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The smallness of Be and its valence structure are attractive characteristics for the
rigorous application and testing of the flexibility and utility of many-body theories. Recent-

ly, a number of results of many-electron calculations have been published on the 1s binding

energy (BE) and the Auger width (I ) of the hole state. They show considerable dispersion,
We have studied these properties and the fluorescence yield (ez) of Be+ ls2s S by apply-
ing a general theory of autoionizing states which is based on projected function spaces and
justifies the variational calculation of localized relativistic or nonrelativistic correlation and
the subsequent inclusion of the continuum. Two computational methods have been em-

ployed: The first method (A) aims at the accurate calculation of the total energy of initial
and final states. In the case of Be, its ground-state energy is known accurately. The
excited-state energy is computed in this work variationally and includes the effect of the
continuum. The resulting correlated square-integrable wave function %'0 of the hole state is
then employed for the calculation of the Auger width and the radiative transition probabili-
ties to the lower discrete states 1s 22p and 1s 3p 'P'. We find that the angular correlation in-

creases the decay rates whereas inclusion of radial and spin-polarization correlation eventu-

ally decreases them by a factor of 2 from the Hartree-Fock (HF) value. Nonorthonormality
(NON) is taken into account explicitly; we show that radiative decay does not arise only
from correlation effects. The second method (B) is based on the consistent analysis of elec-
tronic structure and aims at the calculation of only those one- and two-subshell correlations
which contribute to the BE the most. The validity and generality of the second method—
which has been applied before to a number of atoms in the periodic table —is demonstrated
once again. Our results are, with method A, a BE of 123.732 eV, I"=0.023eV, and

~~ ——1.2&(10 and, with method B, a BE of 123.82 eV. The BE's include an empirical re-

lativistic correction of 0.027 eV. An Auger-spectroscopy measurement has yielded a BE of
123.6+0. 1 eV. Our value for co~ is closer to the available experimental values from the
solid state (=3.3 g 10 ) than a previous many-electron calculation, by a factor of 5.

I. INTRODUCTION

During the past 15 years or so, photoefnission
spectroscopy' has made significant advances in
probing the electronic structure of matter and its
response to uv and x-ray radiation. The measure-
ment of one-electron binding energies (BE) and of
Auger energies and widths is an integral part of this
field. The calculation of these quantities has been
dealt with through a variety of many-body ap-
proaches (e.g., Refs. 4—11 and references therein).

The purpose of this paper is to present new and
accurate results on the 1s BE Auger width and
fluorescence yield of Be and discuss certain aspects
of the theory of such calculations. Our results are
compared with those of other theoretical

methods ' and experiment. '

The standard theoretical definition of BE is the
following: total energy of final state minus total en-

ergy of initial state. Although this constitutes a
rigorous definition, it may not always correspond
exactly to the observed BE, due to possible details of
the dynamics of excitation and measurement which,
in principle, could show up as a function of photon
energy. "

Taken as differences of total energies with fespect
to a particular relativistic Hamiltonian (e.g., Dirac
plus Breit or Miler operators), the BE can be
analyzed in terms of Dirac-Fock (DF) or HF, elec-
tron correlation, relativistic correlation, and radia-
tive contributions. '" The accurate treatment of the
last two terms for a general many-electron system

27 3044 1983 The American Physical Society



K-SHELL BINDING ENERGY OF Be AND ITS FLUORESCENCE. . . 3045

has not yet been accomplished. The sections which
follow essentially deal with the first two terms. Al-
though the calculations on Be, reported in Sec. III,
are nonrelativstic, the remarks of Sec. II refer to re-
lativistic systems in general, where questions of pro-
jected spaces and variational calculations are
thought of in terms of electron as well as positron
occupied or virtual spinors.

II. THEORY OF INNER-HOLE
AUTOIONIZING STATES

The final state in a BE measurement often lies in
one or more continuua of the same symmetry (rela-
tivistically, both states lie in the positron continuua
too), which then requires that a modified approach
(e.g., use of projection operators) be used to accu-
rately deduce the properties associated with such
states.

Given the convenience of choosing electronic
square-integrable wave functions to describe such
states approximately, one must first invoke the for-
mal separation of discrete from continuum vector
spaces. Their subsequent interaction yields mixed
states which may cause phenomena of interference.

The conceptual similarity of these situations sug-
gests that the formal and practical solutions follow
similar techniques. Thus the general concepts of
projected spaces and square-integrable boundary
conditions on many-dimensional differential equa-
tions' ' find their straightforward numerical im-
plementation in the numerical solutions of the HF
or DF equations for atoms. The specific boundary
conditions which are imposed yield bound-electron
solutions which exclude electron or positron contin-
uum components.

On the other hand, if one wishes to develop
methods for including relativistic or nonrelativistic
electron correlation, a variational approach which
employs analytic virtual spaces with variable param-
eters must consider and resolve, conceptually as well

as computationally, the problem of variational col-
lapse (see Refs. 15—18 and 5).

The analysis and justification of the variation-
perturbation treatment of many-electron autoioniz-
ing states has been presented in Refs. 15 and 16.
Along these lines, a many-electron theory using
complex coordinates has also been developed. ' ' In
this approach, the zeroth-order approximation of
the square-integrable ¹lectron function is a
Hartree-Fock, multiconfigurational HF (MCHF), or
DF vector. Convergence problems in diffuse (main-
ly negative-ion) resonances are solved by parametriz-
ing the potential in every intermediate self-
consistent field (SCF) iteration by using noninteger
nuclear charges (for the attraction integrals) and
noninteger electron charges (for the repulsion in-

tegrals). The advantage of using true Hartree-Fock
functions for describing, in zeroth order, highly ex-
cited states, has been demonstrated again recently, in
studies of He Feshbach and shape resonances
and of multielectron photoionization processes.

Once the HF (DF) function has been obtained, lo-
calized electron correlation can be introduced into
the square-integrable X-electron function variation-
ally, by keeping the correlation vectors orthogonal to
specific zeroth-order HF (or DF electron or posi-
tron) solutions of the function space which must be
projected out. This procedure yields an upper bound
to second order, ' a satisfactory fact, given that the
orbital approximation is at the HF level.

If the total wave function %'(E) is formally ex-
panded in terms of a subshell cluster expansion, it
has the form (given the previous remarks, we now
refer to nonrelativistic treatments)

+(E) —+HF + @HF~++HF~+ +HF~+

where cr represents the single-orbital excitations, m

the orbital pair excitations, and v. the orbital triple
excitations. The correlation functions, ~, ~, etc.
contain, in general, closed as well as open channels.

Cluster expansions of the S-electron wave func-
tion were introduced into atomic and molecular
physics by Sinanoglu in terms of spin orbitals.
Along these lines, extremely useful concepts were
critically analyzed and applied, such as the indepen-
dent pair approximation and transferability of pair
correlation during a chemical or physical pro-

Application of this theory allowed the
first prediction of inner-electron binding and Auger
energies in open-shell neutral and negative-ion
atoms.

The subshell analysis of the X-electron function is
more suited for spectroscopic studies. It does not
have a one-to-one correspondence with the spin-
orbital expansion. For example, single-orbital exci-
tations may contain, due to symmetry„ two spin-
orbital excitations. Thus their energy contributions
can be significant —as in the case of Be 1s 2s 5 ex-
amined here.

Since +(E) belongs to the continuous spectrum,
the correlation functions O.,m, v, contain both
closed and open channels. The corresponding corre-
lation can be called localized (loc) and asymptotic
(as), respectively. For most hole states, cr has only
closed channels. Thus we can write

0 =Oloc ~

lTf~ +~3$

bloc++as '
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For isolated autoionizing states, our theory as-
sumes that localized and asymptotic correlation can
be decoupled to a very good approximation and
computed with different methods. For localized
correlation we employ ordinary variational methods
subject to appropriate orthogonality constraints. "'
The asymptotic correlation is included afterwards
from a configuration interaction in the continuum
approach.

III. THE 1s BE OF Be

Because of its configurational simplicity, Be
offers a good case for an accurate numerical appli-
cation of the basic concepts of our approach. At the
same time, it has characteristics which are general
enough to allow comparison with more complicated
systems. Consider the following, for example.

(a) It has strong Fermi-sea correlations in the L
shell, 2s ~2p, which affect the I(-shell excitation
and Auger spectrum. The influence of valence mul-

tiplet structure and correlations on the spectra of
inner electrons is a general characteristic throughout
the periodic table and must be included in many-
body calculations.

(b) The opening of a hole in the E shell increases
the effective charge seen by the L-shell electrons.
Thus, even though the structure of the near-
degeneracy correlations is the same for initial and fi-
nal states (2s ~2p ), their energy contribution is
different and, therefore, when computed properly,
does not subtract out when taking energy differ-
ences. This effective-Z dependence of the Fermi
seas persists throughout the periodic table but to dif-
ferent degrees, depending on the shell structure and
position of the hole in the system under examina-
tion.

(c) The hole-filling localized and asymptotic
correlations of the L shell are 2s ~lsns, lses. Since
these are not of the symmetric-exchange-of-
symmetry (SEOS) type, i.e., I ~(l —1)(I +1), they
are expected to be small. Our calculations of the en-

ergy width and shift bear this out and explain why
calculations with only projected square-integrable
basis sets yields energies in agreement with experi-
ment. ' We remind the reader that SEOS correla-
tions, in the L,M, X, etc., shells cause shifts of a few
eV.

(d) The symmetry adapted intershell pair energies
of the hole (i.e., 1s2s S, 'S) increase significantly as
we go from the ground to the excited state. Thus in
spite of the fact that we have twice as many such in-
teracting pairs of electrons in the ground state, the
overall contribution of this intershell correlation en-

ergy to the BE is small. This fact holds for the
hole-related intershell correlation energies in heavier

atoms as well, but to a lesser degree.
Many-electron calculations. Within the frame-

work of the theories of autoionizing states and
atomic calculations presented elsewhere, "' ' we
have carried out the following computations.

We have computed a correlated, square-integrable
wave function 4'0, corresponding to the autoionizing
state Be+ 1s2s S. First, we computed a multicon-
figurational Hartree-Fock function for the Fermi
sea configurations 1s 2s, 1s 2p . The result is

Fs =0 9409 ls 2s +0 3387 ls 2p

EFS (+Fs I
H

l
+FS) = —10 102 66

(3)

(4)

(O', Of rr, Of f/1$MCHF ) =0 . (6)

The necessity of the orthogonality constraint (6)
in the ¹lectron theory of autoionizing states which
uses a Hartree-Fock zeroth-order vector, and its
conceptual as well as numerical limitations, have
been introduced and discussed in Refs. 16 [see Eq.
(44) of Ref. 16a] and 15.

The final square-integrable %0 contains only the
localized correlation, which contributes to the stabil-
ity of the state. In it is included the 1s 2s configu-
ration which is part of the discrete Rydberg series
and comes from the single orbital (de-) excitation
2s~ls. Such single-orbital (de-) excitations into
partly filled inner holes can contribute significantly
in heavier systems, especially if they are of the
i~1+2 type.

We note that the remainder of the Rydberg series
is formed from pair (de-) excitations 2s ~1sns.
These can be included in the calculation of 0 p and

ED, and their effect computed to all orders, ' or in
the calculation of A. ' With the inclusion of 1s 2s
in %'0, their effect is negligible.

The number of configurations in 40 is 30 and the
total energy (in a.u. )

ED ——('I'D
i
H

i 40) = —10.11980 . (7)

where EFs is given in a.u. The Hartree-Fock energy
for the single configuration 1s 2s is (in a.u. )

EHF (@HF
l
H

l
@'HF~ 10 04050

The configuration 1s 2s, which also belongs to the
Fermi sea and corresponds to part of the 0.

~
cluster

of Eq. (3), is included during the computation of %'0

and the corresponding energy of E0. The configura-
tion 1s 2p corresponds to part of m~«of Eq. (2).

Once O'Fs and EFs have been computed, the
remaining localized electron correlation is computed
from a variational calculation, where the single-,
pair-, or triple-orbital correlation functions satisfy,
by symmetry or by Schmidt orthogonalization, the
orthogonality constraint
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TABLE I. Breakdown of electron correlation of the Be+ 1$2$ S state in terms of one- and
two-orbital localized and asymptotic correlations, after diagonalization. UI are virtual orbitals
of I symmetry. Zeroth-order 1$, 2$, and 2p orbitals are obtained from a MCHF calculation.
Corresponding single-configuration 1$2$' energy is —10.04216 a.u. which is lower than the
HF energy of Eq. (5) by 0.045 eV.

Type of correlation

~ HFO1s s 1$ ~Us
—1 loc

4HFCT2s, 2$ ~ 1$,Us
—1 loc

4„vm„2„1s2s~vtv/, I =0, 1,2, 3

4HF&p, 2$ ~2p, 2pUp, UIU(, 1=1,2, 3

4HF7T 2, 2$ ~ 1$6'$

Total

'S

's

Contribution (in eV)

+ 0.0038
—0.2084
—0.0286

—0.0661
—1.8096
—0.0408

—2.15

We note that without the 1s 2s configuration,
which is excluded from a projection-operator
method such as that of Ref. 5, the total energy is
Eo ———10.122665 a.u. compared with —10.12259
a.u. of Ref. 5. Comparing Eq. (7) with Eq. (5) we
obtain for the localized correlation energy,
E'„„=2.158 eV.

Having obtained %0 and Eo, we compute the ener-

gy shift b due to the asymptotic electron correlation
of the 2s electrons. The shift is given by the well-
known formula (e.g., Refs. 15 and 28) (the contribu-
tion of the Rydberg series is negligible beyond 1s 2s)

i(e, iH-EiU&e)) i'
b(,E)=P de

E—e

(Eg )Ng ——123.705 . (10)

If to this number we add one-half the value (rela-
tivistic and radiative corrections) of Table II, i.e.,
0.027 eV, we have the final theoretical prediction of
this work (in eV):

Table II) to calculate the 1s BE of Be with two
methods: (a) by taking the difference of the total en-
ergies and (b) by analyzing electron correlation for
initial and final states in terms of the calculated
symmetry-adapted pair energies and considering
their individual effects on the BE.

(a) When the energy E of Eq. (9) is combined with
the nonrelativistic energy of the initial state (Table
II), the resulting nonrelativistic BE is (in eV)

= —0.041,

given in eV, where P stands for principal value. In
our case, U(e) is the continuum Hartree-Fock func-
tion computed in the frozen Be +1s core. Equa-
tion (8) computes the contribution of ~„ofEq. (2)
(there is no ~» in the case of Be+) not only through
the direct (2s

~

H E~ 1ses ) inter—action, but also
via the higher-order indirect contributions of the lo-
calized correlation. Nonorthonormality is taken
into account explicitly (see Sec. IV).

Adding Eqs. (8) and (7) we obtain the total nonre-
lativistic energy of the Be+ 1s 2s S state (in a.u.):

E=EO+~= —10 12131

Table I contains the breakdown of electron correla-
tion in terms of the one- and two-orbital excited vec-
tars which contribute to the energy Eo and the shift
6, after diagonalization.

Given the calculation of E and of the related
symmetry-adapted pair energies, we can utilize pub-
lished information for the ground state ' (see

1$~

1$2$
2$

1$2p

—0.0425
—0.0052
—0.0448

—0.0418
—0.0058
—0.0453

—0.0421
—0.($41
—0.0461
—0.0004

'In terms of symmetry-adapted pairs:

e(1$2$)=3)&(1$2$ S)+1$2$ 'S

=3 X (0.000 81)+(0.003 42)

= 3)& (0.000 81)+(0.002 81),

where the latter two lines of the equation refer to Refs. 32
and 31, respectively.

TABLE II. Published data for the Be ground state
considered in this work (1 a.u. =27.211 65 eV) are the fol-
lowing. (a) Total nonrelativistic energy (Ref. 33) equals
—14.667358 a.u. , (b) relativistic and radiative energy
(Ref. 33) equals —0.001987 a.u. , (c) correlation energy
(Ref. 33) equals —2.56604%00068 eV, and (d) pair corre-
lation energies' (in a.u. ).

Reference 31 Reference 32 Reference 34
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(Eg ) pt 123 6+0 1 (12)

(Eg ),h~, ——123.732

which can be
corn~ared

with the experimental value
of Bisgaard et al. ' (in eV),

E'(1s 2s) = —,( S)+—,('S)

= —,0.0235+ —,0. 181=0.126

= —,0.139+—,0. 132=0.095

(14a)

(14b)

e(1s )=1.150;

e(1s 2s) =0.155 and 0.111,

(13a)

(13b)

where HF 1s and 2s, and MCHF 1s and 2s orbitals
are used, respectively, and

e*(2s ) =0.035 and 0.065 (13c)

with HF and MCHF orbitals, respectively. e~ (2s )

is obtained by subtracting from the total e(2s ) the
nontransferable 2s ~2p pair correlation, given by
a MCHF calculation as 1.189 eV.

For the Be+ 1s 2s S state we have obtained to all
orders (in eV)

(b) Computing differences of accurate total ener-
gies is not always easy or even possible for arbitrary
¹lectron systems. An alternative approach, which
corrects the predictions of the readily computable
HF approximation, aims first at the systematic
analysis of electron correlation and its influence on
inner-electron spectroscopy and then at the ab initio
computation of those effects which are found neces-
sary to compute. " That this is possible is immedi-
ately derived from the successes of the HF theory in
cases of unperturbed Rydberg transitions, or of
highly ionized atoms, where there is nearly complete
cancellation of electron correlation. In more com-
plex systems, such analyses were first introduced by
Sjnanoglu and co-workers. 24 —27, 35, 36

The success of such an approach depends on the
degree of satisfaction of the following two princi-
ples.

(1) For each state involved, find a suitable zeroth-
order approximation and the correlation corrections
to it which are exclusively state dependent, and com-
pute them accurately.

(2) Decompose most of the remaining orthogonal
correlation which is state independent in terms of
symmetry-adapted, bivirtual energies and compute
them to all orders. The general methods for the
construction and computation of these pair energies
as well as for their symmetry-dependent coefficients
were given in Ref. 37.

In the simple case of Be, the bivirtual (all-
external ) symmetry-adapted energies are
e(1s ), e(1s2s S, 'S), and e(2s ) and are obtained
from pair functions which are orthogonal to the 1s,
2s, and 2p Fermi sea orbitals.

For the ground state, we use the results of Table
II. We assume (all values in eV)

with HF 1s,2s, 2p and MCHF 1s,2s, 2p orbitals for
(14a) and (14b), respectively, and

e*(2s2) =0.208

=0.119~

(14c)

(14d)

where HF and MCHF orbitals were used for (14c)
and (14d), respectively. Where, again, e*(2s ) does
not include the near-degeneracy correlation,
2s +-+2p, found to be 1.691 eV, or the continuum
interaction with 1ses (see Table I).

The above results demonstrate the following.
(1) The near-degeneracy 2s ~2p correlation in-

creases significantly in going from Be to
Be+ 1s2s S, due to a net increase in the effective
nuclear charge. Compared with the HF BE, the cor-
responding decrease in the BE is 0.502 eV.

(2) The nonexistence of e(1s ) in the upper state
increases the BE by 1 ~ 150 eV.

(3) The single-orbital correlation in the excited
state decreases the HF BE by 0.20 eV.

(4) The 1s2s correlation is sensitive to the choice
of the zeroth-order orbitals, both in Be and
Be+ 1s2s . There is a difference in the results ob-
tained using HF zeroth-order orbitals and MCHF
zeroth-order orbitals. In either case, the 1s2s corre-
lation in the hole state is larger than one-half that of
the ground state, due to the contraction of the L
shell in the presence of a larger effective nuclear
charge. Using the MCHF result, we see that there is
a net increase of the BE of only 0.016 eV.

(5) Finally, the increase of the effective Z in-
creases e* (2s ) in the hole state, with a resulting net
decrease of the BE of 0.054 eV (the results corre-
sponding to the MCHF orbitals are used).

Thus, we see that even without the hole-filling,
asymptotic pair correlation 2s ~lses, there is, in
general, a variety of correlation effects which com-
pete when computing binding energies. Their rela-
tive importance depends on the system under con-
sideration. For example, in the Be case the net re-
sult is a small increase of the SCF HF BE of 123.34
eV by 0.43 eV to give 123.77 eV.

On the other hand, for the E-shell BE in Ne, the
increase from the DF BE due to electron correlation
is 1.1 eV." Furthermore, the energy shift due to the
orbital pair-Rydberg, continuum interaction has a
wide range of positive or negative values —especially
when SEOS-type interactions are allowed.

The results of our calculations on Be suggest that
upon inner-shell ionization, the transferability of
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TABLE III. ls BE of Be from various many-electron approaches and comparison with experiment (in eV).

Experiment Koopman's
(Ref. 12)

This work'
hSCF Eq. (15) Eq. (11) Ref. Sb Ref 6c Ref 7b Ref. 8 Ref. 9d Ref. 10

123.6%0. 1 128.785 123.339 123.82 123.732 123.671 123.866 125.47 124.50
(123.698) 127.922

124.21 123.661
(123.668)

'Equation (15) corresponds to the pair approximation and transferability assumptions discussed in the text. Equation (11)
corresponds to total energy differences. Both include the relativistic and radiative corrections of 0.027 eV. Although the
result of Eq. (11) is more accurate, Eq. (15) represents the result of a general and systematic approach applicable
throughout the periodic table (Refs. 4 and 11).
"See text.
'See text. The second value corresponds to an extended Koopman's approach which used corrdated ground-state wave
functions.
See text. Obtained from the MCHF energy ( —10.10266 a.u. ), used in Ref. 9 to compute the position of Be+ 1s 2s '-5 with

respect to the Be+ 1s ~2p, 3p 'P' states, and the Be ground-state energy of Table I.

IV. THE AUGER %'IDTH
AND FLUORESCENCE OF Be+ 1s 2s~ 5

Knowledge of Wo allows the calculation of the au-
toionization width and of the fluorescence yield
from

r(Ec)=2~i (40iH —Eo i
U(Ec)) i

(16)

7

farad+ ~Auger
(17)

where I „d is the total radiative decay probability
into all allowed lower states. Both I „d and I A„ger

certain pair correlations which are orthogonal to the
state-dependent Fermi-sea and correlation vectors is
not satisfied very well. This is caused by the in-
creased attraction felt in the final state, especially
when the hole is in the K shell. On the other hand,
when the requirement for accuracy is relaxed to, say,
+0.3 eV, the cancellation of small errors allows suc-
cessful predictions based on simpler calculations —as
numerous applications on heavier systems have al-
ready demonstrated. '" For example, if we assumed
that eae(2s )=e' +(2s ), used the MCHF e(1s )

and e(ls2s S, '5) of Eq. (13), the near-degeneracy
energies 2s ~2@ of Be (1.189 eV) and Be+ (1.691
eV), and the single-orbital excitation energies of
Table I, we would obtain (in eV)

EB (EMCHF+ t7+ 6, )final

(EMCHF+et ls )+I/2e(1s2s} '"'t'al

= —275. 15+398.95= 123.80 . (15)

Our results for the binding energy are collected to-
gether in Table III, which also contains previous re-
sults of others (in Sec. V we compare the various re-
sults).

are assumed to be energy independent so that they
are given by the well-known "golden rule" expres-
sions.

In calculating radiative or radiationless transition
probabilities of X-electron systems, existing theory
and results ' indicate the following.

(a) The role of certain correlation effects is dif-
ferent as compared with total energy calculations.

(b) A better and more economical understanding
of the physical or chemical process is obtained if the
initial and final states are optimized separately.
%hen this is done, the two basis sets are not ortho-
normal. Neglect of this nonorthonormality (NON)
is often arbitrary, in which case there is an uncer-
tainty in the accuracy of the computation.

As it has already been noted, ' ' ' 9 our ap-
proach accounts for NON. In this work, the final
continuum state U(Eo) is represented by a frozen
core HF scattering orbital in the field of Be + 1s .
For the lower states of I" symmetry we consider
the 1s 2p and 1s 3p I" states. Rough estimates
showed that the decay rate to discrete 1s np, n g 2,
and continuum 1s ep states accounts for about 10%
of the total.

Regarding the effects of electron correlation on
the transition processes, we have the following com-
ments.

(1) The configuration 1s 2s is important for the
radiative decay rate. As it has already been pointed
out in the analysis of autoionizing states, ' ' the
hole-filling correlations which are left out in energy
calcu)ations using I', Q type formalisms~'0 -affect the
wave function and related properties.

(2) Although the results of Kelly indicated that
electron correlation increases the Auger width of
Be+, this is not the case. The angular correlation of
the 2s electrons, as computed by the MCHF
method, indeed increases the radiationless decay
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TABLE IV. Theoretical Auger widths for the Be+ 1s 2s S state (in eV), el. corr. stands for electron correlation.

Reference 7' Reference 10 Reference 9' This work
Hartree-Fock MCHF [Eq. (3)] MCHF [Eq. (3)) MCHF plus el. corr. (4s)

0.020 0.053 0.049 0.094 0.083 0.023

'Green's function method with Siegert boundary conditions.
Projected configuration interaction for the initial state. Golden rule formula.

'The MCHF function of Eq. (3) and the golden rule formula. Nonorthonormality has been neglected.
Nonorthonormality between initial- and final-state vectors is computed explicitly, for MCHF as well as for +o. See text.

rate. However, radial correlation 2s ~v, , and spin
polarization 1s2s ~1s2sv, S, contribute with an op-
posite sign and reduce the width. The contribution
of these major effects to the matrix element of Eq.
(16) is 1s2s = —0.01886 a.u. , 1s2p = —0.00317
a.u. , 1sv, =0.00242 a.u. , and 1s2sv, S=0.00823
a.u.

Here we note that, in an analysis of the effect of
electron correlation on two-electron autoionizing
states, Moiseyev and Weinhold concluded that the
angular correlation should decrease the width. In
the case of Be+, Kelly's and our results show the
opposite trend.

(3) Both at the HF and full correlation level,
NON plays a role. This is demonstrated by compar-
ing our and Kelly's results for the HF and MCHF
radiative and radiationless transitions. They are dif-
ferent. Especially for the radiative decay, the differ-
ence has even conceptual implications, since we
show that there is a nonzero transition probability
even at the HF level and thus radiative decay does
not arise only from correlation effects. In fact, the
radial matrix element of the 1s2s ~1s 2p transi-
tion is 0.0245 a.u. compared to 0.0642 a.u. for that
of the 1s2p ~1s 2p transition, using the MCHF

function of Eq. (3).
For the autoionization width, NON is caused pri-

marily by the overlap of the scattering es orbital of
the final state with certain bound orbitals of the ini-
tial state and has the effect of introducing some oth-
erwise forbidden one-body and R" integrals. For the
1s2s configuration, in addition to the two-electron
interaction, a significant term containing the one-

body integral —I(1s,2s) times the overlap S(2s,es)
appears.

The results of our calculations are presented in
Tables IV and V together with those of other
theories and experiment. The experimental co~ is
measured in the solid state.

V. COMPARISON WITH OTHER THEORETICAL
RESULTS

The Be 1s BE, Auger width, and fluorescence
yield have been studied before via different many-
electron theoretical approaches. ' The results of
these calculations are collected in Tables III—V to-
gether with those of the present work.

In order to present the BE's for Refs. 5, 6, and 10,
we have used their published total nonrelativistic en-

TABLE V. Radiative decay rates (in sec ') of Be+ 1s 2s' S and fluorescence yield (co&).

Transition Reference 9
This work

HF' MCHF' MCHF plus corr. Expt b

1s 2p 3.03x10 5.3x10 17.5x10 3.73x10
1s 3p 0.13x10 0.22 F10'

0.2238 X 10 1.2X10-" 3.04X10 +20% (Ref. 13)
3.6&(10 +30% (Ref. 14)

'The HF value is obtained from the 1s2s configuration including nonorthonormality. The
finite value implies that radiative decay is not due only to electron correlation (Ref. 9). Thus,
it is demonstrated again that multielectron transitions can be described semiquantitatively
from the true HF transition theory (Refs. 23 and 39). For HF and MCHF, the length form is
adopted. For the fully correlated result, all three forms agree (Refs. 39 and 41).
Refers to the solid state. A discussion of the causes of observed deviation between the atomic

and solid state is given in Ref. 9.
'To the calculated transition probability from the 1s 2s S~ ls 2p 'P' transition we have ad-
ded an estimated 10% contribution to co~ from the Rydberg series 1s'np, n )2, and continuum
1s ep.
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ergy of the Be+ state and subtracted from it the
ground-state energy of Table I. For reasons of com-
parison with experiment and our work, we also give
a second number (in parentheses) for Refs. 5 and 10,
which is obtained by adding the relativistic correc-
tion of 0.027 eV.

In Ref. 6 two types of calculations are reported.
One is a straightforward total configuration-
interaction calculation which yields an energy for
the hole state of —10.11541 a.u. The other is called
the "extended Koopman's" method and yields the
BE with the use of only correlated ground-state
functions. The data of Table III suggest that the ex-
tended Koopman's method —at least for Be—is
closer to the actual Koopman's theorem results than
to experiment. Apparently relaxation is not well ac-
counted for.

Reference 8 presents the BE result from an appli-
cation of a Green's-function technique. The devia-
tion from the experimental value is attributed by the
authors to basis set limitations.

The results of Ref. 7 are obtained from a
Greens-function technique using a basis set with
Siegert boundary conditions. This calculation yield-
ed a BE which differs substantially from those of
our calculations and those obtained with other
methods. This is expected since the approximations
employed in Ref. 7 do not account for relaxation
and much of electron correlation. On the other
hand, the width is close to ours. This is fortuitous.

Kelly has employed the MCHF energy of Eq. (4)
for the calculation of the transition energies to the
Be+ 1s 2p, 3p states, whose total energy was calcu-
lated by adding to the HF energy the 1s correlation
energy. The MCHF wave function of Eq. (3) was
employed for the calculation of the Auger width and
many-body perturbation theory was employed for
the calculation of the radiative transition probabili-
ties.

The effect of the remaining electron correlation in
the excited state on the observables was not studied.
Kelly's calculations did not account for NON and
this is why his HF values differ from ours.

The results of Bhatia' and Davis and Chung are
obtained from large configuration-interaction calcu-
lations on projected spaces. Their variational
methods, in which specific orbital functions are pro-
jected out of the trial J-electron function, are simi-
lar to the one employed in this work. We point out
that the theoretical foundations of such variational
calculations on arbitrary X-electron autoionizing
states are present in Ref. 16. For example, Eqs. (1)
and (5) of Ref. 5, where ' "saddle-point technique"
is applied, follow from Eqs. (35), (44), and (45) of
Ref. 16. Here we note that the orthogonality con-

straints to fixed' or "optimized" orbital functions.
are not rigourous to all orders, though they are suf-
ficiently accurate. For, as we demonstrated in Ref.
15, even for two-electron systems the rigorous and
unique definition of projection operators in practical
applications of Rayleigh-Ritz-type variational cal-
culus is very difficult.

We close by noting that the total energies of Refs.
5 and 10 do not include the energy shift due to the
perturbation of the continuum [our Eq. (8)] or of the
Rydberg series which belong to the discrete spec-
trum (i.e., 1s ns S), nor a correction for relativistic
and radiative corrections. When we add to their re-
sults 0.027 eV for the latter quantities, the BE's be-
corne 123.698 eV (Ref. 5) and 123.668 eV (Ref. 10).

VI. CONCLUSION

The results of this work suggest the following.
(1) The K-shell BE, Auger width, and fluores-

cence yield of Be in the 1s2s S state are 123.73 eV,
0.023 eV, and 1.2&10, respectively. Our co~
value implies that the atomic character of fluores-
cence in the solid is much larger than previously
predicted.

(2) The analysis of bound and autoionizing states
in terms of Hartree-Fock and symmetry-adapted
one- and two-subshell localized and asymptotic
correlation allows the systematic and accurate inter-
pretation of core-electron spectra. The Be case is
relatively simple and is tractable in terms of total
energies and wave functions. However, this does not
apply to larger systems, where the identification and
consistent calculation of specific correlation effects
are prerequisites for quantitative work. (Reference 4
and references therein. )

(3) The continuum effects in Be+ 1s2s 5 are
weak. The corresponding energy shift is —0.041
eV. In calculating 6, only the scattering states 1s es
were considered. The contribution of the Rydberg
series 1s ns was included to all orders in the calcula-
tion of %'0, via the inclusion of the Is 2s configura-
tion which comes from the single-subshell (de-) exci-
tation 2s ~ Is.

Since it lies below the energy of the autoionizing
state, the variational upper bound procedure remains
valid. We note that, provided that near degeneracy
of roots is avoided, hole-filling pair correlations
which give rise to the Rydberg and continuum series
can be represented with reasonable success with
square-integrable functions [e.g., see Ref. 16(a), p.
2088, Ref. 16(b), p. 237, and Refs. 15, 4, and 42].

(4) The creation of a hole in the I( shell affects the
state specificity of symmetry-adapted K-I. and L-
shell pair correlations. This effectiue charge effect
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holds throughout the periodic table but to different
degrees, depending on the position of the hole and
the electronic structure of the system in question.

(5) Fermi-sea correlations of the valence shell are
not sufficient to produce accurate widths. In fact,
here, the angular correlation 2s ~2@ worsens the
HF result. When additional, radial and spin-
polarization correlations are considered, the width is

reduced considerably.
(6) Nonorthonormality is shown again ' to be

quantitatively important in the theory of radiative
and radiationless transitions. With NON present,
transitions which have been though of as forbidden
at the independent-particle level, can be appreciably
nonzero.
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