRAM! method, based on
the fact that at theglobal energy minimum of He2

2

4Fg :(1sg
21su1pu1dg), one of the orbitals, 1pu , has finite

effective nuclear charges, whereas in the other one, 1dg ,
both effective nuclear charges are zero,za*5zb*
50(,1026), which means that the corresponding electron
‘‘rests’’ at infinity. Hence the variational calculation predicts
@18# that He2

2 4Fg :(1sg
21su1pu1dg) cannot be formed,

since the global minimum with energyE525.04 a.u.
merely tries to describe a neutral He2

3Pg :(1sg
21su1pu)

with an electron at infinity in a 1dg type orbital.#

VI. SUMMARY

In conclusion, after proving that the neutral He2 states,
reported as parent states of He2

2 14Fg in Ref. @7# are incor-
rect, it is shown that~a! the He2

2 14Fg state of Ref.@7# has
a 2pu instead of 1pu orbital, as claimed in Ref.@7#, ~b! the
He2

2 14Fg is a closed channel ‘‘Feshbach’’ type negative
ion resonance, below He2 23Pg and 13Du , ~c! the He2

2

24Fg is also a similar closed channel negative ion reso-
nance, below He2 33Pg and 23Du , and ~d! He2

2

4Fg :(1sg
21su1pu1dg) does not exist. The relevant He2 and

He2
2 states are as follows: He2 1

3Pg :(1sg
21su1pu) at E0

5 25.05 a.u.~at R5 2 a.u.!; He2 2
3Pg :(1sg

21su2pu) and
13Du :(1sg

21su1dg) as well as their ionic daughter He2
2

14Fg :(1sg
21su2pu1dg) at E0524.98 a.u.; He2

33Pg :(1sg
21su3pu) and 23Du :(1sg

21su2dg) with their

TABLE VI. Similar to Table III but for He2
2 14Fg :(1sg

21su2pu1dg).

Rab z* (1sg) z* (1su) z* (2pu) z* (1dg) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (2pu) ^R2&1/2 (1dg)

1.4 1.32520 1.85413 0.42577 0.30428 1.044 1.313 15.794 18.459
1.6 1.28602 1.91419 0.42185 0.30299 1.129 1.337 15.951 18.541
1.8 1.26047 1.96824 0.41827 0.30176 1.213 1.378 16.100 18.621
2.0 1.24370 2.02058 0.41473 0.30056 1.297 1.432 16.251 18.700
2.2 1.23772 2.07339 0.41120 0.29934 1.381 1.493 16.404 18.782
2.4 1.23797 2.12622 0.40769 0.29814 1.466 1.560 16.560 18.863
2.6 1.24395 2.17991 0.40424 0.29695 1.552 1.632 16.717 18.945
3.0 1.26541 2.28829 0.39747 0.29456 1.729 1.786 17.038 19.113
4.0 1.36649 2.54213 0.38197 0.28860 2.188 2.209 17.840 19.550
5.0 1.42451 1.83648 0.37296 0.28233 2.662 2.647 18.556 20.034
6.0 1.38324 1.83654 0.37913 0.27433 3.143 3.127 19.288 20.674
7.0 1.30552 1.83654 0.37388 0.26762 3.627 3.611 19.976 21.258

TABLE VII. Same as in Table III but for He2 3
3Pg :(1sg

21su3pu).

Rab z* (1sg) z* (1su) z* (3pu) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (3pu)

1.4 1.30561 1.80839 0.48821 1.047 1.312 25.131
1.6 1.26689 1.91597 0.52445 1.131 1.337 23.518
1.8 1.26157 1.99781 0.52050 1.211 1.379 23.719
2.0 1.24869 2.04898 0.51688 1.295 1.432 23.907
2.2 1.24161 2.09308 0.51338 1.381 1.493 24.089
2.4 1.24460 2.13857 0.50982 1.465 1.560 24.273
2.6 1.25127 2.18725 0.50635 1.552 1.632 24.451
3.0 1.27808 2.28683 0.49981 1.729 1.785 24.787
4.0 1.35049 2.50408 0.48907 2.189 2.205 25.373
5.0 1.36084 2.59556 0.48912 2.666 2.634 25.537
6.0 1.39380 2.59992 0.48919 3.142 3.112 25.725
7.0 1.36361 2.60007 0.48919 3.626 3.599 25.937
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ionic daughter He2
2 24Fg :(1sg

21su3pu2dg) at
E0524.95 a.u. It is anticipated that the whole series of the
ionic 4Fg daughters would be formed from the3Pg and
3Du neutral parents with (n11)pu and ndg orbitals, pro-
vided that their RMS extents are comparable. Finally it
might be said that the GRAM method is a useful technique
for finding stable diatomic states.
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APPENDIX: THE GRAM METHOD

The diatomicn-electron normalized wave function is ap-
proximated by a CI expansion consisting ofnconf configura-
tions:

C~x1 ,x2 , . . . ,xn!5 (
p51

nconf

cpFp~x1 ,x2 , . . . ,xn!, ~A1!

$x%5$~r ,s!%, ~A2!

uCu251, ~A3!

Fp5(
I
aI ,pDI , ~A4!

whereDI are Slater determinants composed of given param-
etrized orthonormal spin orbitals,ui(r k)a ~for spin up orb
for spin down!, andaI ,p are their fixed coefficients determin-
ing the symmetry of the state. Each configuration is usually
formed by single and double excitations from a main con-
figuration, and for each excitation all linearly independent
symmetry-adapted configurations are calculated by the
QCPE program HEDIAG @14#, appropriately expanded
here so as to give small integer~unnormalized! Slater
determinant coefficients based on the orthogonal basis
$~1,1,1,1,1,1, . . .!, ~1,21,0,0,0,0, . . .!, ~1,1,22,0,0,0, . . .!,
~1,1,1,23,0,0, . . .!, . . .%; @the first vector belongs to a one-
dimensional subspace, orthogonal to the subspace spanned
by the remaining~degenerate! vectors#.

The problem is to determine which values of thecp coef-
ficients and of the spin orbital parameters minimize the ex-
pectation value of the two center (a,b) Hamiltonian,
E5^CuHuC&.

Since

H5(
i51

n

hi1(
i. j

n
1

r i j
, ~A5!

hi52¹ i
22Za /r ai2Zb /r bi , ~A6!

TABLE VIII. Same as in Table III but for He2 2
3Du :(1sg

21su2dg).

Rab z* (1sg) z* (1su) z* (2dg) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (2dg)

1.4 1.30642 1.80826 0.45792 1.047 1.312 24.533
1.6 1.26755 1.91591 0.49861 1.131 1.337 22.576
1.8 1.26207 1.99812 0.49751 1.211 1.378 22.641
2.0 1.24894 2.04957 0.49647 1.295 1.432 22.704
2.2 1.24369 2.09351 0.49547 1.380 1.493 22.767
2.4 1.24683 2.13911 0.49453 1.465 1.560 22.828
2.6 1.25374 2.18779 0.49363 1.551 1.632 22.889
3.0 1.28009 2.28746 0.49187 1.728 1.785 23.012
4.0 1.34539 2.50537 0.48761 2.190 2.205 23.325
5.0 1.36463 2.59604 0.48257 2.666 2.634 23.679
6.0 1.38113 2.60197 0.47779 3.144 3.112 24.026
7.0 1.38698 2.60072 0.47300 3.624 3.599 24.371

TABLE IX. Same as Table VI but for He2
2 24Fg :(1sg

21su3pu2dg).

Rab z* (1sg) z* (1su) z* (3pu) z* (2dg) ^R2&1/2 (1sg) ^R2&1/2 (1su) ^R2&1/2 (3pu) ^R2&1/2 (2dg)

1.4 1.30456 1.75378 0.36832 0.32894 1.048 1.309 33.286 34.139
1.6 1.33092 1.84432 0.36839 0.32901 1.114 1.335 33.290 34.136
2.0 1.34766 2.03525 0.38652 0.33895 1.264 1.433 31.757 33.147
2.4 1.34766 2.03525 0.38652 0.33895 1.431 1.600 31.788 33.160
2.6 1.34766 2.03525 0.38652 0.33895 1.518 1.687 31.805 33.168
3.0 1.34766 2.23659 0.38652 0.33902 1.699 1.781 31.843 33.178
4.0 1.93825 2.50879 0.38652 0.33909 2.140 2.205 31.957 33.223
5.0 1.93825 2.59720 0.38652 0.33916 2.625 2.633 32.096 33.281
6.0 1.93825 2.60207 0.38652 0.33922 3.110 3.112 32.258 33.354
7.0 1.93825 2.60207 0.38652 0.33922 3.597 3.599 32.440 33.445
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whereZa ,Zb are the nuclear charges andr xy is the distance
between the particlesx andy, then

E5(
p,q

cpcqHp,q , ~A7!

Hp,q5 (
s1 , . . . ,sn

E dt1 . . .dtnFp*HFq ~A8!

5(
I ,J

aI ,paJ,q^DI uHuDJ&. ~A9!

The matrix elementŝDI uHuDJ& are reduced to one- and

two-electron integrals according to the number of different
spin orbitals inDI andDJ @19#.

The Hamiltonian and the spin orbitals are calculated in
prolate spheroidal coordinatesr5(j,h,f) ~see, for example,
the Appendix of Ref.@9# and references therein!

j5~r a1r b!/R,j>1; ~A10!

h5~r a2r b!/R,uhu<1, ~A11!

wherer x is the distance from centerx, R is the internuclear
distance, andf is the azimuthal angle, 0<f<2p , with

dt5
R3

8
~j22h2!djdhdf, ~A12!

¹25
4

~R2~j22h2! F ]

]j
~j221!

]

]j
1

]

]h
~12h2!

]

]h
1S 1

~j221!
1

1

~12h2! D ]2

]f2G , ~A13!

1

r 12
5
8p

R (
l50

`

(
m52l

l

~21!m
~l2umu!!
~l1umu!!

Pl
umu~min$j1 ,j2%!Ql

umu~max$j1 ,j2%!Yl
m~h1 ,f1!Yl

m~h2 ,f2!* , ~A14!

where Pn
umu(x) and Qn

umu(x) are the associated Legendre functions of the first and second kind, defined asPn
umu(x) 5

ux221u umu/2dumuPn /dx
umu @9,20,21# andYn

m(h,f) 5 @(2n11)(n2umu)!/4p(n1umu)! #1/2Pn
umu(h)eimf are spherical harmonics.

Usually, depending onR, about 10 values ofl are used.
Pn
m(z) is calculated as suggested on p. 182 of Ref.@22#. Qn

m(j), for j51/z2.1, is calculated as defined on p. 332 of Ref.
@23# in terms of the hypergeometric functionF21 in ~0,1!, which, forz,0.1, is computed as a series expansion for positive or
negativem, and forz.0.9 is computed by reflection formulas around 0.5~pp. 556 and 559 of Ref.@23#!. The gamma and
digamma functions involved are as easily computable as, say,ex ~p. 157 of Ref.@22#!; for 0.1,z,0.9, F21 is computed by
direct integration of its differential equation as suggested on p. 563 of Ref.@22#.

The spin orbitals are composed of DMO’sc(r )5J(j)H(h)eimf, computed as discussed in the Appendix of Ref.@15#,
orthonormalized by the Gram-Schmidt method: The orthogonal basis is given in terms of the nonorthogonal byuun& 5
ucn&2( i51

n-1 uc i&cin where the transformation matrixcin is built up by$†(cin5Ain2(k5 i11
n-1 cikAkn) i51,n21]n52,norb% and

the ~inverse! matrix Akn is built up by $†(^uj uuj& 5 ^c j uc j&2( i51
j -1 ^ui uui&Ai j

2 ), @(^uj uuj&Ajn 5

^c j ucn&2( i51
j -1 ^ui uui&Ai jAin) n5 j11,norb] ‡j51,norb}. Here norb is the number of orbitals.

The DMO’s obey@11# the separate differential equations,

d

dj F ~j221!
dJ~j!

dj G5F m2

~j221!
1c1p2~j221!2R~za*1zb* !jGJ~j!, ~A15!

d

dh F ~12h2!
dH~h!

dh G5F m2

~12h2!
2c1p2~12h2!1R~za*2zb* !h GH~h!, ~A16!

wherec, p ~calculated by Power’s QCPE programOEDM @11#! andm are the separation constants, andz* , the effective
nuclear charges, are used as nonlinear variational parameters. These equations will be used in the evaluation of the total kinetic
energy.

With the Hamiltonian and the spin orbitals expressed in prolate spheroidal coordinates it remains to calculate the Hamil-
tonian matrix elements. It is straightforward to show the following.

The overlap integrals in terms of DMO’s are

^c8uc&5
2pR3

8
dm8,mF E dhH8HE djj2J8J2E djJ8JE dhh2H8H G . ~A17!

The one-electron integrals, ifz5Za1Zb , z5Za2Zb , z*5za*1zb* , andz*5za*2zb* , in view of the DMO differential
equations~A15!, ~A16!, are
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^c8uhuc&52
2pR

4
dm8,mE dj dhJ8JH8H@p2~j22h2!1R~z2z* !j2R~z2z* !h#, ~A18!

which are again of the form* dhH8H*djA(j)J8J2* djJ8J* dhB(h)H8H.
For the two-electron integralŝc ic j u1/r 12uckc l& , by denoting for eachi ,k,l, andm:

aj21b5E dh~j22h2!Hi~h!Hk~h!Pl
umu~h!, ~A19!

Si ,k,l
m ~j!5J i~j!Jk~j!~aj21b!, ~A20!

the terms surviving fromdmi ,mk1m are of the form

E
1

`

dj1Si ,k,l
m ~j1!FQl

m~j1!E
1

j1
dj2Sj ,l ,l

m ~j2!Pl
m~j2!1Pl

m~j1!E
j1

`

dj2Sj ,l ,l
m ~j2!Ql

m~j2!G . ~A21!

Thus the interelectronic repulsion is reflected in a logarith-
mic singularity ofQ~1!, which is accurately integrated by a
numerical change of variable, i.e., by finding the root of
x ln(x)2x52t in ~0,1!. All integrals are performed by an
adaptive step method, i.e., by subdividing, if necessary, each
interval into two parts, and by comparing the total with the
sum of the left and right parts. In every interval a Newton-
Cotes formula using four equal subdivisions is used, i.e.,
@7 f1132f 2112f 3132f 417 f 5#(x52x1)/90 .

The standard linear variation leads to a secular equation,
whose lowest root is led to minimum by varying the nonlin-
ear parameters, i.e., the DMO effective nuclear charges.

The global minimum is found by a standard method of
global minimization, namely, by simulated annealing@16#,
i.e., by accepting the energy at a new point, randomly close
to the old one, with probabilitye2(Enew2Eold)/T, whereT is an
external parameter, ‘‘temperature,’’ diminished to zero with
a ‘‘slow’’ strategy; the determination of ‘‘slow’’ cooling
usually needs experimentation; for example, afterE is ad-
equately stabilized on the average for eachT, T may be
reduced by 5%.~Thus highT’s give the system an opportu-
nity to escape from around a local minimum and visit other
local minima, and lowT’s almost never raise the system
away from a local minimum. If cooling is ‘‘fast,’’ a local
minimum, ‘‘polycrystalline,’’ will be reached. If it is
‘‘slow’’ the system will have the time to reach the global
‘‘mono-
crystalline’’ minimum and stay there.! When T becomes
small enough~say 0.5% of the maximum energy range ob-
served!, minimization is concluded conventionally, via Pow-
ell’s method of conjugate directions~p. 297 in Ref.@22#!,
restricted here to positive effective nuclear charges.

However, when the number of orbitals is small, experi-
ence shows that there are few local minima more or less
distinct from each other. In this case all local minima, and in
particular the global one, can be found by repeated random
application of the conventional minimization, i.e., by ran-
domly choosing many~say 100! points in the DMO effective
nuclear charge space, and by finding for each of them the
energy minimum closest to it. This procedure is denoted as
global randomly applied minimization~GRAM!, and was ap-
plied here in order to verify the boundedness of the ionic
He2

2 1 4Fg with respect to its neutral parents He2 2
3Pg and

1 3Du and to obtain the second ionic 24Fg and its neutral
parents.

The global ~randomly applied! energy minimization
~GRAM!, via simultaneous variation of the DMO’s involved
in a CI expansion, has not been fully exploited yet as a
general method, but preliminary results from this work and
from Ref.@18# suggest that it turns out to be a very powerful
method for diatomic molecules. It seems to be able to calcu-
late any desired diatomic state, excited or not, since it does
not depend on successful convergence of nonlinear iterative
schemes like Hartree-Fock; it rather keeps track of the intui-
tive nature of the desired state. If the state exists, the GRAM
method provides the correct result, and if it yields an un-
physical result it suggests that the state should not exist.
When the CI expansion chosen~for an existing state! is small
~e.g., single configuration!, then the GRAM method is gen-
erally inferior to the NHF~if the latter converges!. The larger
the CI expansion the more GRAM tends to a multiconfigu-
ration NHF. However, the CI expansion need not be huge
because the description never departs from the natural char-
acter of the desired state.
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