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Transition probabilities involving the continuous spectrum of many-electron atoms exhibit a
variety of resonance phenomena and deviations from independent-particle model predictions. We
present a general theory of photoionization which (i) utilizes function spaces for initial and final
states which are state specific and are based on numerical as well as on analytic basis sets. The
valence, Rydberg, scattering, and virtual orbitals are optimized by different methods. (ii) In addi-
tion, our theory is formulated within a configuration-interaction, reaction-matrix, and multichannel
quantum-defect approach suitable for the treatment of the continuous and of the discrete Rydberg
spectrum via the use of numerical frozen-core Hartree-Fock channel orbitals. In this work we have
calculated the cross sections for the simultaneous photoionization and photoexcitation to the n =2
shell of He*. Our results for the ratio of the cross section at the degenerate He* thresholds 2s and
2p agree with those of published close-coupling calculations and disagree with those of a many-body
perturbation theory. We also compute values for energies very close to and at the threshold, previ-
ously not available. The autoionization widths and quantum defects of the Rydberg series 2snp,

2pnd, and 2 pns are also in agreement with previous close-coupling calculations.

I. INTRODUCTION

The photoabsorption process yields information which
may sometimes be interpreted in terms of simple single-
particle models and sometimes may not. The second case
is the most interesting one because it reveals details of the
electronic structure and dynamics and requires the appli-
cation of advanced many-electron methods. As an appli-
cation of the K-matrix theory of the continuous and
discrete spectrum presented in Ref. 1 and of the state-
specific theory for the calculation of excited-state wave
functions,>~* we have studied the phenomenon of pho-
toionization of He with simultaneous excitation to the
Het n=2 shell, in the energy region at, above, and below
threshold.

The choice of this phenomenon was based on the fol-
lowing considerations.

(1) The complexities which are present in the problem
(Rydberg series of resonances, threshold degeneracies, etc.)
constitute a sufficient numerical test of our K-matrix,
configuration interaction in the continuum (CIC) theory.!
Since the ground state can be computed very accurately,
the overall accuracy of the calculation depends on the
rigor and the numerical efficiency of our CIC method.

(2) In recent years a number of experiments and
theories have been applied to this process.’~!! The strong
qualitative disagreement between the results of a perturba-
tion” and a close-coupling theory>® close to threshold
presented a worthwhile opportunity for applying our
theory. Our results agree with the close-coupling results
of Refs. 5 and 6.

The results which are presented in this paper are based
on the theory of Ref. 1 whose main characteristics are the
following.

(a) It uses the multichannel K-matrix formalism and
unifies in a self-consistent manner the configuration-
interaction treatment in the discrete and in the continuous
spectrum.

(b) In the case of the Coulomb potential, this has led to
the derivation of multichannel quantum-defect theory
(MQDT) without the use of irregular Coulomb or un-
bound functions. Instead, numerical zeroth-order
Hartree-Fock functions are allowed to be considered and
no separation of configuration space into inner and outer
space is necessary. The fundamental questions of smooth-
ness and analyticity are solved via appropriate transfor-
mation of the expansion coefficients rather than from
consideration of the properties of the Coulomb functions,
as in the standard MQDT."?

(c) The inclusion of closed channels in the unified K-
matrix theory and the development of smoothing tech-
niques, which allow for interpolation of information on
the energy axis, whether in the continuous or the discrete
spectrum. This constitutes a significant advance over the
extrapolation procedures from the continuous to the
discrete spectrum proposed in Seaton’s MQDT.!?

In the following sections we develop our proposal for
the many-electron treatment of photoionization. It is
applicable to atoms of arbitrary electronic structure and
complements other advanced theories (e.g., Refs. 13 and
14). The theory and methods for the solution of the mul-
tichannel continuous spectrum apply equally well to the
treatment of autoionization.'

II. MANY-ELECTRON APPROACH TO ATOMIC
PHOTOIONIZATION

Before presenting the specific developments and appli-
cations for this work, we outline our many-electron ap-
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proach to the problem of photoabsorption. As regards
discrete-continuum transitions, we have already presented
results from simplified photoionization calculations on
the F atom,'® (which predict a broad resonance about 22
eV above the ground state with a width of 3.1 eV), as well
as from the accurate treatment of the phenomenon of ra-
diative autoionization in simple systems, where there is no
interchannel coupling.'”

As in the case of photoabsorption in the discrete spec-
trum, for which one of the present authors, Theodorako-
poulos and Beck have developed a many-electron ap-
proach for transition probabilities in atoms and
molecules—either at the property-oriented FOTOS (first-
order theory of oscillator strengths) level (e.g., Refs. 3 and
18—20) or at the highly correlated level (e.g., Refs. 21 and
22)—our theory is state specific. This implies that we put
emphasis on the separate and optimized calculation of the
wave functions of initial and final symmetry-adapted
states.

For the initial square-integrable function we make the
separation

¢=¢FS+¢corr . (1)

¢gs is the Fermi-sea zeroth-order function obtained nu-
merically at the multiconfigurational Hartree-Fock
(MCHF) level**?® and ¢, represents the remaining
correlation.?

The final scattering-state wave function is composed, in
general, of the following parts: (1) Rydberg and continu-
um channel orbitals obtained in the term-dependent,
single-configuration, frozen-core Hartree-Fock approxi-
mation. In this basis set, Brillouin-type intrachannel mix-
ing is zero.* (2) The (N — 1)-electron, correlated core to
which the previously obtained channel orbitals are cou-
pled. (3) N-electron valence- or inner-shell excited config-
urations in the discrete or in the continuous spectrum. (4)
N-electron correlations vectors whose radial functions are
kept orthogonal to the open-channel core orbitals. For
this class of functions, although optimization of nonlinear
exponents within a phase-shift variational bound
method?® can be adopted in principle, practical considera-
tions lead us to suggest that, given choices (1)—(3), fixed
expansions are sufficient.

The mixing of the various parts can be carried out, in
principle, within a CIC approach.! Nevertheless, reliable
inclusion of electron correlation in the discrete and in the
continuous spectrum presents a formidable problem. Our
proposal to this effect includes the following conceptual
and computational steps.

(a) Choose the important correlation effects according
to the state-specific analyses of electronic structure al-
ready in the literature (e.g., Refs. 2—4).

(b) Choose the function spaces outlined above.

(c) Define and use a “Fermi sea in the continuum” con-
cept where the total K matrix is obtained only in the pres-
ence of a few important configurations and then the re-
sulting scattering functions are coupled with the fully
correlated (N —1)-electron core for the calculation of
cross sections.

The final step implies that the scattering functions u;z
have the form

Uip= Wi (E) ’ (2)

S bidi !
k

where by are the CI coefficients of the most important
core configurations and W; are the channel orbitals.

The object of this paper is to present an application of
our theory! to the calculation of !P° highly excited state
properties of He arising from photoionization plus excita-
tion to the Het n=2 shell. The corresponding doubly ex-
cited main configurations are of the type 2sn(e)p,
2pn (€)s, and 2pn (e)d. The mixing of such configurations
gives rise to slowly convergent R! integrals, which ac-
count for the “dipole-potential” contributions whose im-
portance has been predicted and examined in the case of
H~.2¢ Of course, a full CI theory accounts for multipole
couplings automatically. In He, the dipole-potential con-
tributions are small and the choice of the zeroth-order HF
orbitals in the Coulomb field of Het n=2 is good. How-
ever, if we studied H™, the zeroth-order orbitals to be
used in CI would be obtained in the dipole field.

Once the initial- and final-state wave functions are
available, one can compute the photoionization cross sec-
tion. On the other hand, a transformation of the K ma-
trix! permits the calculation of the energies, the reduced
widths, and the mixing coefficients of Rydberg series of
resonances independently of the calculation of the cross
section. This is done as follows.

In a basis where the submatrix %" is diagonal, the re-
action matrix on the energy shell takes the form!?’

F=u'1F7* itan[fr(v-ky)]
-1
—7“’—?“] X ©IU , 3)
where U is the unitary matrix that diagonalizes
I=[1+(z X *)?*]~'72 4
and
F = - H CUX CIH * . (5

The indices o and c refer to the open and closed channels,
respectively. The overbars refer to the smooth K ma-
trices. The quantity tan[w(v+pu)] is a diagonal matrix
containing the zeroth-order quantum defects u and the
parameter v which is related to the total energy by
E =—1/2v*. The u which appears in the expression of
the reaction matrix incorporates the information provided
by the use of frozen-core Hartree-Fock orbitals as zeroth-
order functions rather than hydrogenic ones on which the
standard MQDT (Ref. 12) is based. The resonances occur
at the solutions of the equation

(T et Fe) =—11;tan[1r(v+,u)]c )
with reduced widths
y=cX “IU @)

and mixing coefficients c.



34 MANY-ELECTRON APPROACH TO ATOMIC PHOTOIONIZATION: ... 1997

III. NUMERICAL APPLICATION

A. Photoionization of He to the Het n=2 threshold

We have calculated the partial photoionization cross
sections for the process

He(1s2)+hv—He*(2s,2p)+e~

for the energy threshold
E(a.u.)=[0,1.5].

The ground state of He was constructed using the 152
Hartree-Fock (HF) solution as zeroth-order wave func-
tion, to which correlation vectors were added? until the
energy reached the value of —2.9032 a.u. The exact non-
relativistic energy is?® —2.9037 a.u.

The continuum-state functions were expressed in terms
of configurations of type 1sn(e)p, 2ns(€)p, 2pn (€)s, and
2pn(e)d. Fixed-core HF functions were used, thus elim-
inating intrachannel coupling. Rydberg orbitals with
principal quantum number up to nine were explicitly in-
cluded in the expansion. Orbital energies ran up to 3.0
a.u. for the 1s continuum and up to 1.5 a.u. for the 2s and
2p continuum (the two thresholds differ by 1.5 a.u.). The
calculation of the reaction matrix off the energy shell—
and hence of the final wave function—presents certain nu-
merical difficulties which we shall discuss below.

The first difficulty has to do with the evaluation of the
principal-value integrals. It was bypassed by Altick and
Moore?® through the application of a form of Filon’s
quadrature.’® More specifically, the interaction as well as
the K matrices are fitted to polynomials and the
principal-value integrals are performed analytically. The
upper part of the Rydberg series is treated as an append-
age to the continuum. In this way, the integral
Lippmann-Schwinger equations are reduced to algebraic
ones, which are then solved by standard methods.

The second difficulty has to do with the numerical
evaluation of interchannel matrix elements which contain
terms of the form

range above the n=2

® 1
fR dr,.k+1 Wi (W (r), k>0.

These terms result from RX( be» Wi 3¢, Wi,) integrals
where ¢, ,¢., are core orbitals. They are evaluated by the

asymptotic series method of Belling.}! Specifically, the
orbitals of the continuous spectrum are calculated numeri-
cally up to the radius R. At this radius the core orbitals
are practically zero. For larger values of r, the WKB ap-
proximation is used.’”’> Hence, the R* integrals are calcu-
lated numerically up to this radius, while the remaining
terms of the above form are evaluated by the summation
of asymptotic series.

For some energies, the summation of the asymptotic
series is impossible. In this case we split the integral from
R to « into two parts. The one goes from R to R; and
the other from R to . R; is chosen so that the asymp-
totic series in the interval [R, « ) can be summed. The
first part is calculated numerically by again employing the
WKB approximation for the scattering orbital.

The third difficulty results again from integrals of this
type. Specifically, these are responsible for the non-

smoothness of the matrix elements of the interactions and
of K whenever the wave numbers k, and k, are equal.
That is, the matrix element as a function of k, lies on a
different curve for k; <k, than for the values of k; > k,.
The two curves meet at the point k; =k, so that the ma-
trix element is continuous but its derivative has a discon-
tinuity at this point. This behavior must be taken into ac-
count when we perform the interpolations and the integra-
tions, as it is not permissible to interpolate along points of
nonsmoothness.

Having computed the K matrix, we evaluate the dipole
matrix elements. Filon’s quadrature is employed again
for the evaluation of the principal-value integrals. Jn the
end, the dipole matrix elements are transformed to the
ones corresponding to final state functions fulfilling the
ingoing boundary conditions. This is obtained through
the transformation

Yp=vg(1—iz¥)"", (8)

where % is the reaction matrix on the energy shell.!
The partial cross sections are given by the formula

4ra Y| 2 )

0',~(a1)=—3~"1w| (| D | ¥

where fiw=E —E, and a is the fine-structure constant.
The resulting partial photoionization cross sections are
shown in Fig. 1 together with those calculated by Jacobs
and Burke.® Their calculations start at a value of 0.05 a.u.
above the 2s threshold. Both sets of curves show the
same behavior, although ours are slightly transposed to
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FIG. 1. Partial cross sections in units of 10~ Mb. Present
calculation, O; Ref. 6, A. (Four-channel close-coupling calcula-
tions.)
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FIG. 2. Ratio of He* ions in 2p and 2s states. Present calcu-
lation, O; Ref. 6, A. (Four-channel close-coupling calculations.)
More recent calculations (Ref. 5) (nine-channel R-matrix calcu-
lations) do not alter this curve significantly.

lower values. Nevertheless, the curves of the ratio coin-
cide for values close to the threshold, as shown in Fig. 2.
Our calculations give a ratio equal to 3.9 at the threshold.
We note that our curve exhibits a sharp increase at very
small energies. This energy region is not included in the
calculation of Refs. 5 and 6. We believe that the thresh-
old value is an even more sensitive test of the flexibility of
theory to account for short-range correlation effects and
the influence of the long-range 25-2p dipole coupling.?®

B. Calculation of quantum defects, reduced widths,
and mixing coefficients of the three Rydberg series
of resonances below the n=2 threshold

In this section we employ the results of Ref. 1 in order
to calculate the K matrix for the energy —0.005 a.u.
below the 2s threshold. The first step is to consider the
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high-energy part of a Rydberg series as an appendage to
the continuum. We then proceed to solve the eigenvalue
problem of Eq. (6) and obtain the quantum defects and
the mixing coefficients. The reduced widths are given by
Eq. (7).

These quantities are calculated from a reaction matrix
which is computed at negative energies. This is in con-
trast to the usual applications of MQDT (Ref. 12) where
this matrix is a result of extrapolation from energies
above threshold. (See also Fano’s papers, Ref. 33.) In or-
der to avoid the generalized eigenvalue problem present in
Eq. (6) and to take the advantage of the degeneracy of the
2s and 2p thresholds, we perform the transformation
from the fixed-core HF basis functions to Coulombic
ones,

— K ! =[sind — m(cos8)K HF]

X [cos8+m(sind)K HF] !, (10)

where 8 is a diagonal matrix containing the zeroth-order
phase shift of the 1s channel and the zeroth-order quan-
tum defects of the three Rydberg series multiplied by .

We close by noting that the theory and its numerical
implementation is capable of treating accurately situations
with higher thresholds (e.g., n=3) and with the presence
of spectroscopic configurations of the type 3s3p, 3p3d,
etc. Ojha’s'! recent analysis suggests that closed channels
corresponding to such configurations affect the width of
the pd series by an order of magnitude.

As can be seen from Table I, our results are very close
to the values quoted by Bely** and Burke and McVicar.’*
The widths given are the reduced ones. The numbers
quoted by Bely’ are the result of extrapolation from
values of the K matrix above threshold. In order to cope
with the nonsmoothness caused by the dipole terms he
uses the appropriate basis functions accounting for this ef-
fect. His numbers refer to states with n=10 and below.
Burke and McVicar® obtain their result by direct numeri-
cal integration of the close-coupling equations. They
reach levels up to n=5, as this method is progressively
more difficult for higher values of n.

Finally, Table II gives the values of the mixing coeffi-
cients. The numbers in parentheses refer to the same
quantities at the series limit, i.e., on the threshold. We ob-
serve that the coefficients of the series assigned (+) by
Cooper et al.’® remain almost constant, a result also
found by Burke et al.’’

TABLE I. Quantum defects and reduced widths of the three Rydberg series. The assignment of Ref.

36 is given in parentheses.

Rydberg Present results Bely (Ref. 34) Burke and McVicar (Ref. 35)
series n I (a.u.) 7 ' (a.u) o I (a.u.)

2pnd 0.676 2.38x10°¢ 0.674 1.6 10~¢ 0.674 2.31x10°°

2snp 0.740 6.2x107° 0.725 6.75x 1073 0.725 6.60x10~°

(=)

2pns 0.132 8.3x1073 0.134 8.25x 1073 0.150 7.93x 1073

(+)
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TABLE II. Mixing coefficients of the three Rydberg series at the energy —0.005 a.u. below the
N=2 threshold. The same quantities at the threshold energy are given in parentheses.

zeroth 2snp 2pns 2pnd
order
corr
2pnd —0.26 (—0.43) 0.60 (0.63) 0.76 (0.65)
2snp (—) 0.86 (0.78) —-0.22 (—0.10 0.46 (0.61)
2pns (+) 0.44 (0.45) 0.77 0.77) —0.45 (—0.45)

IV. SYNOPSIS

Given that the bound-state many-electron problem is by
now understood well, the calculation of transition proba-
bilities for processes such as photoionization and autoioni-
zation requires the knowledge of correlated scattering
states.

In this paper we have implemented the theory of Ref. 1
where we have generalized the configuration interaction in
the continuum formalism of Fano and Prats® and
Ramaker and Schrader?’ to include closed channels and
have developed it into a practical approach applicable to
problems of resonance-resonance interactions and of per-
turbed or unperturbed Rydberg series of resonances.
Compared to the previously applied approaches of cou-
pled integro-differential equations and MQDT,!? this
theory, through the introduction of smooth wave func-
tions and reaction matrices which are related to MQDT,!
has the advantage of replacing extrapolation with interpo-

lation, a more accurate numerical procedure. Further-
more, through the use of nonorthonormal basis functions,
it permits an economical (state-specific) description of the
various parts comprising the final state wave function.
No separation of configuration space into inner and outer
regions is necessary.

The applicability of the present theory has been demon-
strated by the successful study of the subtle phenomenon
of the simultaneous photoionization and photoexcitation
processes in He.’~!!

Finally, we point out that the structure of the formal-
ism allows similar applications to arbitrary systems with
many electrons and a multiconfigurational zeroth-order
description.

Note added in proof. A recent paper by Salomonson
et al.*® presents theoretical results on the same problem
which are in agreement with ours.
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