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We discuss aspects of the theory and computation of resorfantBonizing states of polyelectronic atoms
and their positive and negative ions, in the context of the state-specific approach, using as paradigms the
He 2s22p 2P° and 22p? 2D triply excited states. The He?D resonance has been the subject of controversy
about its nature and its very existence, with ramifications as to the physics of electron-He scattering measure-
ments and as to the theory of resonance states in multiparticle systems in general. By carrying out a series of
computations, we show howguasjlocalization of these resonances takes place. The results confirm the
existence of théD resonance just below the energy of the H&2@ 3P° resonance, with which it overlaps.
The localization of the two Heresonances is achieved already at the single-configuration level, provided the
orbitals are calculated by solving state-specific restricted Hartree{fHfekequations. Accounting for orbital
flexibility and relaxation due to the self-consistent interactions is essential to the achievement of a local energy
minimum. The localized nature of the wavepacket is revealed even more definitely by solving appropriate
multiconfigurational HF(MCHF) equations containing the information from the self-consistent interaction
with closed channels as well as with the neighboring significant open ones. Reaching a reliable MCHF solution
for a variety of polyelectronic multiply excited states may often be difficult, but once it is achieved it provides
the overwhelmingly dominant characteristics of the state. It is then used as the reference wave function for
computing variationally the remaining of the localized electron correlation in terms of optimized analytic
orbitals representing very nearly the full space of the electron virtual excitations. The calculation of the
localized part¥, and of Eq=(W,/H/V¥), is done by nonorthonormal configuration interactidONCI)
since parts of¥, are optimized separately in terms of their own basis sets. The ¥hal for the two
resonances consisted of 683 symmetry-adapted configurations foPthetate and 778 ones for tH® state.
Using these functions and final state scattering functions with continuum orbitals obtained numerically in
term-dependent core potentials, without and with polarization, of a number of lower-lying open channels, we
employed the independent channel approximation and computed partial and total energy shifts and widths, the
latter from energy-dependent golden rule expressions. Critical comparison of our resHltsEgr A, where
A is the shift induced by the interaction ¥f, with the continuum, and for the widtf;, with the existing few
experimental and theoretical values, led us to the conclusion th& @mel I lie in the following ranges: For
the 2P° state: E=57.204+0.005 eV, I'=68—74meV, and for the’D state: E=58.295-0.010eV, I
=38-55meV. Of special theoretical and experimental interest is the determination of the partial and total
widths of the three-electron HED resonance, since it overlaps from below the two-electron threshold state
He 2s2p ®P°, whose position is at 58.312 eV with a width of 8 meV.
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[. INTRODUCTION calculation taking into account the interactions of all the
electrons.

Coulomb interactions in He give rise to resonances in The theory of resonance formation and calculation that is
the continuous spectrum, which in the approximation of thediscussed in this paper and that has been given the generic
single-configuration assignment, can be classified into douname ofstate-specific approactSSA), provides the recipe
bly excited state§DES and triply excited statesTES).  for dealing with DES and TES of Heas well as of larger
Similar excitations can occur in larger atoms as well. It isatoms. The present work continues the research program of
then reasonable to assume that DES and TES ofddaitain  exploring the properties of prototypical resonance states of
prototypical features for the testing of theory and of compu-arbitrary structures and the efficiency of methods of the SSA
tational methods aiming at the quantitative understanding ofRefs.[1,2], and references thergint was instigated by the
the formation, of the electronic structure and of the intrinsiccontents of the review of Buckman and Cl@&{ and of four
properties of such states in general. Furthermore, the Heregular papers, three experimenfta-6] and one theoretical
system is attractive from the point of view of theory, since its[7], which left open questions about the physics and the
small number of electrons offers the possibility of reliabletheory of He resonances. The resolution of the problems

created by the measurements[4f6] is presented and dis-
cussed in Ref[8]. Here we are mainly concerned with the
*Email address: can@eie.gr foundations and the methods of the theory, the presentation
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of new results on the properties of the two Hesonances, pretation have been tested. The review that follows provides
and with the issues raised by Chufif], who discusses the the background that is essential to the arguments and results
formation and the existence or nonexistence of resonancesf the present paper.

with exemplars from TES of Heand H™. In particular, Following the appearance of structures in the measure-
Chung[7] rejects the possibility of formation ofs2p? 2D ments of the He e~ collision cross-section at energies
resonance in Heas well as that of a 2 S° resonance in  57-60 eV by Kuyatt, Simpson, and Mielczarl?], Fano

H?~, contrary to other theory and results for HgL,2,9 and  and Coopef13] conjectured, without calculation, that these
for HE*~ [10,11], which support the existence of these reso-should be interpreted as Heesonances with the assignment
nances. of n=2 intrashell configurations. In particular, for the struc-

Although the analysis and comparisons that will be preture at 58.3 eV, Fano and Cooper proposed, with some res-
sented in the following sections concern the two HEES,  ervation, the assignment 062p? ?D. A few years later, the
the conceptual and computational framework of the preserfirst ab initio calculations on TES of Heby Eliezer and Pan
study transcends the particular multiply excited resonanceldl4] and by Nicolaided1(a)] found square integrable solu-
and is relevant to the field of resonance states in multielections, via different methods, with energies around 58.3—-58.4
tron atoms in general. eV and with the 22p? 2D configuration as the main

The structure of the paper is as follows: In Sec. [l wecomponent.
present the background of the controversy and apparent un- However, objections and doubts as to the identification of
certainty surrounding the identification and calculation of thethis structure with the p? D resonance state were pub-
He™ 2s2p? 2D state, an issue which we hope that the presenlished by Chund15] and by Chung and Davigl6]. Based
work resolves conclusively. In Sec. Il we stress upon theon their model, which is discussed in the following sections,
significance of an integral part of the SSA, namely, the calthey obtained the total energy of the Hstate as a function
culation and use of properly chosen state-specific multiconef a nonlinear parameter of analytic orbitals representing the
figurational Hartree-FocKMCHF) solutions as zero-order projectile electron that is coupled to fixed two-electron wave
reference wave functions. We cite as examples earlier resulfanctions representing various target states. From the repul-
whose essence as regards accuracy and the capacity to relatee form of the interaction that was seen when the He
electronic structure to resonance formation and decay is reRs2p 3P° target wave function was considered, a type of
evant to the present discussion. In Sec. IV we review brieflyjcomputation that is further discussed in Rgf], they con-
the method of calculation of the energy shift and width. Included that no 82p? 2D resonance can be formed. Thus, in
Sec. V we present our analysis and a series of results on thkeir 1985 paper Chung and Dayis6] stated: “This result
2s%2p 2P° and 22p? 2D He triply excited resonances ob- does not corroborate the previous assignment by Fano and
tained from the application of notions and methods of theCooper. What has been seen in the experiment could be the
SSA. Their reality is assured by the fact that there indeedesult of a postcollision interaction effect.” These conclu-
exists a localized wavepacket, which is computed both wittsions were registered by experimentali@sy.,[5,17]) who,
small expansions with self-consistent orbitals as well as within their discussion on the origin of structures in their scatter-
completely correlated wave functiong,. Using theseW ing data, referred to the supposed lack of conclusive theoret-
and scattering functions for each of the major open channelscal support for the existence of tH® resonance. For ex-
where the scattering orbital is calculated in the potential omple, in 1991, Batelaan, van Eck, and Heidenja]
single or MCHF cores with exchange, we computedl’,  wrote: “The identification of the 58.3 eV resonance is still
and the partial widths. In all energy conversions we usedot completely clear{p. 5153...“Theoretically the identifi-
E(HelS)=—-2.903724a.u. and 1a(le)=27.2077eV cation of the 58.3 eV resonance still does not seem to be
=27.21139& (1—my/Mpe). resolved. The theoretical result of ChufI®80 shows that a

He (2s2p)® P° core is repulsive to a 2 electron when a
- 22 resonance is searched variationally.”
Il. THE PARADIGM OF THE He "2s2p” "D RESONANCE The discussions in Reff7,15—17 contradict our theoret-

It is rather straightforward to understand the appearancial predictions and analysj&,2,9], and a number of experi-
and the properties of a resonance state whenever a singleental measurements and interpretations as to the existence
particle description is applicable. This is usually presented irof this triply excited HE resonancg¢4-6,12,17-21 In an
textbooks in terms of a volcanolike potential, with a local exchange of views on the background of the theory and
energy minimum and a barrier through which the particlemethods of calculation of resonandésc),22], it was stated
tunnels. However, for polyelectronic states such as the TE§1(c)] p. 693 that “this resonance is real, regardless of
of He™, the comprehension of their formation and of their whether it is above or below thde 2s2p 3P° threshold”
properties must engage not only the formal aspects of thBetailed analysis as to the fundamental importance of local-
guantum mechanics of resonance states but also propeation and as to the contribution of ttepen-channel-like
analysis and computational methods for the treatment of ex‘*OCL) bound configurations with self-consistent orbitals was
cited electronic structures with strong electron correlation. presented in Refd.1,2]. In our work, the self-consistently

The literature on resonances in the electronic spectra afomputed OCL configurations constitute part of the zero-
atoms and molecules suggests that thé He2p? ?D state  order reference space and, in cases of multiply excited states
may be considered as a paradigm for the field, where cruciatith closely lying thresholds, are indispensable to the
elements of theory, of measurement techniques and of inteeconomy of a well-converged state-specific calculation.
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Finally, large-scale complex-coordinate-rotatié€@CR) I1l. APPLICABILITY AND UTILITY OF STATE-SPECIFIC
calculations with mixed orbital and;, basis sets were un- ZERO-ORDER MULTICONFIGURATIONAL WAVE
dertaken by Bylicki and Nicolaidel®], which clearly iden- FUNCTIONS OBTAINED SELF-CONSISTENTLY

tified the corresponding complex eigenvalue, with an eigen-
function consisting mainly ofspp ssd dpp and spf
components.(In the SSA context, these are represente
mainly by configurations &p?, 2s2pp, 2s’d, 2p3d,
2ppd, and Z2pf—see Sec. V.In fact, its energy was found

H 3po
to belsllghtly below thg He &p °P° threshold at—0.76052 le(a)]' (in [1(a)] there are a few typographical errprshe
a.u. in agreement with the measurement of Gosselin an L
Zero-order approximation to¥V, was computed self-

Marmet [6] and in conceptual and computational disagree'consistentl at the term-dependent single-configuration level
ment with the theory of Chung. Specifically, the energy of y b g 9

the 2D state was found to lie 10 meV below that of the He by implementing the Roothaan analytic HF methias],

2s2p 3P° state, but the states overlap due to the caIcuIateWhere each orbitahl is expanded in a small set of Slater

. | Bop 2po ﬂmctions with nonlinear parameters that are determined dur-
width of 49 meV. The energy for thes22p “P® resonance ing the self-consistent procedure optimizing the HF solution.
was computed to be at 57.205 eV above the He ground stat@¢ ¢ time, no analytic or numerical HF theory had been
and that of thgzD resonance at 58.303 eV. The experimentals,ccessfully applied to the calculation of zero-order approxi-
values of Hicksetal. [18] are 57.22:0.04 and 58.30 mations to such multiply excited resonances of atomic nega-
+0.04eV and of Roy, Delage, and Carel9] are 57.19 tive jons (ANIs). Apart from practical questions regarding
+0.03 and 58.220.03 eV, respectively. Even more accu- the reliable convergence of calculations for such states, there
rately has been measured the energy difference between thgs also the question of the validity of applying HF theory to
two He resonances[19], which gave AE=1.094 states in the continuous spectrum where the energy-
+0.012eV. This number agrees excellently with the theoretminimum principle does not hold. It was argudd?] that the
ical value[9] of 1.098 eV. The width of théD resonance shell structure and orbital variational constraints, together
has been measured as®5P0 meV by Quemener, Paquet and with the satisfaction of the virial theorem and of the physi-
Marmet[20], as 594 meV by Gosselin and Marmgé], cally meaningful behavior of the occupied orbitals and of the
and as 4810 meV by van den Brinkquoted in Ref[17]).  interaction integrals, constitute valid wavepacket localization

With his recent paper, Chur{@] has returned to his ear- criteria, which in conjunction with computational experi-
lier arguments, with results and conclusions aiming at theence, are sufficient for the direct calculation of zero order
comprehension of the formation of multiparticle resonancesand correlation contributions t, andE,. The accuracy of
Following the results of calculations that focus on obtainingthe analytic HF solutions was verified a few years later, when
a local energy minimum through the hierarchical mixing of the numerical HF method was implemented, following the
correlated wave functions f# De(s), 2s2p ‘P°p(p),  availability of Froese-Fischer’s program in the mid 1970s
2p?(°P, D, 19) p(d), 2s2p ®P°¢(p), and the variational [24]. For example, the analytic HF energy for He
optimization of the orbitalsp(1), (variation of one nonlinear 2s2p? D obtained in Ref[14] using five Slater-type orbit-
parametey, he concluded that théD state is not associated als (STO9 of s symmetry and four STOs qf symmetry is
with an attractive potential. He statgs. 2784 of Ref[7]). ~ —0.70747 a.u. The numerical HF energy-9.70772 a.u. if
“In an earlier work it is pointed out that théD structure  the 2s orbital is not kept orthogonal to the Hels and
cannot be a Feshbach resonance. The results in this study0.70809 a.u. if it is kept orthogonal. These HF energies
appear to reaffirm this conclusidh[We add: If the repulsive place the He 2D position at 59.4-59.5 eV above the
curve presented in Ref7] represented a physical situation, ground state. As we recommend is this paf#ec. \), the
(it does no}, then the extra electron could not bind as a shapéccurate value is 58.285.010eV.
resonance eithdr. For the open shell structures of excited states, obtaining a

In view of the above, and especially of the recent papeself-consistent HF solution constitutes a serious computa-
[7], we thought that additional exploration of this questiontional advantage over the use of fixed basis sets, since the
would provide timely and valuable insight into the nature oforbitals are term-dependent to a significant degree. Neverthe-
this resonance state as well as into the theory of resonandess, the single configuration representation is, in general, not
formation in multielectron atoms and molecules in generala good zero-order approximation for the highly correlated
To do this, we carried out a variety of both small- and large-DES and TES. Furthermore, because of strong mixings and
scale SSA calculations and have made comparisons with r&f the presence of lower states of the same symmetry, it may
sults and conclusions of Reff7,15,14. In the following not be possible to obtain a reliable solution. On the other
sections we will show that these conclusions result substariand, experience from solving numerically the MCHF equa-
tially from the structure of the approach of Refg,15,14  tions for excited states has revealed that starting the overall
and from an inadequate implementation of the conceptuatalculation of resonance states based on MCHF zero-order
framework “(N-1)-electron target plus extra electrérOne approximationsb'(‘, with appropriately chosen configurations,
of the consequences is that the results and conclusions obnstitutes a very efficient and accurate approach to the
Refs. [7,15,16 about the prototypical He ?D resonance problem of computing properties of such states. Thus, for
must be corrected. each stat¢k), the localized par®5 is computed in the form

The emphasis of the SSA is on the recognition of the
OIsigniﬁcance of¥, and on its reliable calculation via tech-

niques that were initially developed for the computation of
electronic structures of ground or low-lying discrete states.
In the paper where the foundations of the SSA were laid
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\pg:aq)ng bxlkoc, a?+b2=1, (1) When it was later found that the solution of the state-
specific MCHF equations for properly selected configura-
P . . . K . tions can be achieved numerically by using Froese-Fischer’s
wherea” is overwhelmingly dominant, witadg remaining . mnyter prograni24], we started implementing resonance
compact and representlnkg the pkrmupal featureﬂféf scattering theory using the forat) [e.g.,[26(b)]]. It is then

In general, both part¥ andX|, contain all the terms of possible to account for part of the contribution of the
the function space contributing to the localizationlof The  discrete-continuum interactions self-consistently, by includ-
radials and the coefficients of the few critical configurationsjng in ®K OCL configurationg2]. However, obtaining reli-

in & produce an optimal description, a fact that minimizesaple solutions of the resulting MCHF equations is far from
the importance ofXf. and the extra work needed for its simple in many cases. In order to achieve such solutions, we
calculation. The correlation orbitals entering in§,. are  have developed a few techniques which are crucial where
optimized separately while being kept orthogonal to those ofailure appears to be the normal result. These take into ac-
(I)'g as well as to those of subshells of lower states of thecount properties of the electronic structure of the state of
same symmetry. The separate variational optimization of thénterest and the related form of the HF and MCHF equations.
term-dependent one-, two-, three-, etc. electron-correlatiohleedless to add, it is understood that the numerical aspects
functions inxtm improves convergence but, in general, alsoof integration of the coupled differential equations must be

requires the use of nonorthonormal orbitals. as accurate as possible. _
One such technique is suitable for electronic structures

whose energy is found above their own threshold. The first
application was reported by Beck and Nicolaiddd(a)],
when they dealt with the calculation of the shape resonance
As expected, localization, and hence the calculation o2p? 4S° of the = doubly negative ion. A similar calcula-
WE, occurs much more readily in the neutrals and positivelytion was reported recently in Refl25] on the Li-
charged autoionizing states than in the resonance states $°2s2p >P° shape resonance. The technique has been used
the ANIs. This implies that properties of inner-hole Augerin a few more cases. It involves the iterative combination of
states or multiply excited statéMES) of positive ions, can SCF and single excitation configuration interacti@) pro-
be predicted by economic MCHF calculations, if most of thecedures, whereby the orbital expansion in the Cl is collapsed
significant correlation effects are includg2ib)]. into an orbital of the same symmetry, which is then used in
On the other hand, because of the weak binding that théhe SCF equations in order to obtain a bound SCF orbital for
ANI resonances have in general, it is often very difficult, orthe loosely attached electron. The reader is referred to Refs.
even impossible, to solve the HF or the MCHF equations[25,11a)] for details.
since one of the orbitals becomes, during the iteration, ex- Another technique, which was used in the present calcu-
tremely diffuse, tending to a scattering orbital while the en-lations of the He 2s2p? ?D resonance state, involves the
ergy is lowered, unphysically, to the corresponding fragmenhandling of certain OCL configurations that are deemed im-
tation threshold. For example, we refer to a fact on which weportant for the accurate description and proper convergence
commented in p. 3582 of Ref2(a)] and p. 4145 of Ref. of the MCHF d)‘{). It was first used in order to achieve a
[2(b)]: Whereas it is rather straightforward to obtain ansimple and physically transparent MCHF solution for the
MCHF solution of the 82p? 2S TES for Li and the isoelec- He™ 1s2s2p ?P° broad resonance and to recognize the fact
tronic positive ions, it is impossible to do so in Héf the  that this state has components of b&#shbachand shape
2s?s configuration is included, since tisdunction cannot be resonance$26(b)]. This technique aims at making worthy
made to bind when the self-consistent-field res(8€P it- the possible advantages that different orbital couplings may
eration is allowed freely. have, as well as at obtaining a better physical picture. Spe-
As we already mentioned, during the first stages of thecifically, let us look at the He 2s2p? 2D resonance. Three
implementation of the SSA to MES and to inner-hole statestypes of orbital replacement lead to OCL configurati¢ins
the zero-order reference wave function was a single configudi), and (iii) below, since both the He s3!S and He
ration with HF orbitals. If one starts with a HF wave func- 2s2p 3P° thresholds are open when an approximate calcula-
tion, consideration of interelectronic interactions leads tation on the HE 2s2p? 2D state is done(When all interac-
correlation configurations representing the adjacent continuions, including those of the continuum are accounted for, the
ous spectrum, i.e., open channels. Using as simple exampléte™ 2D energy is found below the Hes2p 3P° energy.
configurations such assi2p? S and 1s2s? 2S, it was dis- , s -
cussed in p. 2088 of RdfL(a)] and p. 462 of Ref.1(b)] how (2s2p®) “D—Hey(2s” *S)d
the contribution otole-filling pair correlations can be com-
puted approximately using judiciously chosen configurations
with bound orbitals. Of course, better and rigorous ap-
proaches, free from uncertainties and inaccuracies regarding
the representation of the continuum, are attained by using (i) < Hew(2s2p 3P°)p
numerically calculated Rydberg bound and free scattering or-
bitals for each channdl2,25-21, or optimized complex.?
orbitals[28-30. (i) —Hey(2s2p 3PO)f.

A. Techniques for achieving convergence of self-consistent
calculations of resonance states of polyelectronic atoms

(i) (hole-filling pair correlation
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The orbitalsp, d, andf need not be hydrogenlikep3 3d or  attains of realizing the interplay between the details of elec-
4f. All three configurationsi), (i), and(iii), represent inter- tronic structure and the dynamics of decay. This fact pro-
actions that contribute to both resonance formation and to itgides substantial insight and permits the transfer of compu-
energy. As we will argue in Sec. V and as we have discussetational information between states of similar structures. This
before [2], the inclusion of configuratior(i) into a large contention is supported by a number of results, including
MCHF calculation causes no convergence problems, whil¢hose of the present work. An example from the past is the
contributing significantly to the character &,. The same work presented in Ref34] on the combined effects of elec-
holds for configuratioriii ), albeit with a smaller contribu- tron correlation and relativity at the Breit-Pauli level for the
tion. However, when configuratiofii) is included in an DES of He of D and D symmetries, whose electron pair
MCHF calculation with either a small or a large expansion,correlation has analogs in the HEES of 2D symmetry
the solution fails since the outgr orbital cannot be held studied here. These results pertain to the positions and the
bound in this configuratiorithe exchange integral is repul- widths of the five lowest such DES of He, a two-electron
sive). system that has been treated extensively by methods employ-
The remedy is to consider the alternative coupling,ing fixed basis set§35-37. The analysis 0f34] showed
namely, that of the outer pair (Bp) >'D interacting with  how certain autoionization widths depend crucially on spe-

the 2s orbital, for which the following holds: cific correlation configurations belonging ... Further-
_ ) . more, the results of Ref34] differed to some degree from
(iv)  ¥[2s(2p3p "D)]=(v3/2)(2s2p *P°)3p—(1/2) those of{35—37, which also differed among themselves, but
1m0 were eventually verified by the large scale CCR calculations
x(2s2p “P7)3p, of Ref.[38].

(v)  ¥[2s(2p3p 3D)]=(1/2)(2s2p 3P°)3p+ (V3/2)
X (2s2p P°)3p.

IV. THE CALCULATION OF A, OF y, AND OF I

OnceV, andE, are available, for one or more states of
These linear combinations include the open channeihe same symmetry, time-independgh,25-30,3%as well
(2s2p) 3P° but also the closed channel¢2p) 'P°, which ~ as tlme-de_pendenEZS] methods.employlng stat'e.—spemflc
contributes to localization via its negative energy exchangdvave functions have been applied for the addition of the
integral. The corresponding main correlating configuration®Pen channel function spaces that were excluded by projec-
are of the types(2pp) *D. These, together with<2p? and  tion or construction from¥. Through these methods, one
2s3p? [while excluding (22p 3P°)p], allow convergence can.compute the .partial and totgl shiffs an_dA anq the

to a localized solution which includes, indirectly, part of the Partial and total widthsy; andI" without or with multistate

contribution of the open channéec. \J. and multichannel coupling. _
The continua that are considered here are described by a

single free electron. However, in general, the TES can decay
via two-electron emission as well. The proper calculation of
The approach to the calculation and understanding ofne rates of such processes requires the possibility of com-
resonance states that starts with the direct calculatiofifpf puting pair correlations in the continuous spectru(®f
in the form of Eq.(1), has produced a number of results, course, the immediate approximation is to use a product of
most of them concerning prototypical cases. In more recerivo scattering orbitals A theory for doing so, using &
years, other groups have also proceeded with the applicaticend an expansion over products of square-integrable com-
of state-specific calculations &'3 of ANI resonances or of plex orbitals, was presented in REB9], with application to
other autoionizing states of low excitation. For example, inthe rates of double photoionization of the?1!S state of H
the relativistic calculations of Cai, Beck, and Perfgt] on  and He and of the $2s2p “P° state of He. In the present
the Hg 62 resonances, the expansion fbf was chosen to treatment, only the widths for single electron ejection, which
be small, whilst in the nonrelativistic ones of Brage, Froeseis of course dominant, are computed. The aim is to demon-
Fischer, and Vaeck32] on two- and three-electron systems, strate the limits of the method within the independent-
W was thedS itself, represented by a very large expansion.channel approximatiofiCA). As it turns out, the total width
Finally, state-specific calculations ¥f$, with application to IS close to the one obtained by the CCR mettjad], where
the He 2P° resonance studied here, were reported recentljnterchannel coupling is included.

by Manby and Doggetf33], who optimized, via the mini- For an isolated resonance, such as the ones studied here,
max technique, small expansions of spin-coupled wave fund! the time-independent framework its complex energy satis-
tions. fies the transcendental equation

Although there are a few extraordinary cases of excited
states, such as the Hlipole resonances, where the applica- z-E;—~A(2)=0, z is complex, 2
tion of the MCHF method for the determination dff is
impossible and alternative choices of state-specific functiotvhereA(z) is the self-energy of the staf#]. To a very good
spaces are necessdB8], a number of characteristic appli- approximation, Eq(2) yields the resonance energy as
cations have demonstrated not only the efficiency of compu-
tations based on the forrfl), but also the possibility one 2o=Eq+A(E)—(i/2)T'(E). 3)

B. Applicability, efficiency, and transparency of W,
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Provided each channelis formally separated, the functions V. CALCULATIONS OF THE H LOWEST 2P° AND

A andTI are given, on the resonance enegyby 2D TES, AND INTERPRETATIONS
_ In the previous sections, we explained why one of the few
A= 8, E=Eq+A, E is real, (4)  known triply excited resonances of Hethe lowest?D, has

! been the object of controversy, and we indicated how the

broader problem of identifying and computing resonance
r=> . (5)  (autoionizing states is handled in the framework of the SSA.
[ In what follows, we will present results and analysis for the

. . roperties of¥,, and concomitant numbers fdt,,A,y;,

For a polyelectronic resonance state with many opergnd I' of the He 2s22p 2P° and 22p? 2D resonances.
phannels, theﬁi(E). and the %(E) depenq, n gen.eral, ON These states were examined again in order to reveal the prin-
interchannel coupling. However, accounting for this effect iSgina| aqnects of their formation and quasistability, to com-
computationally gumbersome, even though methods_wﬂhwbute their properties and to explain why, even for small
the S.SA are available qnd have been applc-30. It 'S"  ANIs, the approach followed by Churd@, 15,14, which also
certainly more economic to handle such _proble_ms n theaims at the establishment of a localized wave function
ICA. In this respect, formalism and calculations without andalbeit via a different method, may fail to predict reliably the

with  interchannel coupling on the nine-electron f ; ; ;
: , ormation of resonances, with particular exemplar the case of
Ne'" 1s2s%2p® 2S inner-hole stat¢29], where five channels the He 2s2p2 2D resonance P P

are open, as well as on thes3s3p *P°DES for Z
=2-5,10[30], where three channels are open, indicate a

significant result: When the calculation goes beyond the ICA A. The He™ 2s?2p 2P° resonance
and accounts for interchannel coupling, the total wigtiht . .
not necessarily the total shiftemains reasonably constant Apart fro.m the usual elect.romc Structurg requirements as-
even though the partial widths may change to some degrééoc'ated with the self-consistent correlations of the “mo-
Therefore, by adopting the ICA, the present calculationd'ons” of the three electrons, this triply excited resonance

were carried out using the expressions for the partial shift eflects a rather easy situation, since its position is known to
and widths that were ?Jsed befrz[@(a)] P e below the lowest DES of He, thes2'S state at 57.8 eV.

E—Eo—81(6)=0, (63 1. The calculation of¥, E, and of approximations to them

We start by listing basic results of R¢f]

(1) The statement in p. 2782 of RdfZ] is thatthis 2P°
resonance is formed by channel coupliige will show that
this resonance is formed mainly via localization of a single
and HF configuration, without channel coupling.

(2) Figure 7 of Ref[7] presents the results of a hierarchy
_ 2w[(Wo|H—E|U,(E))|? of calculations meant to show how the H2s?2p 2P° reso-
vi(E)= 1-6/(E) ’ @) nance is formed as various channels are added. The first
calculation, depicted by ;= y(2s2s S)¢(p), produces a
where &/ (E) is the derivative of the energy shift at thieof ~ completely repulsive curve as a function &=(r;+r,
Eg. (4) P denotes the principal value,is the energy vari- +r3), with the conclusion that in this approximation the
able, andg; is the threshold energy. The appearance of théhree-electron system is completely unbound. According to
(H-E) operator rather thaH, results from the formalism and Table | of[7], the target wave functiog(2s2s 1S) consists
from the fact that the orbital sets for initial and final statesof 78 terms. According to Eq. 11 of Réf], the orbitale(p)
are, in general, nonorthonormal. is given by a sum of five Slater orbitals with a variational

U,(e) is the N-electron scattering wave function, which, parameter.
given the detailed description of the localized state provided (3) The wave function, of Ref.[7], which contains the
by ¥,, is represented accurately by a symmetry-adaptedum of the contributions from s 1S)¢(p), (78 terms,
product of a single or of a two-term core functifa.g., (2s2p *P°) e(s), (72 terms, (2s2p 3P°)¢(s), (69 terms,
(1s2s+1s%)1S, or (2s°+2p?)'S] with a term-dependent and (22p P°)¢(d), (72 terms, i.e., 291 terms altogether
numerical HF continuum orbital for each chanmeln im-  with optimized¢(l) orbitals, has produced a total energy of
portant channels, if the polarization of the core is expected tabout—0.7907 a.u(see p. 2782 of Ref.7]). We will show
contribute significantly to the phase shift of the HF scatteringhat within the SSA the physics is revealed in a much simpler
orbital, we account for it by adding to the potential the po-way and that the same energy is obtained with just a six term
larization potentiaM(r)=— a/2r* for r>r,, wherea is the ~ MCHF wave function, containing the most important orbital
polarizability (taken from the literatupeandr , is chosen just  excitations from a 822p HF reference wave function.
beyond the outer maximum of the one-electron density of the Let us relate first to itemél) and(2) above, by consider-

—&U (e))]2
sier-p[ 1AV

E—¢ &

core function. ing only the 222p configuration. The corresponding energy
Once the most importang; and y; are known, the total expression is very simple, containing twawo F and oneG
shift A and widthI" are obtained as their sum. Slater-Condon integrals. It was already foundlit] that it is
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indeed possible, even by the analytic SCF method, to obtaitype, and for state-specific calculations on He DES, see Refs.
valid localized solutions of the corresponding restricted HH 34,41—-43.) However, even if its HF energy were above the
equations. We remind the reader that the analytic SCHF energy of the He& S, it is the criterion of localization
method is a variational method involving trial orbitals with that would be physically crucial and not the relative position
variable nonlinear parameters. This implies that, in the casef the two energies. In fact, if one wants to improve the
of N-electron resonances, as the orbitals are varied a delicatalculation by including the important near-degeneracy mix-
combination of the values of the Slater-Condon integrals proing 2s?<2p? for both states, then an inversion of levels
duces a local energy minimum. In fact, since the structure obccurs, since this interaction is stronger in He than in He
HF theory for bound states is such that its solutions satisfyhe orbitals of the former being more hydrogenic than those
the virial theorem, one of the criteria of validity of the HF or of the latter. Specifically, the MCHF 22 wave functions
MCHEF solutions for electronic structures with energies in theand energies for the two states are

continuous spectrum that has been ugedonjunction with

others [1,2] is the satisfaction of this relationshizor at- 0.9094)(2s?2p) — 0.41604(2p?),

oms and diatomics, the analytic HF method is more compli-

cated and less reliable than the numerical solution of the E(MCHF)=—0.77055 a.u. for He&?P°),
HF-coupled equations. Indeed, our experience suggests that

numerical solutions are achievable for many excited struc- 0.8586/(2s?) +0.5126/(2p?),

tures of ANIs and, of course, of neutral and ionized atoms.

For calculations of excited states of the diatomic molecules E(MCHF)=—-0.77676 a.u. for HgS).

He,” and He  via the numerical solution of the MCHF

equations, see Ref40].) As we will see below, when the rest of electron correlation is

When the HF equations are solved for the Hsingle added for both states, the HE° resonance goes below the
configuration 222p 2P° with the 2s orbital kept orthogonal He S resonance by 0.61 eV. It is noteworthy that the two
to the He™ 1s orbital, there is a valid solution for which the sets of (3,2p) orbitals differ in their size, the ones for He
energy iseyr=—0.74278 a.u. and the orbitals are compactbeing more compact, as is the case generally when an ANI
and well behaved, with(r),;=4.46a.u. and(r),, wave function is compared to that of the parent neutral state.
=3.63a.u.(A minimum is also obtained without theszor-  Specifically, for HetS):(r),s=3.34 a.u., (r),,=3.13 a.u.
thogonality to the Hé 1s orbital. Its validity is due to the and for He (°P°):(r),s=4.12 a.u.,(r),,=3.91 a.u. These
good one-to-one correspondence between the electron@bitals are plotted in Fig. 1.
structure of the state and the numerical stability of the HF In order to see the occurrence of the local minimum pic-
solution. However, in general this need not occur, and exclutorially, we carried out two variational calculations, using
sion of selected lower channels via core orbital orthogonaljust a single Slater orbital for thep2orbital and two choices
ization is necessary, especially when we include electron coffor the 2s orbitals. In the first choicd,=frozen core orbita|
relation[1,2]). the 2s orbital is the HF 2 of the core state, i.e., of the He

Therefore, there is a state-specific, triply excitéB®  2s? !S. In the second choicés= relaxed core orbita) the 25
bound configuration that exists in a local energy minimumorbital is the HF 2 of the He™ 2s22p 2P° calculation, which
without channel coupling. It constitutes the simplest zero-means that it already contains the self-consistent relaxation
order representation of the exact wavepackgt We note due to the presence of thep2rbital. The results of these
that the He 2P° HF energy is below the HF energy for the calculations are plotted in Fig. 2, which depicts the energy of
He 2s? 1S state, which is—0.719 68 a.u(For Feshbacl?, Q  2s?p as a function of the average value robf the Slaterp
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FIG. 2. Plots of the total energy of the H&s”p P° resonance againét),, the average value of the radius of a one electron function
of p symmetry that is coupled to simple two-electron wave functions representing th& Heubly excited statgDash dot dot A single
configuration, %p, where the 2 orbital was obtained from the HF solution of H@s?2p 2P°. E;,=—0.73843 a.u. afr),=3.30 a.u.
The minimum is deep(Dash do}: A single configuration, 8p, where the 2 orbital is obtained from the HF solution of Hes2'S.
Emin=—0.71775 a.u. afr),=4.02 a.u. The minimum is shallo@Dot): He[ 0.857(%2) +0.513(%?) ]p where the (2,2p) orbitals are from
the He 'S MCHF calculation ang is made orthogonal tof2 No binding occurs(Dash: Two-term, (2?p;+2p?p,), 2P° wave function,
where the (3,2p) orbitals are from the He'S MCHF calculation and no orthogonality is imposed among the ttpeerbitals.
Ennin=—0.75316 a.u. afr),=4.65 a.u(fixed) and(r),=6.19 a.u(Solid): Same as the “dash” case, but thes(2p) are relaxed, taken from
the He (2s22p,2p3)MCHF calculation. The minimum is deeper than before, reacEipg=—0.76671 a.u. afr),;=3.67 a.u.(fixed) and
(r),=3.86 a.u..

orbital. Even with such a simple orbital, both calculations 2p of the 2x 2 MCHF He wave function, and form a three-
produce local minima, the one using the relaxexHE or-  gjectron wave function, as Chung does with his 78-term tar-
bital being lower. Its value is-0.738 43 a.u. and it appears at get function. Specifically, we forn¥(a2s2+b2p?)p, and
<r)p=3_-3? S: Wlh'c_h IS fcloseht_o that ‘jf;“gore fI:ex:E)Ie follow the total energy by varying the exponent of the
humerica solution, for whick{r),p=3.63a.u. In fact, g i grpital. No binding takes place. The corresponding
when twop Slater functions are used and optimized Va”a'repulsive curve is shown in Fig. 2. It is the result of the
tionally, the local energy minimum is at0.742 74 a.u., al- repulsive interaction between the exfpaelectron and the

most identical to the numerical HF value. This result is in 2 i the t t functiorto which it kept orth
accordance with the state-specific approach, since suchacglp erm in the target functiortp which it was kept orthogo-

culation constitutes an approximation to an analytic HF calnal $uch a repulsive interaction must also dqmlnate the cal-
culation in its last cycle, i.e., when thes 2rbital has already Cculation of Chung[7], where the frozen orbital [#-type
been optimized and the p2 orbital, expressed a$2p) term is mglud_ed in the 78-term expansion, and_where the
=S.c,u;, whereu; are Slater orbitals, is varied to minimize extrap orbital is kept ort_hogonal to th_e target function. In the
the energy. second type of calculation, we consider each of the two con-
The conclusion, therefore, is that the H@° resonance figurations separately, we forraW(2s’p;)+bW (2p®p,)
is already quasibound at the single-configuration HF leveland very each of the twp Slater orbitals separately. Now,
without any CI or channel coupling. the p, andp, orbitals are not restricted to being orthogonal
Given the above fact and iten{3) and (2) above, it is  either to the » HF orbital of the target wave function or
instructive to consider the possible reason of why Chung'detween them. The solution of this two-configuration case
large calculation with wave functiowr; (78 termg produces requires a nonorthonormal CINONCI) calculation and
a totally repulsive energy curve as a function of the averagshows that binding does occur, since the role of the three-
value of(r),. (His use ofR=(r,+r,+r3) is essentially the electron configuration #p, is to improve the single-
same thing, since the target functions are frgz&wo let us  configuration result. The corresponding energy curve with
consider the electronic structure of the H&#2S state. Its  the local minimum is also shown in Fig. 2. The plot is one
overwhelmingly dominant electron-correlation effect is thedimensional, with thér), of the p, orbital being kept at its
mixing 2s%< 2p?. We now carry out two types of variational optimal value, 4.65 a.u. For this calculation, the energy mini-
calculations, using analytic orbitals for the third elect@n mum is at—0.75316 a.u.
orbital) of He™. (a) State-specific few-term wave functions vs the 291-term
In the first, we use onp Slater orbital, orthogonal to the wave function of Ref. [7]Having established the localization
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of the state at the zero-order level, we can improve the waveeasons, of which the most interesting is offered by the ex-
function and the energy by adding electron correlation conample of Sec. VB, i.e., the issue of the existence or not of
figuration that do not destroy localization. By choosing thethe He 2s2p? 2D resonance, whose background was al-
important configurations in a hierarchical manner, we firstready presented in Sec. II.
obtain multiconfigurational representations of thé of Eq.
(1). In this first stage, the convergence of the calculation
toward the accurate final result is fast and physically trans-
parent. We give an example: The significant orbital excita- Experimentally, the formation and decay of the
tions from the 2%2p reference configuration are:s2-d, He™ 2s?2p 2P° resonance in the three inelastic channels
2s?—p?, and Z2p—sp. Within a minimum size MCHF  1s2s 1S, 1s2s 3S, and 1s2p P° was observed already in
scheme, the corresponding configurations asg2@, 2p°®, the 1960s by Simpson, Menendez, and MielczdrX. A
(2s2p)® P°3d, (2s2p) 'P°3d, 2s(3s3p) °P°, and recent measurement and discussion of the relative rates of
2s(3s3p) P°. When this six-term MCHF calculation is decay into the Hed2s 1°S1s2p 13P° channels was re-
done, the energy is-0.790 98 a.u., which is exactly the same ported in Ref.[21]. An important measurement was also
as the energy obtained in Rdf7] with a 291-term wave made in 1969 by Burrow and Schiyl6], who recorded the
function[item (3) abovd. decay by two-electron emission. However, no measurement
The result based on the six-terdr; can be improved by of these partial widths have been reported. On the other
augmenting judiciously the reference space. Indeed, a 3%1and, the total width was measured some time ago by
term d§ gaveEq(df)=—0.79868a.u., or 52.27 eV above Quemener, Paquet, and Marnma0] as 9G- 14 meV while a
the He ground state. The measurements of R&%18 gave ~ More recent unpublished measurement by van den Btifk
the position at 57.220.04 and 57.120.03eV, and the gave 7G-10meV.

2. The calculation ofy; of I', and of A

large-scale CCR calculation of Bylicki and NicolaidEg, As regards theory, the first result, 2.4 meV, is that of
(which includes the full contribution of the open chanpels Smithet al.[47] from close-coupling calculations. More than
gaveE=57.205¢eV. 20 years later, Bylicki and Nicolaidg8] reported a width of

The results above provide yet another example of th¢1 meV, obtained from CCR calculations that include, in
spectacularly good convergence toward the accurate energyinciple, the contribution of all open channels, having one
and electronic structure of MES and of inner-hole states tha®S Well as two free electrons. More recently, Sreittal. [44]
is achieved when state-specific MCHF calculations, withand Manby and Doggef83] also published results of calcu-
suitably chosen few configurations, are carried out. lations ofI'. Zhang and Chun{#8] reported”=68.5meV,

(b) Addition of X,. and final NONCI energyWe now obt_alned by a method using real and complex coordinates on
continue the calculation o, by adding terms belonging to Which we commented in Refl(c)]. Manby and Doggett
XX_. Since very good convergence has already beeh33] reportedl’=82meV, obtained by using the golden rule
achieved by the 35-terb¥, the calculation of this part is 2nd the ICA, with, being a state-specific two-term spin-
very slowly convergent, in spite of the fact that the Corre_coup!ed wave functlon_wnh flexible orbitals. The scattgrmg
sponding variational calculation is done via NONCI, a char-functions were approximated by a set iof orbitals. It is
acteristic feature of many state-specific calculations ofioteworthy thatthey gave as an estimate of the partial widths
atomic and molecular statg44]. Eventually, a 588-ternd’, for two-electron emission t_he value 3.7 m_eV.
was computed, nearly exhausting the full space of single, 1N€ results for the partial and total widths [&,33,49
double, and triple orbital excitations. The corresponding enf’m_d of the present work are presented in Table |. Our palcu-
ergy isE, (He 2P°)=—0.80128a.u. or 57.203 eV above lations were dong according to the method presented in Sec.

IV. The following open channels were considered:
1s2s3Sep, 1s2s'Sep, 1s2p 3P°  (es,ed), and
1s2p P°(es,ed). The calculation of the H&S core in-
volved the simultaneous optimization of the two roots

the HelS state. In fact, in order to reach the full ClI limit, we
resorted to a M extrapolation ofg,, whereM is the num-
ber of configurations inV, for M =35, 150, 355, and 683.
The extrapolated value is

(1s2s+1s%)*s.
Eq(He ~2P,)=—0.802 411 0.000 133 a.u. Judging from the theoretical results of R€8,33,49 and
of the present workI{ =69 meV), and from the experimen-
=57.172 eVabove He'ls, (8) tal value of van den Brink17], and if we take for the partial

width of two-electron emission the value 2—4 mé\bot in-

(c) CommentOne might argue that, even though the ap-cluded in our calculation we come to the conclusion that
proach advocated i[i7,15,14 does not produce binding for the theoretical prediction fadr is in the range 68—74 meV.
the He 2s22p 2P° resonance withouthannel couplingand On the other hand, there is some discrepancy among the
large core wave functions, eventually Chung’s full calcula-results of Refs[33,48 and this work as regards the partial
tion leads to the same final conclusion as that of the presemtidths. In our calculation, the largest contribution comes
analysis, namely, that this resonance exists, with an eneryom the 1s2s'S (y=21meV) and %2p3P° (y
around 57.2 eV. In other words, one could argue that everr 34 meV) channels, whereas in those of Zhang and Chung
though the economy and the physical picture of the twd48] the y of the 3P° channel is dominant41 me\) and in
methodologies are different, the end result is the same. Howthose of Manby and Doggef83] it is the 1P° and thelS
ever, this would not be a good argument for a number othannels that dominafe/(*P°) =26 meV, y(*S)=28 meV.
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TABLE |. Partial and total widths(in meV) for the He We list basic results of Ref7]:
2s°2p ?P° resonance state, obtained in this work, Ed$—(7), in (1) On 2784 of Ref[7], it is stated: “Judging from the
earlier calculationg9,33,49 and in measuremen{20]. For our  experimentally observed positiofof the 2D structure,
results we used the reduced 1 erie)=27.207 7 eV. #(2s2p °P°) ¢(p) is obviously the most important channel.
However, this channel is not favorable in forming& reso-

Theory Experiment nance since the exchange integral between the outermost
Channels This work [9] [33] [48] [20] a electron and the target is positive. Hence, one should not be
surprised to find the result foP; in Fig. 10 (which shows
1s2p(3P%)es 33 41 that the energy curve as a function REE(r+r,+r3) is
1s2p(®P°)ed 4 13 3 repulsive.”

(2) The coupling of many channels, containing hundreds
152p(*P%)es 10 13 of terms, do not change the repglsive nature o_f the energy
152p(*P9)&d 0.6 26 g4 curve (Figs. 10 and 11 of7]), leading Chung to his conclu-

sion about the nonexistence of the H& resonance.
1s2s(3S)ep 0.4 1 06 Let us start by considering only thes2p? °D configura-
1s2p(1S)ep 21 28 13 tion. As we already stated in Sec. Ill, the corresponding re-
Total 69 71 82 69 9814 70+10 stricted HF equations can be solved numerically to produce a

localized solution, with or without orthogonality of the H&2
®Unpublished result of van den Brink, see Ref7] orbital to the H& 1s hydrogenic orbital. The 2 and 2 or-

bitals are compact, witlfr),s=4.1a.u. andr),,=4.4a.u.

As regards the total energy shit we estimate that its This orbital wave function constitutes the simplest zero-order
magnitude is about 30 meV. This is obtained from E4).  representation of théD resonance, with an optimized en-
and the fact that, for this state, we estimated that interchannelrgy that is a local minimum inside the continuum. The re-
coupling reduces by about 40—50% the value from the ICAmaining of the calculation toward the determination®j
Therefore, using Eq(8); the total energyE (SSA of this  involves the addition of configurations which, even though

state is given by they are optimized variationally, do not destroy the localiza-
tion of the trial function.
E(SSA =E,+A=(57.172+0.030 eV=57.202 eV. The discussion that follows has three parts. In Sec. VB 1

(99  we present results based on simple wave functions in order

to provide pictures of the energy minima attained in the con-
Given the other theoretical and experimental res@se our  tinuum as the radial function of the third electron is varied.

references and tables in Ref$,48]), we suggest that the In Sec. VB2 we present our results for the characteWgf

position of this resonance state isk57.204+0.005eV. and for the value oE. In Sec. VB3 we present the results
for I and the partial widths. All the results establish beyond

B. The He 252p? 2D resonance doubt the existence of this resonance, while demonstrating

how the SSA addresses, in general, the problem of under-

As we discussed in Sec. II, the existence of such a resQsianding the formation and the properties of resonances of
nance has been disputed in a series of papers during the "’F%Iyelectronic atoms.

two decadeg7,15,16,22, culminating in the latest one of

1998 [7] This fact has created confusion as to the nature, 1. Local energy minima and their relation to Simp|e
formation and observation of this staeg.,[17,21]) and as configurational functions without and with
regards the theory and computation of resonance states of relaxation and channel coupling

polyelectronic systems in general. Furthermore, Chung has

claimed(e.qg.,[15,22)) that earlier calculations by one of us  We will discuss three notions:

(C.A.N.) of the ¥° of the He 2s2p? 2D resonance are in- (1) The notion of orbital flexibility in the single configu-

valid, because of the inclusion of terms of the tymé®and  ration (2s2pp’)?D, implemented via a nonorthogonglor-

2p?d. [These correspond to the OCL configurations dis-bital optimized variationally.

cussed in Refd.1,2] and in Sec. Il. We return to this issue in ~ (2) The notion of correcting the localized orbital wave

paragraph(3’) below] function (2s2p 3P°)p, via coupling with the channels
In what follows, we will examine the question of tH®  (2s2p *P°)p;, (2p3d *P°)p,, and (33p 3P°)ps. Thep;

resonance formation along the lines discussed above for tHe=1, 2, 3 are analytiqSlate) orbitals whose exponents are

He™ 2P° resonance, and we will show that the related objecvaried. They are not orthogonal among them or to thea@d

tions of Refs.[7,15,16,22 are without foundation. The 3p orbitals of the target functions.

He™ D resonance is indeed formed at 58.3 eV, with a width (3) The notion of open-channel-like configurations

in the range 40—60 meV. This conclusion is based on th¢a2s®>+b2p?)d, obtained self-consistently from an MCHF

results of Refs[2,9] and the present ones, obtained with calculation and contributing to the stability of the wave-

simple as well as with well-correlated wave functions, whosepacket.

analysis reveals the constitution and the properties of its lo- (1') We already mentioned the fact that the He

calized part¥ . 2s2p? 2D single configuration Hartree-Fock equations have
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a perfectly acceptable localized solution. This implies that agd«— 3p?’md—3pnpmdm=3,4,...), with the 33pnp con-
the orbitals are varied in the self-consistent field, the totafigurations corresponding to observed resonar{&§. A

energy reaches a minimurft-0.708 a.y with respect to
these variations. We shall call theg,2p) orbitals from this
HF calculation theelaxed orbitals and will distinguish them
from the HF(Z,2p) orbitals of the He 82p 3P° state,
which will be calledfrozen orbitals Indeed, these two sets of
orbitals are different, as can be seen from Fig. 3.

Now let us consider the concept (—1)-electron target

way to account for most of this polarization is to allow the
two 2p orbitals of the 22p? 2D configuration to be differ-
ent(= unrestricted HF theopy A practical approximation to
this, which is relevant to the present discussion, is the use of
the (2s2p **P°)p, two-term wave function, with separately
optimized nonorthogonal orbitals.

Figure 4 presents two energy curves of the two-term

plus extra electrorthat characterizes the approach followed (2s2p >'P°)p, 2D wave function as a function dqf),, the
in Refs.[7,15,16. This implies that we choose a core He average value of for p;. It is repulsive when the, func-

wave function of °P° symmetry to which we couple p
orbital representing the third electron. Chug used a 69-
term 3P° wave function and found no binding of the third
electron. We will use only one configuration,s2pp,)?D,

tion is orthogonal to the R orbital, regardless of whether the
latter is taken from the Hes2p 3P° “target” (frozen orbit-
alg or from the He 252p2 D configuration(relaxed orbit-
als). A repulsive curve is obtained as well when the core

whose proper electron coupling yields two terms, theorbitals are frozen ang@; is nonorthogonal. Only when the

(2s2p 3P°)p; and the (32p P°)p,;, and will show that

the binding indeed takes place, provided these zero-orddiguration

p, is free to be nonorthogonal to the Df the 252p? con-
does the local minimum appear &E

configurations consist of flexible orbitals, i.e., of the relaxed=—0.70547 a.u. with(r),=3.68a.u. In fact, when the

(2s,2p) orbitals and a simple Slater, orbital that, however,
is not orthogonal to the 2 one. The binding is depicted as

space is made more flexible by adding one more Slater or-
bital, the minimum is deepened = —0.70935 a.u., which

the occurrence of a local minimum of the total energy ofis below the restricted HF value-0.708 09 a.y. This is

(2s2pp;)?D, as the average value of the radiuspf(r)p,

simply because this calculation approximates an unrestricted

is varied.(That is, the nonlinear parameter of the Slater or-HF calculation of the 82p2p’ type with nonorthogonal or-

bital is varied)

bitals.

Before we show the relevant results, it is useful to relate The existence of the local energy minimum, even with

the meaning of the (2p *'P°)p, configuration to the state-

such simple(but physically relevantfunctions for the He

specific electronic structure theory. When the SSA is considftarget3P°) p, 2D “channel,” contradicts the claim of Refs.
ered, the implication is that the self-consistently obtained7,15,14. It also constitutes an example whereby it becomes
2s2p? ?DHF configuration can be adopted as the referencelear that the state-specific strategy toward the solution of
localized wave function. Even though the two orbitalscertain problems in excited states not only is more economi-
(2s,2p) are optimized self-consistently, it is known from our cal and transparent but also necesg4#j.

previous work on He, as well as from previous theory of (2") We now proceed to see what happens if we add other
the interplay between atomic structure and atomic spectréchannels” to the results ofl)’. Does the local energy mini-
(see the reviewg44,49), that forsp? 2D structures, electron mum survive or is it destroyed?

correlation causes significant polarization of the @rbital, As we already reported in Reff2(a)], the He 22p 3P°
even in neutral states. This effect appears as Cl with configuesonance state is overwhelmingly dominated by three con-
rations of the typesp? ?D. For example, the strongly figurations, the 82p, 2p3d, and 33p, provided they are
perturbed AI’D spectrum [27] is characterized mainly obtained self-consistently by the MCHF procedure, in which
by Cl of the type 33p%-3s3pnp(n>3)—3s’md, case they contain the contributions of higher-lying excita-
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-0.68 - Formation of He " 2s2p’"°D
-0.69 - 5
_0‘-,0_. LV s . FIG. 4. The total energy of the He?D reso-
[ V. G o nance state, represented by one configuration,
o D 2s2pp, coupled as (82p 3>*P°)p, against(r),,
| the average value of the radius of the variational
5 0724 orbital p. (a) The repulsive curve corresponds to
S ! the case where the orbital is orthogonal to the
w 073+ (2s,2p) orbitals, regardless of whether these are
{ relaxed or frozen(b) The local minimum appears
-0.74 4 when the (3,2p) are relaxed(taken from the
; He™ 2s2p? 2D calculation and thep orbital is
0.75- eROnaoanag left nonorthogonal to the |2 one.
0.76 L L L L L L DL S L O |
00 25 50 75 100 125 150 175 200 225 250 275 300
<r>, (a.u.)
tions. The corresponding localized wave function is are varied to minimize the total energy from a

o 4XANONCI. The (&2p 3>P°) orbitals are the relaxed
Pycrr(He °P) =0.992)(2s2p) —0.118/(2p3d) numerical orbitals from the calculation ofs2p? ?D. The
—0.049(3s3p), (100 2p’, 3s, 3p, and 3 orbitals are the frozen numerical
MCHF orbitals from the calculation of the Hes2p 3P°
with E=-0.76093a.u. or 58.300 eV above the state(10). Figure 5 shows the two-dimensional energy sur-
He'S,[1 a.u(He)=27.2077 e\, which is in excellent agree- face as a function of the averagef p, andps, whenp; is
ment with the experimental values of Gosselin and Marmekept fixed at its optimal value. It is seen that channel-
[6] (58.309£0.003eV and of Mannervik[51] (58.312  coupling sustains the local energy minimum, which is now
+0.003eVj. The remaining small part of the localized en- found to be aE=—0.71252 a.u. The average values dér
ergy (negative is essentially balanced out by the energy shiftthe three optimizedp orbitals are,(r);=3.70 a.u.,(r),
A that is positive. =4.74 a.u. andr)=>5.56 a.u.

Given the above constitution of the HE° resonance (3') For many-particle systems, the theory of resonance
state, we consider the coupling of four “channels”: states is based, in one form or another, on the formal sepa-
(2s2p 3P°)p1, (2s2p 'P%)p;, (2p’3d3P°p,, and ration of the full space into two parts, one representing
(3s3p 3P°)p3, with all the p orbitals kept nonorthogonal. bound components and one representing scattering ones. The
The p,, p», andp; orbitals are analytic Slater orbitals that proper handling of the formal mixing of such components

He " 2s2p’" *D

TAASLTANS

L

o

FIG. 5. A two-dimensional energy surface of

the He 2D localized part, as a function of the
average radius of two Slater orbitafs, andp,.

<r>p1=3.70 a.u. These orbitals enter in the state-specifix 4
nonorthonormal configuration interaction
(NONCI) calculation, with (%2p °P%)p,,
(2s2p *P%)p,, (2p3d 3P°)p,, and
(3s3p 3P°)p3. When(r), is fixed at its optimal
value, 3.70 a.u., the energy minimum is at
—0.71252 a.u. with(r),=4.74a.u. and(r);
=5.56a.u..
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leads to the phenomenology of resonance st@ags, phase As regards the (&)d channel, in Refs[1(c),2(a)] we
shifts, time delay, lifetime, cross-sectjoi®n the other hand, discussed its significance and its contribution to the localized
it is equally important for the physics of real polyelectronic part via MCHF calculations that include thes?3d OCL
atoms and molecules to go beyond phenomenology and to @nfiguration. As with any variational calculation of the
able to compute from first principles the intrinsic propertiesMCHF type, it is not necessary to include the-4, 5, 6,...

of resonances. correlation orbitals in order to achieve a sufficiently accurate

In the exchange of viewEl(c),22] on the validity of the —convergence within the local minimum. Even in a ground
SSA calculation of the He 2s2p? 2D resonances, Chung State calculation, it has been known for decades that such
[22] objected to the fact that the calculations in Réfs2] ~ Variationally optimized orbitals include most of the contribu-
included correlation configurations of the type sf2 tion from the infinity _of higher bound and scattering states.
+2p?)d, since the He& 'S state lies energetically lower, In order to support this statement for the present example, we

and, therefore, it gives rise to an open channel. Although Wﬁlose by listing a series of new results from MCHF calcula-

; o , . . ons on the?D state.
discussed this issue in Ref,2], we retumn to it here, in A 2X2 MCHF calculation with 32p? and %23d con-
order to provide additional numerical information which is

, . Cu figurations givesE(2Xx2)=—0.71989 a.u., with®ycyr
related to Chung’s stated ‘?“esz“g"" 695 of Ref[22]): "My =0.957%)(2s2p)?—0.2904(2s23d). Again we stress that
guestion about Nicolaides's2p“ “D calculation is: why not

. @ 2 . o this “3d” bound orbital represents a one-electron wave-
include the other &'nd and 2p"nd orbitals withn=4, 5, 5016t containing major contributions from the open

6,...?_ po these orbitals in some way conflict v_\nth the “State'channel, but does not represent the asymptotically free-

specific theory” whereas@does not? If we do include these gjectron function of this channel. The latter is computed in a

nd orbitals into the wave function, the lowest root of the separate, scattering-type calculation, wheresttiescattering

energy will fall towards the & [more precisely, (8  function is obtained numerically from a frozen core

+2p?)*S] threshold. Therefore, the solution Nicolaides ob- 1S(He 2s2+ 2p?) potential.

tained was the result of an incomplete calculation.” Now we add the important2-d correlation, which is
The general answer to the above remarks can be found ipresent in the 8p? configuration. A 5<5 MCHF calcula-

pp. 460—465 of Ref.1(b)] and p. 692 of Refl1(c)]. In Ref.  tion givesE(5%X5)=—0.73696 a.u., with

[2(a)] we introduced the namepen channel-likeonfigura- ) 5

tions, in order to underline their distinct features. Here we PmcHr= 0.918/(2s2p”) — 0.294)(2s"3d)

provide additional information in order to complete the argu- —0.24 202 3P ) 3d 1— 0.10741 (202 1S)3d
ments of the present paper. 242 (2p )3d]~0.10%{(2p" "S)3d]
The pair correlation of the twg electrons of the HF +0.025){ (2p? 'D)3d].

configuration He2s2p? leads to virtual excitations repre- ) )

senting both focalized and * asymptotit components of ~The orbitals are compact, withr),s=4.02 a.u.,(r)zp

the resonance wave function. The asymptotic components 4-12 a.u., and(r);q=5.83a.u. The virial relation gives
derive their existence from the energetically open channel-03. o

However, as we argued in Ref@qZ]’ when Carrying out F|na.”y, we perform a |arg¢and d|ff|CU|D MCHEF calcu-
either a variational calculation with carefully observed con-lation with 48 and 49 terms, without and with 8°2d con-
straints, or, better, a numerical solution of the appropriatdiguration. The results are nearly the samig;(48)=
MCHF equations, it is possible to incorporate part of the—0.75601 a.u. an&y(49)= —0.75606 a.u(58.43 eV above
space belonging to an open channel into the localized conthe He'S statg. This fact proves that the addition of thel 4
ponent. In other words, the localized wavepacket in the conorbital does not bring about a result supporting the concern
tinuous spectrum representing the stat¢=ab [1,25] need  and prediction of Chung. Localization and energy stability
not be constructed only by functions corresponding to closefiold well. The coefficient of the€4d OCL configuration is
channels. Using the language of configurations, in the?nly 0.0148, whilst that of the #3d OCL configuration is
present case there are three open chaniiels thresholds —0.1954. A comparison of thisd3orbital to the Hred scat-

with respect to the HF energy of thes2p? configuration, ~ tering orbital obtained in the Heg2+2p? 'S) core poten-
which were shown in(i)—(iii) of Sec. IllA. Since the HF tial, shows that they look quite differentFig. 6). (Their
energy of the 82p? 2D configuration is above the energy of overlap is only 0.022.

the He 22p °P° threshold, the “problem” stressed by  We stress that the incorporation of the?ad configura-
Chung ought to arise also with the§2p 2P°)p variational  tion into the MCHF calculation not only does not cause harm
calculations. Yet, we already saw that, withs(2p) orbitals ~ but it facilitates convergence. Furthermore, it brings in the
that have incorporated the effect of relaxation, a variationalesponse of the bound closed channel components to the
calculation with nonorthogonal orbitals leads to well- open channelin a self-consistent manner, something which is
converged local energy minima when a Slater orbitapof Still a desideratunfor all approaches that are based on the
symmetry is optimized. The energy of the three-electron ANIconcept of(N—1)-electron target state plus extra electron
does not collapse to the Hes2p 3P° threshold when one
more p function is added. It is simply improved toward a
convergence limit, just like in any ordinary case of a bound The ®,cye (49) discussed above, contains the major
state. components of the He?D resonance. The most important

2. Results for the character o and for the value of
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2.0 1
j ed
1.5
1.04 £=0.01218 a.u. FIG. 6. Comparison of the @ orbital in the
3d open channel-like(OCL) configuration 223d,
0.5 included in a 49-term MCHF calculation of the
1 He™ 2s2p? 2D resonarie state, with the scatter-
T 00+ ing ed orbital obtained fore=0.012 18 a.u., the
o o 5_' energy difference of théD MCHF solution from
a the exact energy of the Hes2 'S threshold. The
1.0 ed orbital was obtained numerically in the core
; potential of He(2%+2p?)!S. The & orbital is
-1.54 localized, having no resemblance to the scat-
] tering orbital.
2.0 1
T T T T T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40

r(a.u.)

ten configurations and their coefficients are listed in Table Ilones[6,51] already cited, and the computed ones via the
Notice that from the point of view of the discussion on elec-CCR method by H$52] and by Lindroth{53], both of which
tron correlation of the previous sections, the following or-are —0.760492 a.u(58.312 eV above the He ground sbate
bital excitations from the §2p2 configuration acquire the Correction to the energy via NONCI of separately ob-
highest weight tained state-specific correlate#,. For low-lying states, the
notion of an isolated state is, in general, valid. Therefore, the
direct, state-specific calculation of its energy can be done by
. following the strategy described thus far in this paper. How-
2p*—2sd,3p? (Vil) " ever, with increasing excitation energy the density of reso-

In fact, a careful study of the constitution of this wave func- nance states increases. As a resglt, for the same symmetry,
the spectrum contains closely lying or overlapping reso-

tion, together with energy considerations, led to the Conduhances The handling of such cases. sav of triplv excited
sion of the existence of a correlation-induced H® triply : 9 Sy Py

. . resonances very near others of different electronic structures,
excited resonance very close to the2p? ?D state. This Y

rediction and its connection to the measurements of Gossis- In principle a complex problem for which very little has
P . : . Been done. In a calculation of any scheme, the localized
lin and Marmet 6] will be discussed in Ref8].

Havina established localization with a sufficiently accu- function spaces representing different states interact either
rate energ 0.75606 a.u.. via the 49-term MCHE cyalcula— directly or via the continuous spectrum. For example, such a
; 9y~ U . . . _multistate interaction was shown to have spectroscopic im-
tion, we add the remaining localized correlation function .

pact in the case of the AD spectrum(27,50.
space and compute the enefgy( o), as well as the energy During the present study of Heresonances, analysis of
shift A in order to obtain the final resut=Ey+ A. ThisEis 9 P y ' Y

the correlated wave functions with small or large expansions

3po

:Egnlz:t?er?wée?alg tgse gtr:]s;?gtgf\/tglieis%?e tF\)NOSt:):eéE;remelventually led us to the conclusion that there are two closely
P "flying 2D states around 58.3 eV. The lowest one is the one on

which we reported here. The next one is discussed in Ref.

comprising the He 2s2p? 2D resonance state, obtained numeri- [8_]' Because of the h'g_h accuracy for the total (Zenergy th_at we

cally from a 49-term multiconfigurational Hartree-Fock calculation. @imed at, so as to decide whether thef the He“D state is

below or above the Hes2p 3P° energy, the aforementioned

2p—p,f, 2s—d, (vi)

TABLE II. The ten most important localized configurations

Configuration Weight small effect of the influence of the closely lying secofidl
resonance on the first one, and vice versa, was taken into
2s2p? 0.8802 account here by a scheme that is explained below. It is gen-
(2s2p)*P°3p —0.2659 eral enough to be used in many such cases of interacting
2s3p? —0.2342 excited states in atoms and molecules. In fact, a version of it
2s°3d —0.1954 was first applied some time ago to excited states of twisted
3d(2p?)°P —0.1267 butadiene and ethylene, see Refs. in Ré4].
3d(2p?)'D 0.1107 First, two separate large state-specific NONCI calcula-
3s(2p3p)*D —0.0861 tions were carried out for the two states, using as reference
2s(2p4p)°D 0.0495 wave functions the MCHF solutions with 49 configurations.
(2s2p)3Po4f 0.0270 Systematic increase of the size W, via the inclusion and
2524d 0.0148 optimization of one-, two-, and three-electron virtual excita-

tions, finally led to an expansion of 778 symmetry-adapted
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TABLE lIl. Partial and total-energy widths and shifs meV) for the He 2s2p22D resonance state,
obtained in this work, in earlier calculatiof8] and in measuremen{$,20]. For our results we used the
reduced 1 a.(He)=27.2077 eV.

Widths
Theory Experiment Shifts
Channels This work [9] [47] [20] [6] a This work
25%ed 6 -2
1s2p(3P%ep 10 6
1s2p(*P%ep 1 7
1s2s(3S)ed 11 5
1s2s('S)ed 5 3
Total 33 49 25 56 20 59+4 40+ 10 19

8Unpublished result of van den Brink see REf7]

configurations for each of the lowest twi® triply excited Our ICA results for the partial and total widths are given
resonances. These two solutions were then diagonalized inia Table IlI. This table also includes the total widths obtained
full NONCI calculation. This diagonalization corrects from the close-coupling calculations of Smitt al. [47]
slightly the two wave functions and their energies, by incor-(25 me\), from the CCR calculations of Bylicki and
porating the remaining of the details of the higher order efjcolaides[9] (49 meVj, and from the measurements of
fects that were not picked up by the function space of eaclsosselin and Marmefis] (59+4 meV), and van der Brink
state separately. . . ~ [17] (40=10meV).

The total energy for the firstD root computed in this The SSA energy dependent golden rule ICA calculations,
way 1S Egs. (4)—(5), suggest that no partial width of any of the
important channels dominates. It remains to be seen whether
interchannel coupling changes this picture drastically.

o , We now come to the total width. The sum of the ICA
which is below the HEP® energy. However, the final energy partial widths gives =33 meV, which is smaller than the

is obtained after the calculation of the energy shiftThe ; :
results for the partial shifts and widths, obtained according tV:gtt?ss gc::c/ eﬁe{;.g\/sﬁg,tlf(ﬂ)llgwge 3. Our assessment of this

the method of Sec. Ill, are presented in Table Ill. The total Interchannel coupling and the partial width for two-

i —4
Zzgtrgcyoirr;es out as 19 meV (6.880 “a.u.,), so that the electron emission(say about 2—4 me) both of which were
neglected in the ICA computations, would not amount to this
E(SSA)=Eo+A=—0.761292 a.u. difference. A most probable source of inaccuracy in the ICA
result is the complete exclusion of the partial widths of the
=58.291 eV above the ground statg12) He 2s2p 3P°¢p, ef channels, since these are closed when
the definition of the real part of total energy is considered
Hence, according to this SSA calculation, the energy of thE=E,+A). On the other hand, the overlap of the two
’D state is 21 meV below the Hes2p 3P° state, i.e., itisa states implies that some contribution to the observed width
Feshbach resonance with respect to this threshold. must come from some part of the HsZp 3P°p,ef con-

By combining the above result with that of R€8] from  tinuum. Such a contribution is, in principle, at least taken
the CCR calculations and those from meaSUrementﬁ']to account by the CCR calculations of R@l since the
[4-6,18-20, we suggest that the energy of HBs2p® D complex eigenvalue of the HED resonance is the result of
resonance is at 58.289.010eV. We stress that, when the g the interactions and of all the spectral features of the
aim for precision is increased, one should be aware that thgystem, including the threshold. Hence, we consider it rea-

determination of such energies from measurement depend Ydnable, and in harmony with the previously obtained accu-
the excitation process and the related spectroscopic analy5|%[te results[9], that the present ICA value to be slightly

smaller than the 49 meV computed in RE].

Although the value calculated in R¢®] ought to be the

The results that the energy of the H&D resonance is 21 most accurate, given the present results and the experimental
meV below that of the He £p 3P° resonance, defines an values of Gosselin and Marmgg] (59+4 meV) and of van
interesting problem. This has to do with the fact that theden Brink [17] (40=10 meV), we recognize that it is not
width of anN-electron MES(the He 2D resonanceover-  possible yet to accept a precise value ForOur recommen-
laps from below the energy and the width of an dation is that its true value, within the constraints of its de-
(N—1)-electron MES(the He®P° resonance pendence on excitation, must lie in the range of 38—55 meV.

Eo(’D)=-0.761990 a.u., (1)

3. The partial widthsy; and the total widthI’
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VI. SYNOPSIS to two- or three-electron systems. The form of E#) is
. . . computable, subject to the localization constraints of the
U;mg.as examples two.tnply excited resonance states a%SA, for arbitrary excited states. Second, the electronic
pea_lrlngz n 2‘h§ cross-section of e'ecg“g”‘He scattering, th‘gtructure characteristics are easily detectable in terms of few
He 2.5 2p P a 57.2 eV and the2p® D at 58.3 eV, we configurations. ThirdW, is usable for the calculation of a
eXa”?'r.‘ed' critically, aspects of the theo_ry of resona(r_mg variety of properties and phenomena, such as radiationless
t0|o_n|zmg) states as rggards the major mter_elect.r_omc INr2nd radiative widths, relativistic corrections, time-dependent
actions leading to their formation and quasistability and a%ynamics of decay, photoabsorption cross sections, effects of
regards the quantitative determination of observable Properss +arnal ac and dc1 fields, etc. ’

ties. . . By combining the present results, which were obtained
By carrying out a series of small-, as well as of Iarge'scaleaccording to Eqs(1)—(7), with those of previous calcula-

state-specific calculations with concrete numerical resultstions and measurements, we conclude that it is reasonable to

we demonstrated how, for these states, wave function local, . . and the following values for their intrinsic proper-

:zatl?nf Itrtlw an er|1ergy ]!_ocal tr_nlmmlljfm ocqutrs ?]I:elzédy 3ththeties: For the He ?P° resonanceE=57.204+0.005 eV and
evel of the single configuration self-consistent field and how Zco 24 0w Eor  the 2D resonance, E—58.295

it survives the mixing of additional correlating configura- __ 22
. . : ; +0.010eV andl'=38-55meV. The He2s2p“ “D reso-
tions, including the OCL ones. We conclude that in thenance energy is about 20 meV below that of the

model vyhere resonance formation in an atomic negayve 10e 2s2p 3P° doubly excited state, whose width is 8 meV.
is described by the picture oftdrget plus extra electrgiin

o . herefore, when the widths are taken into account, these two
many cases it will be crucial to account for the response o

i i , . states overlap.
the target at the orbital level of the major co_nﬂgura(s)n Finally th(g herein reported results of the partial decay
via the use of relaxed and nonorthogonal orbitals. '

The analysis and results of this work, together with theWldths from energy-depend_ent golden rule formulas in the

: . . ICA are relevant to observation as regards both entrance and
ones already in the literature since 1972g., [1,2,25— . o ; .

exit channels. For théP° state, the largest partial widths
30,34,44) demonstrate that the many-electron, many- . 3m0 1
o : were obtained for the (@p °P°)es and the (52s “S)ep

channel problem characterizirigner-hole or multiply ex- channels. If the neglected interchannel coupling does not
cited statescan be solved efficiently and to very good ﬁhange tﬁis fact drag;tically the significance o?t’r%’ par-
accuracy by applying electronic structure methods that c)fte'ual width implies that an additional mode for detecting this

have to be implemented via NONCI. The first and CrUCiall._resonance indirectly is the synchronized observation of the
step is to obtain the state-specific solution of suitable MCH h slower HEP°— 1s2s °S radiative decay. For théD

equations representing the overwhelmingly importanlmuc . .
strongly mixing configurations, having the structure ofState’ there 2'3 no apparesntodomlnant degay channel. The
closed and, when possible and necessary, of neighborin ann(ils 8'ed, (1s2p°P)ep, (1s2s°S)ed, and
open channels. A plethora of successful applications sho .st .S).Sd have W'.dths of the same order of.magmtude.
that the main features of these states are revealed accurat&ly'21: it ',Sg’vorth noting that one of the prototypical aspects
once the information about theelf-consistent correlated mo- ©f the He “D state 'Sgthf fact that it overlaps one of its
tion of the electrons is accounted for. Following the MCHFtthhOIdS’ the H_e§2p N resonance an_d this seems 1o ex-
calculation of the reference wave function, the formation and?!ain the small difference in the total widths calculated by
the electronic structure of excited states in the continuoud'® CCR method9] and by the present ICA.
spectrum can be interpreted and quantified reliably in terms ACKNOWLEDGMENT
of compact wave functions of the form of E.).
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