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Iterative evaluation of the path integral for a system coupled
to an anharmonic bath
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An iterative algorithm is presented for evaluating the path integral expression for the reduced
density matrix of a quantum system interacting with an anharmonic dissipative bath whose influence
functional is obtained via numerical methods. The method allows calculation of the reduced density
matrix over very long time periods. @999 American Institute of Physics.
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In spite of persistent efforts, the problem of calculating P(s’,8";t)=Tr(s"|p(t)|s")
the quantum time evolution of a wave-function or density i
matrix in a multidimensional Hamiltonian remains unsolved. I & .
Recent work has revolved around methods based on mean _f Js+f 7S exp(ﬁ SO[S+]>
field, quantum-classical, or semiclassical ideas. The most i
rigorous of these approaches, semiclassical evolution with xex;{ - —So[s_])F[s+ s_]. )
the Van Vleck propagatdr? is often highly accuraté;® yet h

e.xtrem(.aly demandmg numenca}lly because .'t requires mU|t'Here,s+ , S_ are forward and backward paths of the observ-
dimensional integration of oscillatory functions as well as

. . . able system respectivel$, is the corresponding action, and
evaluation of a prefactor that scales nonlinearly with the y P %o P 9

number of particles. Current efforts to make it practical ex-the influence functional is given by the expression
ploit filtering techniques; ™! the self-cancellation achieved  F[s, s ]=Tr,(U,[s. ]p(0)U; ¥[s_]) &)
via combined forward—backward propagatiént®or formu- o ’ ; ’
lations which avoid calculation of the prefactdrt’~**while ~ whereU,, is the time evolution operator of the bath along a
these approaches appear promising, they are bound to fail ahosen system path. Note that the time parametrization of
long propagation times or if tunneling effects arethese paths makes the bath Hamiltonian time-dependent.
prominent?® Treatment at a higher level becomes necessary There are numerous advantages of this representation, as
in such situations. well as severe obstacles. The explicit form of the influence
In a series of papers by our group, we have argued th&unctional—an intrinsically quantum mechanical quantity
the path integral-influence functional formulation of quan-not obtainable by classical molecular dynamics methods—is
tum dynamic&"? offers significant advantages when dealingnot available except in very restrictive situations, the most
with large-dimensional problems. One begins by identifyingnotable of which is the case of a harmonic b#tet the
the observable “systemTthe degreés) of freedoms being  simple structure of the influence functional, where the only
probed in the calculatigrand the remaining “bath” degrees operators appearing are the time propagators and the initial
of freedomx which interact with the system and thus affect density matrix, implies that its evaluation may require less
its dynamics but whose precise state is not followed. Thuswork than that required to obtain the full quantum dynamics
the Hamiltonian is split into two terms, for the same number of particles. Further, the consistency of
the bath in terms of spectator coordinates implies that its
dynamics may be treated at a less rigorous level than that of
(1) the observable system, i.e., errors due to approximate treat-
ment of the influence functional are expected to affect the
result in a less significant way compared to the error that
would arise if a similar approximation were used to propa-
Expressing the full propagator as a path integral, and colleclgate the observable system. The semiclassical approximation
ing all bath variables into an influence functional, one arrivegends itself naturally to this goal: it keeps track of quantum
at a formal path integral representation where only paths ofnechanical phases rather faithfully and its forward—
the low-dimensional system are summed over. For exampléackward versiolf'*®is ideally suited. Thus, assuming that
the reduced density matrix of the system takes the form the influence functional from a sufficiently large environ-
ment can be computed numerically, one is confronted with

aaddress to which corrspondence should be sent. Electronic mailth€ problem of evaluating the remaining pf'ﬂh integral Wit_h
nancy@makri.scs.uiuc.edu respect to the system. Monte Carlo sampling of paths fails
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as the integrand is a highly oscillatory multidimensionalon the system due to its interaction with the bath. Such cor-
function, while explicit enumeration of paths is feasible onlyrelation functions decay irreversibly if the environment is
for short times. The only remaining avenue seems to be amacroscopic. As a consequence, the nonlocal interactions in
iterative formulation. The iterative evaluation of the path in-the influence functional arising from condensed media have
tegral has proved a very fruitful method in the case of afinite range. If the expansion coefficients are known, it is a
harmonic dissipative batf# 2% its extension to general an- straightforward matter of extending the harmonic bath meth-
harmonic environments is undertaken in the present letter. odology developed in our group to devise an iterative proce-

Since we aim at a numerical propagation method, welure for evaluating the evolution of the reduced density ma-
switch to the discretized path integral representation, irtrix.

which the reduced density matrix takes the form However, the expansion coefficients in H§) are not
known in general. In a classical treatment of the bath, low-
p(sy,snst) order terms in the series can be obtained by molecular dy-
namics simulations. The latter is costly and the evaluation of
:f dsgj dsff dss_j(sq|e Hodth|gh ... terms bgyond the two-.tir.ne gorrelation functiqn is extrem'ely
demanding. Further difficulties are the required determina-
X<Sir|e—iHOAt/ﬁ|Sg><sa|eiHoAtm|Sl—>,,, tion of imagin_ary parts ar_ld th_e inability to test_ the accuracy
of the classical approximation. An alternative approach
X (sn_1|€MoA s VF(sy -.0o8N)- (4 which we have considered is to evaluate the entire influence

functional for each set of system paths numerically using
If the bath is harmonic, the influence functional is an expo-forward-backward semiclassical dynami&BSD).12*3 This
nential of a quadratic forrff In the case of a general anhar- approach is superior because it is not restricted to low-order
monic environment- may contain multiple-site interactions, terms in the cumulant expansion, is capable of describing the
as described in the cumulant expansion of the influencguantum behavior of the bath, and yields the real and imagi-
functional?’ nary parts of the influence functional in a single calculation.
Although a numerically constructed influence functional
does not assume the form of a systematic series expansion, it
F(S%Sf---SﬁFexr{ 2 (st ags) is shown below that it can still be cast in a form suitable for
k1=0 iterative propagation.
As in the case of a harmonic baththe scheme proceeds
—kEO 2 (Bik,S :2 ;15;24' B, k25k13k2+ ) via multiplication of an arrayR of path segments that span
170 k270 the memory length by a propagator matfix The memory
length 7,=Aky.At (Where Ak, iS an integex, given
- E 2 E (Vi kpks Sk, SK,Sk, roughly by the decay time of the bath correlation functions,
K170 ;=0 kg=0 plays the role of a convergence parameter in the calculation.
We define path segments

I ={s],s, ,...,Sikmax}i , (6)

As shown in Ref. 27, the coefficients in this expansion areand the propagator matrix between the “old” path segment
given by multitime correlation functions of the force exertedand the “new” path segmerijt

N

++— ot ot o™
+ 7klk2k35klsk28k3+ . ) (. (5)

Tij(NAKmad = T((Shak, o Saaky 10+ Sint 1)k - D1 (Stns 1)ak, 0+ Sin+2)ak - 1)1)

(N+1)AKmax

= T (st fe Moty (s felfors, )
- max

Tt + + +
F(Snak, 0 Sin+1)Aky -1 Sin+ 1)k, 0+ S(n+2) Ak gy 1) @
X _ _ )
F(O"“’Os(f‘ﬂmkmax’""S('HZ)Akmax*l)

Here, the tilde indicates that the influence functionals musgp. |. 1= Trb(U(O)U[I+]U[I+]
be evaluated with the proper boundary conditions: In order to

— — _ _ -1
include all the proper interactions for continued propagation, Xp(O)U™HI7 U1 JuU©@ ), 8
the old—new path pair is extended in one or both directions,
ie., where U© signifies time evolution with the bath Hamil-
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FIG. 1. Schematic representation of two system path segments and addi-
tional memory erasing segments for constructing the influence functionals 0.54
required for thga) numerator andb) denominator of the midtime propaga- )
tor. The system has two states indicated as up- or down-arrows which de-

termine the force exerted on the bath. The circles correspond to propagation

with the isolated bath Hamiltonian. -1

tonian in the absence of system—bath interactions. According 1
to Eqg. (8), the influence functional entering the midtime
propagator is given by evolving the initial density matrix by

one memory length under the influence of the force along the 0.5+
system path segmemi , subsequently evolving under the
force due tol;", followed by propagation with the isolated
bath Hamiltonian by one more memory length and by the
entire series of operations in reverse order in the backward
time direction. The time lengths and forces involved in the
calculation ofF are shown in Fig. 1. Finally, the denomina-
tor in Eq.(7) involves the same sequence of operations but
with U[1;"] replaced byu(®. It is straightforward to show

that successive multiplication with the propagator defined in '10 T 8 12 16
Eq. (7) reproduces the exact dynamics of Ed) subject to (b) ot

the assumption of finite memory length. fG 2 E _ e of the TLS bosit function of
. : : . 2. Expectation value of the position as a function of time as
After the first propagation step, the propagator matlﬁlxobtained with the iterative scheme described in this lettar.2(8=2,

can be stored and used for successive iterations. This is $20.1 and#08=0.05,=0.5.
because the influence functionaltianslationally invariant

i.e., theF calculated from a given pair of path segments ) _ o
remains unchanged if additional zero-force segments are at2€ integrals in Eq(4) into sums. In the present situation, the

tached to either or both ends of B), as long as;" are not influence functional factorizes and is computed exactly by
too close to endpoints. This property is a consequence dhe matrix multiplication method. N
dephasing and can be exploited to achieve dramatic compu- Figure 2 shows the evolution of the average position of
tational savings. the observable TLS as calculated by iterative evaluation of
The details of the algorithm will be presented in a futurethe path integral for(}3=2, £=0.1 arlci,B=0.05, §=0.5.
publication?® Here, we illustrate the scheme by presenting! h€ path integral time step 5t=0.25() * and the memory
the long-time dynamics of a two-level systéiLS) coupled  1€ngth is 7,=3At. The total propagation time equals 60
to a nonlinear bath of 50 two-level systems according to th&€lementary time steps. At these long times, full evaluation of

<G 7>
o
1

-0.5+

Hamiltonian the pa’gh integral by global summatio.n is not feasible, but gt
short times the present results are in good agreement with
"1 . h those reported in Ref. 31
= — O_ —_— . I —_— 0 . — I - - ) ) . . .
H=—AQoy izl 7 hoioy Uzizl € NV2g, %2 ©) In summary, it is possible to formulate an iterative

_ o scheme for evaluating the path integral of a low-dimensional
In the last equatione, and o, are the usual Pauli spin ma- gystem coupled to a general dissipative bath if the influence
trices, the tunneling splittings aré.Q and w; for the bare  nctional of the latter can be calculated at some level of
system and the bath spins, respectively, and the parametets, oyimation. Use of this idea in conjunction with the
of the bth are sgecified from the spectral density function ofggp methodology for evaluating anharmonic influence
the Ohmic fornt, functionals will lead to a powerful approach to the dynamics
Ci2 - of polyatomic chemical systems. The combined path
—5(w—wi)=§ﬁ§we“‘” “e, integral-semiclassical treatment offers two distinct advan-
tages compared to fully semiclassical schemes: it avoids
with w.=6. Further, we assume that the interaction be-treating the important, highly quantum mechanical system of
tween system and bath is turned oria®, at which time the interest via the semiclassical approximation; and the semi-
system is in the “up” state and that the bath is prepared atlassical evaluation of the influence functional requires only
the temperature kgB. The discrete character ¢i, turns  short-time dynamics, over which FBSD is likely to be ex-

=53,

i=1 Wj
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