
PHYSICAL REVIEW A, VOLUME 64, 052505
State-specific approach and computation of resonance states: Identification and properties
of the lowest 2Po and 2D triply excited states of HeÀ
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We discuss aspects of the theory and computation of resonance~autoionizing! states of polyelectronic atoms
and their positive and negative ions, in the context of the state-specific approach, using as paradigms the
He22s22p 2Po and 2s2p2 2D triply excited states. The He2 2D resonance has been the subject of controversy
about its nature and its very existence, with ramifications as to the physics of electron-He scattering measure-
ments and as to the theory of resonance states in multiparticle systems in general. By carrying out a series of
computations, we show how~quasi!localization of these resonances takes place. The results confirm the
existence of the2D resonance just below the energy of the He 2s2p 3Po resonance, with which it overlaps.
The localization of the two He2 resonances is achieved already at the single-configuration level, provided the
orbitals are calculated by solving state-specific restricted Hartree-Fock~HF! equations. Accounting for orbital
flexibility and relaxation due to the self-consistent interactions is essential to the achievement of a local energy
minimum. The localized nature of the wavepacket is revealed even more definitely by solving appropriate
multiconfigurational HF~MCHF! equations containing the information from the self-consistent interaction
with closed channels as well as with the neighboring significant open ones. Reaching a reliable MCHF solution
for a variety of polyelectronic multiply excited states may often be difficult, but once it is achieved it provides
the overwhelmingly dominant characteristics of the state. It is then used as the reference wave function for
computing variationally the remaining of the localized electron correlation in terms of optimized analytic
orbitals representing very nearly the full space of the electron virtual excitations. The calculation of the
localized partC0 and of E05^C0 /H/C0&, is done by nonorthonormal configuration interaction~NONCI!
since parts ofC0 are optimized separately in terms of their own basis sets. The finalC0s for the two
resonances consisted of 683 symmetry-adapted configurations for the2Po state and 778 ones for the2D state.
Using these functions and final state scattering functions with continuum orbitals obtained numerically in
term-dependent core potentials, without and with polarization, of a number of lower-lying open channels, we
employed the independent channel approximation and computed partial and total energy shifts and widths, the
latter from energy-dependent golden rule expressions. Critical comparison of our results forE5E01D, where
D is the shift induced by the interaction ofC0 with the continuum, and for the width,G, with the existing few
experimental and theoretical values, led us to the conclusion that theE andG lie in the following ranges: For
the 2Po state: E557.20460.005 eV, G568– 74 meV, and for the2D state: E558.29560.010 eV, G
538– 55 meV. Of special theoretical and experimental interest is the determination of the partial and total
widths of the three-electron He2 2D resonance, since it overlaps from below the two-electron threshold state
He 2s2p 3Po, whose position is at 58.312 eV with a width of 8 meV.

DOI: 10.1103/PhysRevA.64.052505 PACS number~s!: 31.25.Jf, 32.80.Dz, 31.50.Df, 34.80.Dp
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I. INTRODUCTION

Coulomb interactions in He2 give rise to resonances i
the continuous spectrum, which in the approximation of
single-configuration assignment, can be classified into d
bly excited states~DES! and triply excited states~TES!.
Similar excitations can occur in larger atoms as well. It
then reasonable to assume that DES and TES of He2 contain
prototypical features for the testing of theory and of comp
tational methods aiming at the quantitative understanding
the formation, of the electronic structure and of the intrin
properties of such states in general. Furthermore, the2

system is attractive from the point of view of theory, since
small number of electrons offers the possibility of reliab
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calculation taking into account the interactions of all t
electrons.

The theory of resonance formation and calculation tha
discussed in this paper and that has been given the ge
name ofstate-specific approach~SSA!, provides the recipe
for dealing with DES and TES of He2 as well as of larger
atoms. The present work continues the research program
exploring the properties of prototypical resonance states
arbitrary structures and the efficiency of methods of the S
~Refs.@1,2#, and references therein!. It was instigated by the
contents of the review of Buckman and Clark@3# and of four
regular papers, three experimental@4–6# and one theoretica
@7#, which left open questions about the physics and
theory of He2 resonances. The resolution of the problem
created by the measurements of@4–6# is presented and dis
cussed in Ref.@8#. Here we are mainly concerned with th
foundations and the methods of the theory, the presenta
©2001 The American Physical Society05-1
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of new results on the properties of the two He2 resonances
and with the issues raised by Chung@7#, who discusses the
formation and the existence or nonexistence of resonan
with exemplars from TES of He2 and H22. In particular,
Chung@7# rejects the possibility of formation of 2s2p2 2D
resonance in He2 as well as that of a 2p3 4So resonance in
H22, contrary to other theory and results for He2 @1,2,9# and
for He22 @10,11#, which support the existence of these res
nances.

Although the analysis and comparisons that will be p
sented in the following sections concern the two He2 TES,
the conceptual and computational framework of the pres
study transcends the particular multiply excited resonan
and is relevant to the field of resonance states in multie
tron atoms in general.

The structure of the paper is as follows: In Sec. II w
present the background of the controversy and apparen
certainty surrounding the identification and calculation of
He2 2s2p2 2D state, an issue which we hope that the pres
work resolves conclusively. In Sec. III we stress upon
significance of an integral part of the SSA, namely, the c
culation and use of properly chosen state-specific multic
figurational Hartree-Fock~MCHF! solutions as zero-orde
reference wave functions. We cite as examples earlier res
whose essence as regards accuracy and the capacity to
electronic structure to resonance formation and decay is
evant to the present discussion. In Sec. IV we review brie
the method of calculation of the energy shift and width.
Sec. V we present our analysis and a series of results on
2s22p 2Po and 2s2p2 2D He2 triply excited resonances ob
tained from the application of notions and methods of
SSA. Their reality is assured by the fact that there inde
exists a localized wavepacket, which is computed both w
small expansions with self-consistent orbitals as well as w
completely correlated wave functionsC0 . Using theseC0
and scattering functions for each of the major open chann
where the scattering orbital is calculated in the potentia
single or MCHF cores with exchange, we computedE, G,
and the partial widths. In all energy conversions we us
E(He1S)522.903 724 a.u. and 1 a.u.~He!527.207 7 eV
527.211 3963(12mo /MHe).

II. THE PARADIGM OF THE He À2s2p2 2D RESONANCE

It is rather straightforward to understand the appeara
and the properties of a resonance state whenever a si
particle description is applicable. This is usually presented
textbooks in terms of a volcanolike potential, with a loc
energy minimum and a barrier through which the parti
tunnels. However, for polyelectronic states such as the T
of He2, the comprehension of their formation and of the
properties must engage not only the formal aspects of
quantum mechanics of resonance states but also pr
analysis and computational methods for the treatment of
cited electronic structures with strong electron correlation

The literature on resonances in the electronic spectr
atoms and molecules suggests that the He2 2s2p2 2D state
may be considered as a paradigm for the field, where cru
elements of theory, of measurement techniques and of in
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pretation have been tested. The review that follows provi
the background that is essential to the arguments and re
of the present paper.

Following the appearance of structures in the measu
ments of the He1e2 collision cross-section at energie
57–60 eV by Kuyatt, Simpson, and Mielczarek@12#, Fano
and Cooper@13# conjectured, without calculation, that thes
should be interpreted as He2 resonances with the assignme
of n52 intrashell configurations. In particular, for the stru
ture at 58.3 eV, Fano and Cooper proposed, with some
ervation, the assignment of 2s2p2 2D. A few years later, the
first ab initio calculations on TES of He2 by Eliezer and Pan
@14# and by Nicolaides@1~a!# found square integrable solu
tions, via different methods, with energies around 58.3–5
eV and with the 2s2p2 2D configuration as the main
component.

However, objections and doubts as to the identification
this structure with the 2s2p2 2D resonance state were pub
lished by Chung@15# and by Chung and Davis@16#. Based
on their model, which is discussed in the following sectio
they obtained the total energy of the He2 state as a function
of a nonlinear parameter of analytic orbitals representing
projectile electron that is coupled to fixed two-electron wa
functions representing various target states. From the re
sive form of the interaction that was seen when the
2s2p 3Po target wave function was considered, a type
computation that is further discussed in Ref.@7#, they con-
cluded that no 2s2p2 2D resonance can be formed. Thus,
their 1985 paper Chung and Davis@16# stated: ‘‘This result
does not corroborate the previous assignment by Fano
Cooper. What has been seen in the experiment could be
result of a postcollision interaction effect.’’ These concl
sions were registered by experimentalists~e.g.,@5,17#! who,
in their discussion on the origin of structures in their scatt
ing data, referred to the supposed lack of conclusive theo
ical support for the existence of the2D resonance. For ex
ample, in 1991, Batelaan, van Eck, and Heideman@17#
wrote: ‘‘The identification of the 58.3 eV resonance is st
not completely clear’’~p. 5152!...‘‘Theoretically the identifi-
cation of the 58.3 eV resonance still does not seem to
resolved. The theoretical result of Chung~1980! shows that a
He (2s2p)3 Po core is repulsive to a 2p electron when a
resonance is searched variationally.’’

The discussions in Refs.@7,15–17# contradict our theoret-
ical predictions and analysis@1,2,9#, and a number of experi
mental measurements and interpretations as to the exist
of this triply excited He2 resonance@4–6,12,17–21#. In an
exchange of views on the background of the theory a
methods of calculation of resonances@1~c!,22#, it was stated
@@1~c!# p. 693# that ‘‘this resonance is real, regardless o
whether it is above or below theHe 2s2p 3Po threshold.’’
Detailed analysis as to the fundamental importance of lo
ization and as to the contribution of theopen-channel-like
~OCL! bound configurations with self-consistent orbitals w
presented in Refs.@1,2#. In our work, the self-consistently
computed OCL configurations constitute part of the ze
order reference space and, in cases of multiply excited st
with closely lying thresholds, are indispensable to t
economy of a well-converged state-specific calculation.
5-2
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STATE-SPECIFIC APPROACH AND COMPUTATION OF . . . PHYSICAL REVIEW A 64 052505
Finally, large-scale complex-coordinate-rotation~CCR!
calculations with mixed orbital andr 12 basis sets were un
dertaken by Bylicki and Nicolaides@9#, which clearly iden-
tified the corresponding complex eigenvalue, with an eig
function consisting mainly ofspp, ssd, dpp, and spf
components.~In the SSA context, these are represen
mainly by configurations 2s2p2, 2s2pp, 2s2d, 2p2d,
2ppd, and 2s2p f—see Sec. V.! In fact, its energy was found
to be slightly below the He 2s2p 3Po threshold at20.76052
a.u. in agreement with the measurement of Gosselin
Marmet @6# and in conceptual and computational disagr
ment with the theory of Chung. Specifically, the energy
the 2D state was found to lie 10 meV below that of the H
2s2p 3Po state, but the states overlap due to the calcula
width of 49 meV. The energy for the 2s22p 2Po resonance
was computed to be at 57.205 eV above the He ground s
and that of the2D resonance at 58.303 eV. The experimen
values of Hicks et al. @18# are 57.2260.04 and 58.30
60.04 eV and of Roy, Delage, and Carette@19# are 57.19
60.03 and 58.2960.03 eV, respectively. Even more acc
rately has been measured the energy difference betwee
two He2 resonances @19#, which gave DE51.094
60.012 eV. This number agrees excellently with the theo
ical value @9# of 1.098 eV. The width of the2D resonance
has been measured as 50620 meV by Quemener, Paquet an
Marmet @20#, as 5964 meV by Gosselin and Marmet@6#,
and as 40610 meV by van den Brink~quoted in Ref.@17#!.

With his recent paper, Chung@7# has returned to his ear
lier arguments, with results and conclusions aiming at
comprehension of the formation of multiparticle resonanc
Following the results of calculations that focus on obtain
a local energy minimum through the hierarchical mixing
correlated wave functions 2p2 1Dw(s), 2s2p 1Pow(p),
2p2 (3P, 1D, 1S)w(d), 2s2p 3Pow(p), and the variational
optimization of the orbitalsw~1!, ~variation of one nonlinear
parameter!, he concluded that the2D state is not associate
with an attractive potential. He states~p. 2784 of Ref.@7#!.
‘‘ In an earlier work it is pointed out that the2D structure
cannot be a Feshbach resonance. The results in this s
appear to reaffirm this conclusion.’’ @We add: If the repulsive
curve presented in Ref.@7# represented a physical situatio
~it does not!, then the extra electron could not bind as a sha
resonance either.#

In view of the above, and especially of the recent pa
@7#, we thought that additional exploration of this questi
would provide timely and valuable insight into the nature
this resonance state as well as into the theory of reson
formation in multielectron atoms and molecules in gene
To do this, we carried out a variety of both small- and larg
scale SSA calculations and have made comparisons with
sults and conclusions of Refs.@7,15,16#. In the following
sections we will show that these conclusions result subs
tially from the structure of the approach of Refs.@7,15,16#
and from an inadequate implementation of the concep
framework ‘‘(N-1)-electron target plus extra electron.’’ One
of the consequences is that the results and conclusion
Refs. @7,15,16# about the prototypical He2 2D resonance
must be corrected.
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III. APPLICABILITY AND UTILITY OF STATE-SPECIFIC
ZERO-ORDER MULTICONFIGURATIONAL WAVE

FUNCTIONS OBTAINED SELF-CONSISTENTLY

The emphasis of the SSA is on the recognition of t
significance ofC0 and on its reliable calculation via tech
niques that were initially developed for the computation
electronic structures of ground or low-lying discrete stat
In the paper where the foundations of the SSA were l
@1~a!#, ~in @1~a!# there are a few typographical errors!, the
zero-order approximation toC0 was computed self-
consistently at the term-dependent single-configuration le
by implementing the Roothaan analytic HF method@23#,
where each orbitalnl is expanded in a small set of Slate
functions with nonlinear parameters that are determined d
ing the self-consistent procedure optimizing the HF soluti
At that time, no analytic or numerical HF theory had be
successfully applied to the calculation of zero-order appro
mations to such multiply excited resonances of atomic ne
tive ions ~ANIs!. Apart from practical questions regardin
the reliable convergence of calculations for such states, th
was also the question of the validity of applying HF theory
states in the continuous spectrum where the ene
minimum principle does not hold. It was argued@1,2# that the
shell structure and orbital variational constraints, toget
with the satisfaction of the virial theorem and of the phy
cally meaningful behavior of the occupied orbitals and of t
interaction integrals, constitute valid wavepacket localizat
criteria, which in conjunction with computational exper
ence, are sufficient for the direct calculation of zero ord
and correlation contributions toC0 andE0 . The accuracy of
the analytic HF solutions was verified a few years later, wh
the numerical HF method was implemented, following t
availability of Froese-Fischer’s program in the mid 197
@24#. For example, the analytic HF energy for He2

2s2p2 2D obtained in Ref.@1a# using five Slater-type orbit-
als ~STOs! of s symmetry and four STOs ofp symmetry is
20.70747 a.u. The numerical HF energy is20.70772 a.u. if
the 2s orbital is not kept orthogonal to the He1 1s and
20.708 09 a.u. if it is kept orthogonal. These HF energ
place the He2 2D position at 59.4–59.5 eV above th
ground state. As we recommend is this paper~Sec. V!, the
accurate value is 58.29560.010 eV.

For the open shell structures of excited states, obtainin
self-consistent HF solution constitutes a serious comp
tional advantage over the use of fixed basis sets, since
orbitals are term-dependent to a significant degree. Never
less, the single configuration representation is, in general,
a good zero-order approximation for the highly correlat
DES and TES. Furthermore, because of strong mixings
of the presence of lower states of the same symmetry, it m
not be possible to obtain a reliable solution. On the ot
hand, experience from solving numerically the MCHF equ
tions for excited states has revealed that starting the ove
calculation of resonance states based on MCHF zero-o
approximationsF0

k with appropriately chosen configuration
constitutes a very efficient and accurate approach to
problem of computing properties of such states. Thus,
each stateuk&, the localized partC0

k is computed in the form
5-3
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C0
k5aF0

k1bXloc
k , a21b251, ~1!

wherea2 is overwhelmingly dominant, withaF0
k remaining

compact and representing the principal features ofC0
k .

In general, both partsC0
k andXloc

k contain all the terms of
the function space contributing to the localization ofuk&. The
radials and the coefficients of the few critical configuratio
in F0

k produce an optimal description, a fact that minimiz
the importance ofXloc

k and the extra work needed for it
calculation. The correlation orbitals entering intoXloc

k are
optimized separately while being kept orthogonal to those
F0

k as well as to those of subshells of lower states of
same symmetry. The separate variational optimization of
term-dependent one-, two-, three-, etc. electron-correla
functions inXloc

k improves convergence but, in general, a
requires the use of nonorthonormal orbitals.

A. Techniques for achieving convergence of self-consistent
calculations of resonance states of polyelectronic atoms

As expected, localization, and hence the calculation
C0

k , occurs much more readily in the neutrals and positiv
charged autoionizing states than in the resonance state
the ANIs. This implies that properties of inner-hole Aug
states or multiply excited states~MES! of positive ions, can
be predicted by economic MCHF calculations, if most of t
significant correlation effects are included@2~b!#.

On the other hand, because of the weak binding that
ANI resonances have in general, it is often very difficult,
even impossible, to solve the HF or the MCHF equatio
since one of the orbitals becomes, during the iteration,
tremely diffuse, tending to a scattering orbital while the e
ergy is lowered, unphysically, to the corresponding fragm
tation threshold. For example, we refer to a fact on which
commented in p. 3582 of Ref.@2~a!# and p. 4145 of Ref.
@2~b!#: Whereas it is rather straightforward to obtain
MCHF solution of the 2s2p2 2S TES for Li and the isoelec-
tronic positive ions, it is impossible to do so in He2 if the
2s2s configuration is included, since thes function cannot be
made to bind when the self-consistent-field results~SCF! it-
eration is allowed freely.

As we already mentioned, during the first stages of
implementation of the SSA to MES and to inner-hole stat
the zero-order reference wave function was a single confi
ration with HF orbitals. If one starts with a HF wave fun
tion, consideration of interelectronic interactions leads
correlation configurations representing the adjacent cont
ous spectrum, i.e., open channels. Using as simple exam
configurations such as 1s22p2 1S and 1s2s2 2S, it was dis-
cussed in p. 2088 of Ref.@1~a!# and p. 462 of Ref.@1~b!# how
the contribution ofhole-filling pair correlations can be com
puted approximately using judiciously chosen configuratio
with bound orbitals. Of course, better and rigorous a
proaches, free from uncertainties and inaccuracies regar
the representation of the continuum, are attained by us
numerically calculated Rydberg bound and free scattering
bitals for each channel,@2,25–27#, or optimized complexL2

orbitals @28–30#.
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When it was later found that the solution of the sta
specific MCHF equations for properly selected configu
tions can be achieved numerically by using Froese-Fisch
computer program@24#, we started implementing resonanc
scattering theory using the form~1! @e.g.,@26~b!##. It is then
possible to account for part of the contribution of th
discrete-continuum interactions self-consistently, by inclu
ing in F0

k OCL configurations@2#. However, obtaining reli-
able solutions of the resulting MCHF equations is far fro
simple in many cases. In order to achieve such solutions
have developed a few techniques which are crucial wh
failure appears to be the normal result. These take into
count properties of the electronic structure of the state
interest and the related form of the HF and MCHF equatio
Needless to add, it is understood that the numerical asp
of integration of the coupled differential equations must
as accurate as possible.

One such technique is suitable for electronic structu
whose energy is found above their own threshold. The fi
application was reported by Beck and Nicolaides@11~a!#,
when they dealt with the calculation of the shape resona
2p3 4So of the H22 doubly negative ion. A similar calcula
tion was reported recently in Ref.@25# on the Li2

1s22s2p 3Po shape resonance. The technique has been u
in a few more cases. It involves the iterative combination
SCF and single excitation configuration interaction~CI! pro-
cedures, whereby the orbital expansion in the CI is collap
into an orbital of the same symmetry, which is then used
the SCF equations in order to obtain a bound SCF orbital
the loosely attached electron. The reader is referred to R
@25,11~a!# for details.

Another technique, which was used in the present ca
lations of the He2 2s2p2 2D resonance state, involves th
handling of certain OCL configurations that are deemed
portant for the accurate description and proper converge
of the MCHF F0

k . It was first used in order to achieve
simple and physically transparent MCHF solution for t
He2 1s2s2p 2Po broad resonance and to recognize the f
that this state has components of bothFeshbachand shape
resonances@26~b!#. This technique aims at making worth
the possible advantages that different orbital couplings m
have, as well as at obtaining a better physical picture. S
cifically, let us look at the He2 2s2p2 2D resonance. Three
types of orbital replacement lead to OCL configurations~i!,
~ii !, and ~iii ! below, since both the He 2s2 1S and He
2s2p 3Po thresholds are open when an approximate calcu
tion on the He2 2s2p2 2D state is done.~When all interac-
tions, including those of the continuum are accounted for,
He2 2D energy is found below the He 2s2p 3Po energy!.

c~2s2p2! 2D↔Hec~2s2 1S!d

~i! ~hole-filling pair correlation!

~ii ! ↔Hec~2s2p 3Po!p

~iii ! ↔Hec~2s2p 3Po! f .
5-4
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STATE-SPECIFIC APPROACH AND COMPUTATION OF . . . PHYSICAL REVIEW A 64 052505
The orbitalsp, d, andf need not be hydrogenlike 3p, 3d or
4 f . All three configurations~i!, ~ii !, and~iii !, represent inter-
actions that contribute to both resonance formation and to
energy. As we will argue in Sec. V and as we have discus
before @2#, the inclusion of configuration~i! into a large
MCHF calculation causes no convergence problems, w
contributing significantly to the character ofC0 . The same
holds for configuration~iii !, albeit with a smaller contribu-
tion. However, when configuration~ii ! is included in an
MCHF calculation with either a small or a large expansio
the solution fails since the outerp̄ orbital cannot be held
bound in this configuration~the exchange integral is repu
sive!.

The remedy is to consider the alternative couplin
namely, that of the outer pair (2p3p) 3,1D interacting with
the 2s orbital, for which the following holds:

~iv! c@2s~2p3p 1D !#5~)/2!~2s2p 3Po!3p2~1/2!

3~2s2p 1Po!3p,

~v! c@2s~2p3p 3D !#5~1/2!~2s2p 3Po!3p1~)/2!

3~2s2p 1Po!3p.

These linear combinations include the open chan
(2s2p) 3Po but also the closed channel (2s2p) 1Po, which
contributes to localization via its negative energy excha
integral. The corresponding main correlating configuratio
are of the types(2pp) 3,1D. These, together with 2s2p2 and
2s3p2 @while excluding (2s2p 3Po) p̄], allow convergence
to a localized solution which includes, indirectly, part of t
contribution of the open channel~Sec. V!.

B. Applicability, efficiency, and transparency of C0

The approach to the calculation and understanding
resonance states that starts with the direct calculation ofC0

k

in the form of Eq.~1!, has produced a number of resul
most of them concerning prototypical cases. In more rec
years, other groups have also proceeded with the applica
of state-specific calculations ofC0

k of ANI resonances or of
other autoionizing states of low excitation. For example,
the relativistic calculations of Cai, Beck, and Perger@31# on
the Hg 6p2 resonances, the expansion forF0

k was chosen to
be small, whilst in the nonrelativistic ones of Brage, Froe
Fischer, and Vaeck@32# on two- and three-electron system
C0

k was theF0
k itself, represented by a very large expansio

Finally, state-specific calculations ofC0
k , with application to

the He2 2Po resonance studied here, were reported rece
by Manby and Doggett@33#, who optimized, via the mini-
max technique, small expansions of spin-coupled wave fu
tions.

Although there are a few extraordinary cases of exci
states, such as the H2 dipole resonances, where the applic
tion of the MCHF method for the determination ofF0

k is
impossible and alternative choices of state-specific func
spaces are necessary@28#, a number of characteristic appl
cations have demonstrated not only the efficiency of com
tations based on the form~1!, but also the possibility one
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attains of realizing the interplay between the details of el
tronic structure and the dynamics of decay. This fact p
vides substantial insight and permits the transfer of com
tational information between states of similar structures. T
contention is supported by a number of results, includ
those of the present work. An example from the past is
work presented in Ref.@34# on the combined effects of elec
tron correlation and relativity at the Breit-Pauli level for th
DES of He of 1D and 3D symmetries, whose electron pa
correlation has analogs in the He2 TES of 2D symmetry
studied here. These results pertain to the positions and
widths of the five lowest such DES of He, a two-electr
system that has been treated extensively by methods emp
ing fixed basis sets@35–37#. The analysis of@34# showed
how certain autoionization widths depend crucially on sp
cific correlation configurations belonging toXloc . Further-
more, the results of Ref.@34# differed to some degree from
those of@35–37#, which also differed among themselves, b
were eventually verified by the large scale CCR calculatio
of Ref. @38#.

IV. THE CALCULATION OF D, OF g, AND OF G

OnceC0 andE0 are available, for one or more states
the same symmetry, time-independent@1,2,25–30,34# as well
as time-dependent@25# methods employing state-specifi
wave functions have been applied for the addition of
open channel function spaces that were excluded by pro
tion or construction fromC0 . Through these methods, on
can compute the partial and total shiftsd i and D and the
partial and total widthsg i andG without or with multistate
and multichannel coupling.

The continua that are considered here are described
single free electron. However, in general, the TES can de
via two-electron emission as well. The proper calculation
the rates of such processes requires the possibility of c
puting pair correlations in the continuous spectrum.~Of
course, the immediate approximation is to use a produc
two scattering orbitals!. A theory for doing so, using aC0
and an expansion over products of square-integrable c
plex orbitals, was presented in Ref.@39#, with application to
the rates of double photoionization of the 1s2 1S state of H2

and He and of the 1s2s2p 4Po state of He2. In the present
treatment, only the widths for single electron ejection, wh
is of course dominant, are computed. The aim is to dem
strate the limits of the method within the independe
channel approximation~ICA!. As it turns out, the total width
is close to the one obtained by the CCR method,@24#, where
interchannel coupling is included.

For an isolated resonance, such as the ones studied
in the time-independent framework its complex energy sa
fies the transcendental equation

z2E02A~z!50, z is complex, ~2!

whereA(z) is the self-energy of the state@1#. To a very good
approximation, Eq.~2! yields the resonance energy as

z05E01D~E!2~ i /2!G~E!. ~3!
5-5
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CLEANTHES A. NICOLAIDES AND NICOS A. PIANGOS PHYSICAL REVIEW A64 052505
Provided each channeli is formally separated, the function
D andG are given, on the resonance energyE, by

D5(
i

d i , E5E01D, E is real, ~4!

G5(
i

g i . ~5!

For a polyelectronic resonance state with many op
channels, thed i(E) and theg i(E) depend, in general, on
interchannel coupling. However, accounting for this effec
computationally cumbersome, even though methods wi
the SSA are available and have been applied@27–30#. It is
certainly more economic to handle such problems in
ICA. In this respect, formalism and calculations without a
with interchannel coupling on the nine-electro
Ne1 1s2s22p6 2S inner-hole state@29#, where five channels
are open, as well as on the 1s3s3p 4Po DES for Z
52 – 5,10 @30#, where three channels are open, indicate
significant result: When the calculation goes beyond the I
and accounts for interchannel coupling, the total width~but
not necessarily the total shift! remains reasonably constan
even though the partial widths may change to some deg
Therefore, by adopting the ICA, the present calculatio
were carried out using the expressions for the partial sh
and widths that were used before@2~a!#

E2E02d i~E!50, ~6a!

d i~E!5PE
Ei

u^C0uH2EuUi~«!&u2

E2«
d«, ~6b!

and

g i~E!5
2pu^C0uH2EuU,~E!&u2

12d i8~E!
, ~7!

whered i8(E) is the derivative of the energy shift at theE of
Eq. ~4! P denotes the principal value,« is the energy vari-
able, andEi is the threshold energy. The appearance of
~H-E! operator rather thanH, results from the formalism and
from the fact that the orbital sets for initial and final stat
are, in general, nonorthonormal.

Ui(«) is the N-electron scattering wave function, whic
given the detailed description of the localized state provid
by C0 , is represented accurately by a symmetry-adap
product of a single or of a two-term core function@e.g.,
(1s2s11s2)1S, or (2s212p2)1S# with a term-dependen
numerical HF continuum orbital for each channeli. In im-
portant channels, if the polarization of the core is expecte
contribute significantly to the phase shift of the HF scatter
orbital, we account for it by adding to the potential the p
larization potentialV(r )52a/2r 4 for r .r 0 , wherea is the
polarizability ~taken from the literature! andr 0 is chosen just
beyond the outer maximum of the one-electron density of
core function.

Once the most importantd i and g i are known, the total
shift D and widthG are obtained as their sum.
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V. CALCULATIONS OF THE H LOWEST 2Po AND
2D TES, AND INTERPRETATIONS

In the previous sections, we explained why one of the f
known triply excited resonances of He2, the lowest2D, has
been the object of controversy, and we indicated how
broader problem of identifying and computing resonan
~autoionizing! states is handled in the framework of the SS
In what follows, we will present results and analysis for t
properties ofC0 , and concomitant numbers forE0 ,D,g i ,
and G of the He2 2s22p 2Po and 2s2p2 2D resonances.
These states were examined again in order to reveal the
cipal aspects of their formation and quasistability, to co
pute their properties and to explain why, even for sm
ANIs, the approach followed by Chung@7,15,16#, which also
aims at the establishment of a localized wave functionC0 ,
albeit via a different method, may fail to predict reliably th
formation of resonances, with particular exemplar the cas
the He2 2s2p2 2D resonance.

A. The HeÀ 2s22p 2Po resonance

Apart from the usual electronic structure requirements
sociated with the self-consistent correlations of the ‘‘m
tions’’ of the three electrons, this triply excited resonan
reflects a rather easy situation, since its position is known
be below the lowest DES of He, the 2s2 1S state at 57.8 eV.

1. The calculation ofC0 , E0 , and of approximations to them

We start by listing basic results of Ref.@7#
~1! The statement in p. 2782 of Ref.@7# is that this 2Po

resonance is formed by channel coupling. We will show that
this resonance is formed mainly via localization of a sing
HF configuration, without channel coupling.

~2! Figure 7 of Ref.@7# presents the results of a hierarch
of calculations meant to show how the He2 2s22p 2Po reso-
nance is formed as various channels are added. The
calculation, depicted byC15c(2s2s 1S)w(p), produces a
completely repulsive curve as a function ofR5^r 11r 2
1r 3&, with the conclusion that in this approximation th
three-electron system is completely unbound. According
Table I of @7#, the target wave functionc(2s2s 1S) consists
of 78 terms. According to Eq. 11 of Ref.@7#, the orbitalw(p)
is given by a sum of five Slater orbitals with a variation
parameter.

~3! The wave functionC4 of Ref. @7#, which contains the
sum of the contributions from (2s2s 1S)w(p), ~78 terms!,
(2s2p 1Po)w(s), ~72 terms!, (2s2p 3Po)w(s), ~69 terms!,
and (2s2p 1Po)w(d), ~72 terms!, i.e., 291 terms altogethe
with optimizedw( l ) orbitals, has produced a total energy
about20.7907 a.u.~see p. 2782 of Ref.@7#!. We will show
that within the SSA the physics is revealed in a much simp
way and that the same energy is obtained with just a six t
MCHF wave function, containing the most important orbit
excitations from a 2s22p HF reference wave function.

Let us relate first to items~1! and~2! above, by consider-
ing only the 2s22p configuration. The corresponding energ
expression is very simple, containing twoI, two F and oneG
Slater-Condon integrals. It was already found in@11# that it is
5-6
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FIG. 1. The 2s and 2p radial functions of the
MCHF wave functions He@0.859(2s2)
10.513(2p2)#1S ~solid line! and
He2@0.909(2s22p)20.416(2p3)#2Po ~dotted
line!. The addition of ap electron to the corre-
lated He 1S core creates a new self-consiste
correlation potential in which the (2s,2p) orbitals
of the negative ion are more extended.
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indeed possible, even by the analytic SCF method, to ob
valid localized solutions of the corresponding restricted
equations. We remind the reader that the analytic S
method is a variational method involving trial orbitals wi
variable nonlinear parameters. This implies that, in the c
of N-electron resonances, as the orbitals are varied a del
combination of the values of the Slater-Condon integrals p
duces a local energy minimum. In fact, since the structure
HF theory for bound states is such that its solutions sat
the virial theorem, one of the criteria of validity of the HF o
MCHF solutions for electronic structures with energies in
continuous spectrum that has been used~in conjunction with
others! @1,2# is the satisfaction of this relationship.~For at-
oms and diatomics, the analytic HF method is more com
cated and less reliable than the numerical solution of
HF-coupled equations. Indeed, our experience suggests
numerical solutions are achievable for many excited str
tures of ANIs and, of course, of neutral and ionized atom
For calculations of excited states of the diatomic molecu
He2

1 and He2
2 via the numerical solution of the MCHF

equations, see Ref.@40#.!
When the HF equations are solved for the He2 single

configuration 2s22p 2Po with the 2s orbital kept orthogonal
to the He11s orbital, there is a valid solution for which th
energy is«HF520.742 78 a.u. and the orbitals are compa
and well behaved, with ^r &2s54.46 a.u. and ^r &2p
53.63 a.u.~A minimum is also obtained without the 2s or-
thogonality to the He1 1s orbital. Its validity is due to the
good one-to-one correspondence between the electr
structure of the state and the numerical stability of the
solution. However, in general this need not occur, and ex
sion of selected lower channels via core orbital orthogon
ization is necessary, especially when we include electron
relation @1,2#!.

Therefore, there is a state-specific, triply excited2Po

bound configuration that exists in a local energy minimu
without channel coupling. It constitutes the simplest ze
order representation of the exact wavepacketC0 . We note
that the He2 2Po HF energy is below the HF energy for th
He 2s2 1S state, which is20.719 68 a.u.~For FeshbachP, Q
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type, and for state-specific calculations on He DES, see R
@34,41–43#.! However, even if its HF energy were above th
HF energy of the He 2s2 1S, it is the criterion of localization
that would be physically crucial and not the relative positi
of the two energies. In fact, if one wants to improve t
calculation by including the important near-degeneracy m
ing 2s2↔2p2 for both states, then an inversion of leve
occurs, since this interaction is stronger in He than in He2,
the orbitals of the former being more hydrogenic than tho
of the latter. Specifically, the MCHF 232 wave functions
and energies for the two states are

0.9094c~2s22p!20.4160c~2p3!,

E~MCHF!520.770 55 a.u. for He2~2Po!,

0.8586c~2s2!10.5126c~2p2!,

E~MCHF!520.776 76 a.u. for He~1S!.

As we will see below, when the rest of electron correlation
added for both states, the He2Po resonance goes below th
He 1S resonance by 0.61 eV. It is noteworthy that the tw
sets of (2s,2p) orbitals differ in their size, the ones for H
being more compact, as is the case generally when an
wave function is compared to that of the parent neutral st
Specifically, for He(1S):^r &2s53.34 a.u., ^r &2p53.13 a.u.
and for He2(2Po):^r &2s54.12 a.u.,^r &2p53.91 a.u. These
orbitals are plotted in Fig. 1.

In order to see the occurrence of the local minimum p
torially, we carried out two variational calculations, usin
just a single Slater orbital for the 2p orbital and two choices
for the 2s orbitals. In the first choice,~5frozen core orbital!,
the 2s orbital is the HF 2s of the core state, i.e., of the H
2s2 1S. In the second choice,~5 relaxed core orbital!, the 2s
orbital is the HF 2s of the He2 2s22p 2Po calculation, which
means that it already contains the self-consistent relaxa
due to the presence of the 2p orbital. The results of these
calculations are plotted in Fig. 2, which depicts the energy
2s2p as a function of the average value ofr of the Slaterp
5-7
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FIG. 2. Plots of the total energy of the He2 2s2p 2Po resonance against^r &p , the average value of the radius of a one electron funct
of p symmetry that is coupled to simple two-electron wave functions representing the He1S doubly excited state.~Dash dot dot!: A single
configuration, 2s2p, where the 2s orbital was obtained from the HF solution of He2 2s22p 2Po. Emin520.73843 a.u. at̂r &p53.30 a.u.
The minimum is deep.~Dash dot!: A single configuration, 2s2p, where the 2s orbital is obtained from the HF solution of He 2s2 1S.
Emin520.71775 a.u. at̂r &p54.02 a.u. The minimum is shallow.~Dot!: He@0.857(2s2)10.513(2p2)#p where the (2s,2p) orbitals are from
the He 1S MCHF calculation andp is made orthogonal to 2p. No binding occurs.~Dash!: Two-term, (2s2p112p2p2), 2Po wave function,
where the (2s,2p) orbitals are from the He1S MCHF calculation and no orthogonality is imposed among the threep orbitals.
Emin520.75316 a.u. at̂r &154.65 a.u.~fixed! and^r &256.19 a.u.~Solid!: Same as the ‘‘dash’’ case, but the (2s,2p) are relaxed, taken from
the He2(2s22p,2p3)MCHF calculation. The minimum is deeper than before, reachingEmin520.76671 a.u. at̂r &153.67 a.u.~fixed! and
^r &253.86 a.u..
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orbital. Even with such a simplep orbital, both calculations
produce local minima, the one using the relaxed 2s HF or-
bital being lower. Its value is20.738 43 a.u. and it appears
^r &p53.30 a.u. which is close to that of the~more flexible!
numerical HF solution, for whicĥ r &2p53.63 a.u. In fact,
when twop Slater functions are used and optimized var
tionally, the local energy minimum is at20.742 74 a.u., al-
most identical to the numerical HF value. This result is
accordance with the state-specific approach, since such a
culation constitutes an approximation to an analytic HF c
culation in its last cycle, i.e., when the 2s orbital has already
been optimized and the 2p orbital, expressed asu2p&
5Sciui , whereui are Slater orbitals, is varied to minimiz
the energy.

The conclusion, therefore, is that the He22 Po resonance
is already quasibound at the single-configuration HF lev
without any CI or channel coupling.

Given the above fact and items~1! and ~2! above, it is
instructive to consider the possible reason of why Chun
large calculation with wave functionC1 ~78 terms! produces
a totally repulsive energy curve as a function of the aver
value of^r &p . ~His use ofR5^r 11r 21r 3& is essentially the
same thing, since the target functions are frozen!. So let us
consider the electronic structure of the He 2s2 1S state. Its
overwhelmingly dominant electron-correlation effect is t
mixing 2s2↔2p2. We now carry out two types of variationa
calculations, using analytic orbitals for the third electron~p
orbital! of He2.

In the first, we use onep Slater orbital, orthogonal to the
05250
-

al-
l-

l,

’s

e

2p of the 232 MCHF He wave function, and form a three
electron wave function, as Chung does with his 78-term
get function. Specifically, we formC(a2s21b2p2)p1 and
follow the total energy by varying the exponent of thep1

Slater orbital. No binding takes place. The correspond
repulsive curve is shown in Fig. 2. It is the result of th
repulsive interaction between the extrap electron and the
2p2 term in the target function,to which it was kept orthogo-
nal. Such a repulsive interaction must also dominate the
culation of Chung@7#, where the frozen orbital 2p2-type
term is included in the 78-term expansion, and where
extrap orbital is kept orthogonal to the target function. In th
second type of calculation, we consider each of the two c
figurations separately, we formaC(2s2p1)1bC(2p2p2)
and very each of the twop Slater orbitals separately. Now
the p1 andp2 orbitals are not restricted to being orthogon
either to the 2p HF orbital of the target wave function o
between them. The solution of this two-configuration ca
requires a nonorthonormal CI~NONCI! calculation and
shows that binding does occur, since the role of the thr
electron configuration 2p2p2 is to improve the single-
configuration result. The corresponding energy curve w
the local minimum is also shown in Fig. 2. The plot is o
dimensional, with thêr &p of the p1 orbital being kept at its
optimal value, 4.65 a.u. For this calculation, the energy m
mum is at20.753 16 a.u.

(a) State-specific few-term wave functions vs the 291-t
wave function of Ref. [7].Having established the localizatio
5-8
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STATE-SPECIFIC APPROACH AND COMPUTATION OF . . . PHYSICAL REVIEW A 64 052505
of the state at the zero-order level, we can improve the w
function and the energy by adding electron correlation c
figuration that do not destroy localization. By choosing t
important configurations in a hierarchical manner, we fi
obtain multiconfigurational representations of theF0

k of Eq.
~1!. In this first stage, the convergence of the calculat
toward the accurate final result is fast and physically tra
parent. We give an example: The significant orbital exc
tions from the 2s22p reference configuration are: 2s→d,
2s2→p2, and 2s2p→sp. Within a minimum size MCHF
scheme, the corresponding configurations are: 2s22p, 2p3,
(2s2p)3 Po3d, (2s2p) 1Po3d, 2s(3s3p) 3Po, and
2s(3s3p) 1Po. When this six-term MCHF calculation i
done, the energy is20.790 98 a.u., which is exactly the sam
as the energy obtained in Ref.@7# with a 291-term wave
function @item ~3! above#.

The result based on the six-termF0
k can be improved by

augmenting judiciously the reference space. Indeed, a
term F0

k gaveE0(F0
k)520.798 68 a.u., or 52.27 eV abov

the He ground state. The measurements of Refs.@17,18# gave
the position at 57.2260.04 and 57.1960.03 eV, and the
large-scale CCR calculation of Bylicki and Nicolaides@9#,
~which includes the full contribution of the open channel!,
gaveE557.205 eV.

The results above provide yet another example of
spectacularly good convergence toward the accurate en
and electronic structure of MES and of inner-hole states
is achieved when state-specific MCHF calculations, w
suitably chosen few configurations, are carried out.

(b) Addition of Xloc and final NONCI energy. We now
continue the calculation ofC0 by adding terms belonging to
Xloc

k . Since very good convergence has already b
achieved by the 35-termF0

k , the calculation of this part is
very slowly convergent, in spite of the fact that the cor
sponding variational calculation is done via NONCI, a ch
acteristic feature of many state-specific calculations
atomic and molecular states@44#. Eventually, a 588-termC0
was computed, nearly exhausting the full space of sin
double, and triple orbital excitations. The corresponding
ergy is E0 (He2 2Po)520.80128 a.u. or 57.203 eV abov
the He1S state. In fact, in order to reach the full CI limit, w
resorted to a 1/M extrapolation ofE0 , whereM is the num-
ber of configurations inC0 , for M535, 150, 355, and 683
The extrapolated value is

E0~He 22P0!520.802 41160.000 133 a.u.

557.172 eV above He 1S. ~8!

(c) Comment.One might argue that, even though the a
proach advocated in@7,15,16# does not produce binding fo
the He2 2s22p 2Po resonance withoutchannel couplingand
large core wave functions, eventually Chung’s full calcu
tion leads to the same final conclusion as that of the pre
analysis, namely, that this resonance exists, with an en
around 57.2 eV. In other words, one could argue that e
though the economy and the physical picture of the t
methodologies are different, the end result is the same. H
ever, this would not be a good argument for a number
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reasons, of which the most interesting is offered by the
ample of Sec. V B, i.e., the issue of the existence or no
the He2 2s2p2 2D resonance, whose background was
ready presented in Sec. II.

2. The calculation ofg i of G, and of D

Experimentally, the formation and decay of th
He2 2s22p 2Po resonance in the three inelastic chann
1s2s 1S, 1s2s 3S, and 1s2p 1Po was observed already in
the 1960s by Simpson, Menendez, and Mielczarek@45#. A
recent measurement and discussion of the relative rate
decay into the He 1s2s 1,3S,1s2p 1.3Po channels was re-
ported in Ref.@21#. An important measurement was als
made in 1969 by Burrow and Schulz@46#, who recorded the
decay by two-electron emission. However, no measurem
of these partial widths have been reported. On the ot
hand, the total width was measured some time ago
Quemener, Paquet, and Marmat@20# as 90614 meV while a
more recent unpublished measurement by van den Brink@17#
gave 70610 meV.

As regards theory, the first result, 2.4 meV, is that
Smithet al. @47# from close-coupling calculations. More tha
20 years later, Bylicki and Nicolaides@9# reported a width of
71 meV, obtained from CCR calculations that include,
principle, the contribution of all open channels, having o
as well as two free electrons. More recently, Smithet al. @44#
and Manby and Doggett@33# also published results of calcu
lations ofG. Zhang and Chung@48# reportedG568.5 meV,
obtained by a method using real and complex coordinate
which we commented in Ref.@1~c!#. Manby and Doggett
@33# reportedG582 meV, obtained by using the golden ru
and the ICA, withC0 being a state-specific two-term spin
coupled wave function with flexible orbitals. The scatteri
functions were approximated by a set ofL2 orbitals. It is
noteworthy that they gave as an estimate of the partial wid
for two-electron emission the value 3.7 meV.

The results for the partial and total widths of@9,33,48#
and of the present work are presented in Table I. Our ca
lations were done according to the method presented in
IV. The following open channels were considere
1s2s 3S«p, 1s2s 1S«p, 1s2p 3Po («s,«d), and
1s2p 1Po(«s,«d). The calculation of the He1S core in-
volved the simultaneous optimization of the two roo
(1s2s11s2)1S.

Judging from the theoretical results of Refs.@9,33,48# and
of the present work (G569 meV), and from the experimen
tal value of van den Brink@17#, and if we take for the partia
width of two-electron emission the value 2–4 meV~not in-
cluded in our calculation!, we come to the conclusion tha
the theoretical prediction forG is in the range 68–74 meV.

On the other hand, there is some discrepancy among
results of Refs.@33,48# and this work as regards the parti
widths. In our calculation, the largest contribution com
from the 1s2s 1S (g521 meV) and 1s2p 3Po (g
534 meV) channels, whereas in those of Zhang and Ch
@48# the g of the 3Po channel is dominant~41 meV! and in
those of Manby and Doggett@33# it is the 1Po and the 1S
channels that dominate@g(1Po)526 meV,g(1S)528 meV#.
5-9
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CLEANTHES A. NICOLAIDES AND NICOS A. PIANGOS PHYSICAL REVIEW A64 052505
As regards the total energy shiftD we estimate that its
magnitude is about 30 meV. This is obtained from Eq.~4!
and the fact that, for this state, we estimated that intercha
coupling reduces by about 40–50% the value from the IC
Therefore, using Eq.~8!; the total energyE ~SSA! of this
state is given by

E~SSA!5E01D5~57.17210.030! eV557.202 eV.
~9!

Given the other theoretical and experimental results,~see our
references and tables in Refs.@9,48#!, we suggest that the
position of this resonance state is atE557.20460.005 eV.

B. The He 2s2p2 2D resonance

As we discussed in Sec. II, the existence of such a re
nance has been disputed in a series of papers during the
two decades@7,15,16,22#, culminating in the latest one o
1998 @7#. This fact has created confusion as to the natu
formation and observation of this state~e.g.,@17,21#! and as
regards the theory and computation of resonance state
polyelectronic systems in general. Furthermore, Chung
claimed~e.g.,@15,22#! that earlier calculations by one of u
~C.A.N.! of the Co of the He2 2s2p2 2D resonance are in
valid, because of the inclusion of terms of the type 2s2d and
2p2d. @These correspond to the OCL configurations d
cussed in Refs.@1,2# and in Sec. II. We return to this issue
paragraph~38! below.#

In what follows, we will examine the question of the2D
resonance formation along the lines discussed above fo
He2 2Po resonance, and we will show that the related obj
tions of Refs. @7,15,16,22# are without foundation. The
He2 2D resonance is indeed formed at 58.3 eV, with a wid
in the range 40–60 meV. This conclusion is based on
results of Refs.@2,9# and the present ones, obtained w
simple as well as with well-correlated wave functions, who
analysis reveals the constitution and the properties of its
calized partC0 .

TABLE I. Partial and total widths~in meV! for the He2

2s22p 2Po resonance state, obtained in this work, Eqs.~1!–~7!, in
earlier calculations@9,33,48# and in measurements@20#. For our
results we used the reduced 1 a.u.~He!527.207 7 eV.

Channels

Theory Experiment

This work @9# @33# @48# @20# a

1s2p(3Po)«s
1s2p(3Po)«d

33
4 J13

41
3

1s2p(1Po)«s
1s2p(1Po)«d

10
0.6 J26

13
0.4

1s2s(3S)«p 0.4 11 0.6
1s2p(1S)«p 21 28 13
Total 69 71 82 69 90614 70610

aUnpublished result of van den Brink, see Ref.@17#
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We list basic results of Ref.@7#:
~1! On 2784 of Ref.@7#, it is stated: ‘‘Judging from the

experimentally observed position~of the 2D structure!,
c(2s2p 3Po)w(p) is obviously the most important channe
However, this channel is not favorable in forming a2D reso-
nance since the exchange integral between the outerm
electron and the target is positive. Hence, one should no
surprised to find the result forC1 in Fig. 10 ~which shows
that the energy curve as a function ofR5^r 11r 21r 3& is
repulsive!.’’

~2! The coupling of many channels, containing hundre
of terms, do not change the repulsive nature of the ene
curve~Figs. 10 and 11 of@7#!, leading Chung to his conclu
sion about the nonexistence of the He2 2D resonance.

Let us start by considering only the 2s2p2 2D configura-
tion. As we already stated in Sec. III, the corresponding
stricted HF equations can be solved numerically to produc
localized solution, with or without orthogonality of the HF2s
orbital to the He11s hydrogenic orbital. The 2s and 2p or-
bitals are compact, witĥr &2s54.1 a.u. and̂ r &2p54.4 a.u.
This orbital wave function constitutes the simplest zero-or
representation of the2D resonance, with an optimized en
ergy that is a local minimum inside the continuum. The
maining of the calculation toward the determination ofC0
involves the addition of configurations which, even thou
they are optimized variationally, do not destroy the localiz
tion of the trial function.

The discussion that follows has three parts. In Sec. V
we present results based on simple wave functions in o
to provide pictures of the energy minima attained in the c
tinuum as the radial function of the third electron is varie
In Sec. V B 2 we present our results for the character ofC0
and for the value ofE. In Sec. V B 3 we present the resul
for G and the partial widths. All the results establish beyo
doubt the existence of this resonance, while demonstra
how the SSA addresses, in general, the problem of un
standing the formation and the properties of resonance
polyelectronic atoms.

1. Local energy minima and their relation to simple
configurational functions without and with

relaxation and channel coupling

We will discuss three notions:
~1! The notion of orbital flexibility in the single configu

ration (2s2pp8)2D, implemented via a nonorthogonalp or-
bital optimized variationally.

~2! The notion of correcting the localized orbital wav
function (2s2p 3Po)p1 via coupling with the channels
(2s2p 1Po)p1 , (2p3d 3Po)p2 , and (3s3p 3Po)p3 . The pi
~i 51, 2, 3! are analytic~Slater! orbitals whose exponents ar
varied. They are not orthogonal among them or to the 2p and
3p orbitals of the target functions.

~3! The notion of open-channel-like configurations
(a2s21b2p2)d, obtained self-consistently from an MCH
calculation and contributing to the stability of the wav
packet.

~18! We already mentioned the fact that the He2

2s2p2 2D single configuration Hartree-Fock equations ha
5-10
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FIG. 3. The 2s and 2p orbitals from the HF
calculations of the He 2s2p 3Po ~solid line! and
He2 2s2p2 2D ~dotted line! resonance states.
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a perfectly acceptable localized solution. This implies tha
the orbitals are varied in the self-consistent field, the to
energy reaches a minimum~20.708 a.u! with respect to
these variations. We shall call the (2s,2p) orbitals from this
HF calculation therelaxed orbitals, and will distinguish them
from the HF(2s,2p) orbitals of the He 2s2p 3Po state,
which will be calledfrozen orbitals. Indeed, these two sets o
orbitals are different, as can be seen from Fig. 3.

Now let us consider the concept of(N21)-electron target
plus extra electronthat characterizes the approach follow
in Refs. @7,15,16#. This implies that we choose a core H
wave function of 3Po symmetry to which we couple ap
orbital representing the third electron. Chung@7# used a 69-
term 3Po wave function and found no binding of the thir
electron. We will use only one configuration, (2s2pp1)2D,
whose proper electron coupling yields two terms, t
(2s2p 3Po)p1 and the (2s2p 1Po)p1 , and will show that
the binding indeed takes place, provided these zero-o
configurations consist of flexible orbitals, i.e., of the relax
(2s,2p) orbitals and a simple Slaterp1 orbital that, however,
is not orthogonal to the 2p one. The binding is depicted a
the occurrence of a local minimum of the total energy
(2s2pp1)2D, as the average value of the radius ofp1 ,^r &p ,
is varied.~That is, the nonlinear parameter of the Slater
bital is varied.!

Before we show the relevant results, it is useful to rel
the meaning of the (2s2p 3,1Po)p1 configuration to the state
specific electronic structure theory. When the SSA is con
ered, the implication is that the self-consistently obtain
2s2p2 2DHF configuration can be adopted as the refere
localized wave function. Even though the two orbita
(2s,2p) are optimized self-consistently, it is known from o
previous work on He2, as well as from previous theory o
the interplay between atomic structure and atomic spe
~see the reviews@44,49#!, that forsp2 2D structures, electron
correlation causes significant polarization of the 2p orbital,
even in neutral states. This effect appears as CI with confi
rations of the typesp2 2D. For example, the strongly
perturbed Al2D spectrum @27# is characterized mainly
by CI of the type 3s3p2↔3s3pnp(n.3)↔3s2md,
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«d↔3p2md↔3pnpmd(m53,4,...), with the 3s3pnp con-
figurations corresponding to observed resonances@50#. A
way to account for most of this polarization is to allow th
two 2p orbitals of the 2s2p2 2D configuration to be differ-
ent ~5 unrestricted HF theory!. A practical approximation to
this, which is relevant to the present discussion, is the us
the (2s2p 3.1Po)p1 two-term wave function, with separatel
optimized nonorthogonal orbitals.

Figure 4 presents two energy curves of the two-te
(2s2p 3,1Po)p1

2D wave function as a function of^r &p , the
average value ofr for p1 . It is repulsive when thep1 func-
tion is orthogonal to the 2p orbital, regardless of whether th
latter is taken from the He 2s2p 3Po ‘‘target’’ ~frozen orbit-
als! or from the He2 2s2p2 2D configuration~relaxed orbit-
als!. A repulsive curve is obtained as well when the co
orbitals are frozen andp1 is nonorthogonal. Only when the
p1 is free to be nonorthogonal to the 2p of the 2s2p2 con-
figuration does the local minimum appear atE
520.705 47 a.u. witĥ r &p53.68 a.u. In fact, when thep
space is made more flexible by adding one more Slater
bital, the minimum is deepened toE520.70935 a.u., which
is below the restricted HF value~20.708 09 a.u.!. This is
simply because this calculation approximates an unrestri
HF calculation of the 2s2p2p8 type with nonorthogonal or-
bitals.

The existence of the local energy minimum, even w
such simple~but physically relevant! functions for the He2

~target 3Po! p1
2D ‘‘channel,’’ contradicts the claim of Refs

@7,15,16#. It also constitutes an example whereby it becom
clear that the state-specific strategy toward the solution
certain problems in excited states not only is more econo
cal and transparent but also necessary@44#.

~28! We now proceed to see what happens if we add ot
‘‘channels’’ to the results of~1!8. Does the local energy mini
mum survive or is it destroyed?

As we already reported in Ref.@2~a!#, the He 2s2p 3Po

resonance state is overwhelmingly dominated by three c
figurations, the 2s2p, 2p3d, and 3s3p, provided they are
obtained self-consistently by the MCHF procedure, in wh
case they contain the contributions of higher-lying exci
5-11
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FIG. 4. The total energy of the He2 2D reso-
nance state, represented by one configurati
2s2pp, coupled as (2s2p 3.1Po)p, against̂ r &p ,
the average value of the radius of the variation
orbital p. ~a! The repulsive curve corresponds
the case where thep orbital is orthogonal to the
(2s,2p) orbitals, regardless of whether these a
relaxed or frozen.~b! The local minimum appears
when the (2s,2p) are relaxed~taken from the
He2 2s2p2 2D calculation! and thep orbital is
left nonorthogonal to the 2p one.
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tions. The corresponding localized wave function is

FMCHF~He 3Po!50.992c~2s2p!20.118c~2p3d!

20.049c~3s3p!, ~10!

with E520.76093 a.u. or 58.300 eV above th
He1S,@1 a.u.~He!527.2077 eV#, which is in excellent agree
ment with the experimental values of Gosselin and Marm
@6# (58.30960.003 eV! and of Mannervik @51# (58.312
60.003 eV!. The remaining small part of the localized e
ergy~negative! is essentially balanced out by the energy sh
D that is positive.

Given the above constitution of the He3Po resonance
state, we consider the coupling of four ‘‘channels
(2s2p 3Po)p1 , (2s2p 1Po)p1 , (2p83d 3Po)p2 , and
(3s3p 3Po)p3 , with all the p orbitals kept nonorthogonal
The p1 , p2 , andp3 orbitals are analytic Slater orbitals th
05250
t
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are varied to minimize the total energy from
434NONCI. The (2s2p 3,1Po) orbitals are the relaxed
numerical orbitals from the calculation of 2s2p2 2D. The
2p8, 3s, 3p, and 3d orbitals are the frozen numerica
MCHF orbitals from the calculation of the He 2s2p 3Po

state~10!. Figure 5 shows the two-dimensional energy s
face as a function of the averager of p2 andp3 , whenp1 is
kept fixed at its optimal value. It is seen that chann
coupling sustains the local energy minimum, which is no
found to be atE520.71252 a.u. The average values ofr for
the three optimizedp orbitals are,^r &153.70 a.u., ^r &2
54.74 a.u. and̂ r &55.56 a.u.

~38! For many-particle systems, the theory of resonan
states is based, in one form or another, on the formal se
ration of the full space into two parts, one represent
bound components and one representing scattering ones
proper handling of the formal mixing of such componen
f

n

at
FIG. 5. A two-dimensional energy surface o
the He2 2D localized part, as a function of the
average radius of two Slater orbitals,p1 andp2 .
These orbitals enter in the state-specific 434
nonorthonormal configuration interactio
~NONCI! calculation, with (2s2p 3Po)p1 ,
(2s2p 1Po)p1 , (2p3d 3Po)p2 , and
(3s3p 3Po)p3 . When^r &1 is fixed at its optimal
value, 3.70 a.u., the energy minimum is
20.712 52 a.u. with^r &254.74 a.u. and^r &3

55.56 a.u..
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STATE-SPECIFIC APPROACH AND COMPUTATION OF . . . PHYSICAL REVIEW A 64 052505
leads to the phenomenology of resonance states~e.g., phase
shifts, time delay, lifetime, cross-section!. On the other hand
it is equally important for the physics of real polyelectron
atoms and molecules to go beyond phenomenology and t
able to compute from first principles the intrinsic propert
of resonances.

In the exchange of views@1~c!,22# on the validity of the
SSA calculation of the He2 2s2p2 2D resonances, Chun
@22# objected to the fact that the calculations in Refs.@1,2#
included correlation configurations of the type (2s2

12p2)d, since the He2s2 1S state lies energetically lower
and, therefore, it gives rise to an open channel. Although
discussed this issue in Refs.@1,2#, we return to it here, in
order to provide additional numerical information which
related to Chung’s stated question~p. 695 of Ref.@22#!: ‘‘My
question about Nicolaides’ 2s2p2 2D calculation is: why not
include the other 2s2nd and 2p2nd orbitals with n54, 5,
6,...? Do these orbitals in some way conflict with the ‘‘sta
specific theory’’ whereas 3d does not? If we do include thes
nd orbitals into the wave function, the lowest root of th
energy will fall towards the 2s2 @more precisely, (2s2

12p2)1S# threshold. Therefore, the solution Nicolaides o
tained was the result of an incomplete calculation.’’

The general answer to the above remarks can be foun
pp. 460–465 of Ref.@1~b!# and p. 692 of Ref.@1~c!#. In Ref.
@2~a!# we introduced the nameopen channel-likeconfigura-
tions, in order to underline their distinct features. Here
provide additional information in order to complete the arg
ments of the present paper.

The pair correlation of the twop electrons of the HF
configuration He22s2p2 leads to virtual excitations repre
senting both ‘‘localized’’ and ‘‘ asymptotic’’ components of
the resonance wave function. The asymptotic compon
derive their existence from the energetically open chann
However, as we argued in Refs.@1,2#, when carrying out
either a variational calculation with carefully observed co
straints, or, better, a numerical solution of the appropri
MCHF equations, it is possible to incorporate part of t
space belonging to an open channel into the localized c
ponent. In other words, the localized wavepacket in the c
tinuous spectrum representing the state att50 @1,25# need
not be constructed only by functions corresponding to clo
channels. Using the language of configurations, in
present case there are three open channels~two thresholds!
with respect to the HF energy of the 2s2p2 configuration,
which were shown in~i!–~iii ! of Sec. III A. Since the HF
energy of the 2s2p2 2D configuration is above the energy o
the He 2s2p 3Po threshold, the ‘‘problem’’ stressed b
Chung ought to arise also with the (2s2p 3Po)p variational
calculations. Yet, we already saw that, with (2s,2p) orbitals
that have incorporated the effect of relaxation, a variatio
calculation with nonorthogonal orbitals leads to we
converged local energy minima when a Slater orbital op
symmetry is optimized. The energy of the three-electron A
does not collapse to the He 2s2p 3Po threshold when one
more p function is added. It is simply improved toward
convergence limit, just like in any ordinary case of a bou
state.
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As regards the (2s2)d channel, in Refs.@1~c!,2~a!# we
discussed its significance and its contribution to the locali
part via MCHF calculations that include the 2s23d OCL
configuration. As with any variational calculation of th
MCHF type, it is not necessary to include then54, 5, 6,...
correlation orbitals in order to achieve a sufficiently accur
convergence within the local minimum. Even in a grou
state calculation, it has been known for decades that s
variationally optimized orbitals include most of the contrib
tion from the infinity of higher bound and scattering state
In order to support this statement for the present example
close by listing a series of new results from MCHF calcu
tions on the2D state.

A 232 MCHF calculation with 2s2p2 and 2s23d con-
figurations gives E(232)520.71989 a.u., withFMCHF
50.957c(2s2p)220.290c(2s23d). Again we stress tha
this ‘‘3d’’ bound orbital represents a one-electron wav
packet containing major contributions from the«d open
channel, but does not represent the asymptotically fr
electron function of this channel. The latter is computed i
separate, scattering-type calculation, where the«d scattering
function is obtained numerically from a frozen co
1S(He 2s212p2) potential.

Now we add the important 2s→d correlation, which is
present in the 2s2p2 configuration. A 535 MCHF calcula-
tion givesE(535)520.73696 a.u., with

FMCHF5 0.918c~ 2s2p2 ! 2 0.294c~2s23d !

2 0.242c@ ~ 2p2 3P ! 3d #20.107c@~2p2 1S!3d#

10.025c@~2p2 1D !3d#.

The orbitals are compact, witĥr &2s54.02 a.u., ^r &2p
54.12 a.u., and̂ r &3d55.83 a.u. The virial relation gives
2.03.

Finally, we perform a large~and difficult! MCHF calcu-
lation with 48 and 49 terms, without and with a 2s24d con-
figuration. The results are nearly the same:E0(48)5
20.75601 a.u. andE0(49)520.75606 a.u.~58.43 eV above
the He1S state!. This fact proves that the addition of the 4d
orbital does not bring about a result supporting the conc
and prediction of Chung. Localization and energy stabil
hold well. The coefficient of the 2s24d OCL configuration is
only 0.0148, whilst that of the 2s23d OCL configuration is
20.1954. A comparison of this 3d orbital to the HF«d scat-
tering orbital obtained in the He(2s212p2 1S) core poten-
tial, shows that they look quite different.~Fig. 6!. ~Their
overlap is only 0.022.!

We stress that the incorporation of the 2s23d configura-
tion into the MCHF calculation not only does not cause ha
but it facilitates convergence. Furthermore, it brings in t
response of the bound closed channel components to
open channel in a self-consistent manner, something whic
still a desideratumfor all approaches that are based on t
concept of(N21)-electron target state plus extra electron.

2. Results for the character ofC0 and for the value of E0

The FMCHF ~49! discussed above, contains the ma
components of the He2 2D resonance. The most importan
5-13
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FIG. 6. Comparison of the 3d orbital in the
open channel-like~OCL! configuration 2s23d,
included in a 49-term MCHF calculation of th
He2 2s2p2 2D resonanc¨e state, with the scatter
ing «d orbital obtained for«50.012 18 a.u., the
energy difference of the2D MCHF solution from
the exact energy of the He 2s2 1S threshold. The
«d orbital was obtained numerically in the cor
potential of He(2s212p2)1S. The 3d orbital is
localized, having no resemblance to the«d scat-
tering orbital.
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ten configurations and their coefficients are listed in Table
Notice that from the point of view of the discussion on ele
tron correlation of the previous sections, the following o
bital excitations from the 2s2p2 configuration acquire the
highest weight

2p→p, f , 2s→d, ~vi!

2p2→2sd,3p2. ~vii !

In fact, a careful study of the constitution of this wave fun
tion, together with energy considerations, led to the conc
sion of the existence of a correlation-induced He2 2D triply
excited resonance very close to the 2s2p2 2D state. This
prediction and its connection to the measurements of Go
lin and Marmet@6# will be discussed in Ref.@8#.

Having established localization with a sufficiently acc
rate energy,20.75606 a.u., via the 49-term MCHF calcul
tion, we add the remaining localized correlation functi
space and compute the energyE0(C0), as well as the energy
shift D in order to obtain the final resultE5E01D. ThisE is
then compared to the energy of the He 2s2p 3Po state. For
the latter we take as accurate values the two experime

TABLE II. The ten most important localized configuration
comprising the He2 2s2p2 2D resonance state, obtained nume
cally from a 49-term multiconfigurational Hartree-Fock calculatio

Configuration Weight

2s2p2 0.8802
(2s2p)1Po3p 20.2659
2s3p2 20.2342
2s23d 20.1954
3d(2p2)3P 20.1267
3d(2p2)1D 0.1107
3s(2p3p)1D 20.0861
2s(2p4p)3D 0.0495
(2s2p)3Po4 f 0.0270
2s24d 0.0148
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ones @6,51# already cited, and the computed ones via t
CCR method by Ho@52# and by Lindroth@53#, both of which
are20.760492 a.u.~58.312 eV above the He ground state!.

Correction to the energy via NONCI of separately o
tained state-specific correlatedC0. For low-lying states, the
notion of an isolated state is, in general, valid. Therefore,
direct, state-specific calculation of its energy can be done
following the strategy described thus far in this paper. Ho
ever, with increasing excitation energy the density of re
nance states increases. As a result, for the same symm
the spectrum contains closely lying or overlapping re
nances. The handling of such cases, say of triply exc
resonances very near others of different electronic structu
is in principle a complex problem for which very little ha
been done. In a calculation of any scheme, the locali
function spaces representing different states interact ei
directly or via the continuous spectrum. For example, suc
multistate interaction was shown to have spectroscopic
pact in the case of the Al2D spectrum@27,50#.

During the present study of He2 resonances, analysis o
the correlated wave functions with small or large expansi
eventually led us to the conclusion that there are two clos
lying 2D states around 58.3 eV. The lowest one is the one
which we reported here. The next one is discussed in R
@8#. Because of the high accuracy for the total energy that
aimed at, so as to decide whether theE of the He2D state is
below or above the He 2s2p 3Po energy, the aforementione
small effect of the influence of the closely lying second2D
resonance on the first one, and vice versa, was taken
account here by a scheme that is explained below. It is g
eral enough to be used in many such cases of interac
excited states in atoms and molecules. In fact, a version
was first applied some time ago to excited states of twis
butadiene and ethylene, see Refs. in Ref.@44#.

First, two separate large state-specific NONCI calcu
tions were carried out for the two states, using as refere
wave functions the MCHF solutions with 49 configuration
Systematic increase of the size ofC0 , via the inclusion and
optimization of one-, two-, and three-electron virtual exci
tions, finally led to an expansion of 778 symmetry-adap

.
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TABLE III. Partial and total-energy widths and shifts~in meV! for the He2 2s2p2 2D resonance state
obtained in this work, in earlier calculations@9# and in measurements@6,20#. For our results we used th
reduced 1 a.u.~He!527.2077 eV.

Channels

Widths

ShiftsTheory Experiment

This work @9# @47# @20# @6# a This work

2s2«d 6 22
1s2p(3Po)«p 10 6
1s2p(1Po)«p 1 7
1s2s(3S)«d 11 5
1s2s(1S)«d 5 3
Total 33 49 25 50620 5964 40610 19

aUnpublished result of van den Brink see Ref.@17#
in
ts
or
ef
ac

y

t
ta

th

n

e
t

d
lys

n
h

n

n
ed

f

ns,
e
ther

A

s

-

his
A

he
en
ed
o

idth

en

f
the
ea-
cu-
y

ental

t

e-
eV.
configurations for each of the lowest two2D triply excited
resonances. These two solutions were then diagonalized
full NONCI calculation. This diagonalization correc
slightly the two wave functions and their energies, by inc
porating the remaining of the details of the higher order
fects that were not picked up by the function space of e
state separately.

The total energy for the first2D root computed in this
way is

E0~2D !520.761 990 a.u., ~11!

which is below the He3Po energy. However, the final energ
is obtained after the calculation of the energy shiftD. The
results for the partial shifts and widths, obtained according
the method of Sec. III, are presented in Table III. The to
shift comes out as 19 meV (6.9831024 a.u.), so that the
energy is

E~SSA!5E01D520.761292 a.u.

558.291 eV above the ground state.~12!

Hence, according to this SSA calculation, the energy of
2D state is 21 meV below the He 2s2p 3Po state, i.e., it is a
Feshbach resonance with respect to this threshold.

By combining the above result with that of Ref.@9# from
the CCR calculations and those from measureme
@4–6,18–20#, we suggest that the energy of He2 2s2p2 2D
resonance is at 58.29560.010 eV. We stress that, when th
aim for precision is increased, one should be aware that
determination of such energies from measurement depen
the excitation process and the related spectroscopic ana

3. The partial widthsg i and the total widthG

The results that the energy of the He2 2D resonance is 21
meV below that of the He 2s2p 3Po resonance, defines a
interesting problem. This has to do with the fact that t
width of an N-electron MES~the He2 2D resonance! over-
laps from below the energy and the width of a
(N21)-electron MES~the He3Po resonance!.
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Our ICA results for the partial and total widths are give
in Table III. This table also includes the total widths obtain
from the close-coupling calculations of Smithet al. @47#
~25 meV!, from the CCR calculations of Bylicki and
Nicolaides @9# ~49 meV!, and from the measurements o
Gosselin and Marmet@6# (5964 meV), and van der Brink
@17# (40610 meV).

The SSA energy dependent golden rule ICA calculatio
Eqs. ~4!–~5!, suggest that no partial width of any of th
important channels dominates. It remains to be seen whe
interchannel coupling changes this picture drastically.

We now come to the total width. The sum of the IC
partial widths givesG533 meV, which is smaller than the
widths of Refs.@6,9,17# ~Table 3!. Our assessment of thi
fact is given in what follows.

Interchannel coupling and the partial width for two
electron emission,~say about 2–4 meV!, both of which were
neglected in the ICA computations, would not amount to t
difference. A most probable source of inaccuracy in the IC
result is the complete exclusion of the partial widths of t
He 2s2p 3Po «p, « f channels, since these are closed wh
the definition of the real part of total energy is consider
(E5E01D). On the other hand, the overlap of the tw
states implies that some contribution to the observed w
must come from some part of the He 2s2p 3Po«p,« f con-
tinuum. Such a contribution is, in principle, at least tak
into account by the CCR calculations of Ref.@9#, since the
complex eigenvalue of the He2 2D resonance is the result o
all the interactions and of all the spectral features of
system, including the threshold. Hence, we consider it r
sonable, and in harmony with the previously obtained ac
rate results@9#, that the present ICA value to be slightl
smaller than the 49 meV computed in Ref.@9#.

Although the value calculated in Ref.@9# ought to be the
most accurate, given the present results and the experim
values of Gosselin and Marmet@6# (5964 meV) and of van
den Brink @17# (40610 meV), we recognize that it is no
possible yet to accept a precise value forG. Our recommen-
dation is that its true value, within the constraints of its d
pendence on excitation, must lie in the range of 38–55 m
5-15
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VI. SYNOPSIS

Using as examples two triply excited resonance states
pearing in the cross-section of electron-He scattering,
He2 2s22p 2Po at 57.2 eV and the 2s2p2 2D at 58.3 eV, we
examined, critically, aspects of the theory of resonance~au-
toionizing! states as regards the major interelectronic in
actions leading to their formation and quasistability and
regards the quantitative determination of observable pro
ties.

By carrying out a series of small-, as well as of large-sc
state-specific calculations with concrete numerical resu
we demonstrated how, for these states, wave function lo
ization in an energy local minimum occurs already at
level of the single configuration self-consistent field and h
it survives the mixing of additional correlating configur
tions, including the OCL ones. We conclude that in t
model where resonance formation in an atomic negative
is described by the picture of ‘‘target plus extra electron,’’ in
many cases it will be crucial to account for the response
the target at the orbital level of the major configuration~s!,
via the use of relaxed and nonorthogonal orbitals.

The analysis and results of this work, together with t
ones already in the literature since 1972~e.g., @1,2,25–
30,34,44#! demonstrate that the many-electron, man
channel problem characterizinginner-hole or multiply ex-
cited statescan be solved efficiently and to very goo
accuracy by applying electronic structure methods that o
have to be implemented via NONCI. The first and cruc
step is to obtain the state-specific solution of suitable MC
equations representing the overwhelmingly import
strongly mixing configurations, having the structure
closed and, when possible and necessary, of neighbo
open channels. A plethora of successful applications sh
that the main features of these states are revealed accur
once the information about theself-consistent correlated mo
tion of the electrons is accounted for. Following the MCH
calculation of the reference wave function, the formation a
the electronic structure of excited states in the continu
spectrum can be interpreted and quantified reliably in te
of compact wave functions of the form of Eq.~1!.

There are at least three major advantages in this appr
to the calculation of resonance states. First, it is not restric
s.
,
,

, J
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to two- or three-electron systems. The form of Eq.~1! is
computable, subject to the localization constraints of
SSA, for arbitrary excited states. Second, the electro
structure characteristics are easily detectable in terms of
configurations. Third,C0 is usable for the calculation of a
variety of properties and phenomena, such as radiation
and radiative widths, relativistic corrections, time-depend
dynamics of decay, photoabsorption cross sections, effec
external ac and dc fields, etc.

By combining the present results, which were obtain
according to Eqs.~1!–~7!, with those of previous calcula
tions and measurements, we conclude that it is reasonab
recommend the following values for their intrinsic prope
ties: For the He2 2Po resonance,E557.20460.005 eV and
G568– 74 meV. For the 2D resonance, E558.295
60.010 eV andG538– 55 meV. The He2 2s2p2 2D reso-
nance energy is about 20 meV below that of t
He 2s2p 3Po doubly excited state, whose width is 8 me
Therefore, when the widths are taken into account, these
states overlap.

Finally, the herein reported results of the partial dec
widths from energy-dependent golden rule formulas in
ICA are relevant to observation as regards both entrance
exit channels. For the2Po state, the largest partial width
were obtained for the (1s2p 3Po)«s and the (1s2s 1S)«p
channels. If the neglected interchannel coupling does
change this fact drastically, the significance of the3Po par-
tial width implies that an additional mode for detecting th
resonance indirectly is the synchronized observation of
much slower He3Po21s2s 3S radiative decay. For the2D
state, there is no apparent dominant decay channel.
channels 2s2«d, (1s2p 3Po)«p, (1s2s 3S)«d, and
(1s2s 1S)«d have widths of the same order of magnitud
Finally, it is worth noting that one of the prototypical aspec
of the He2 2D state is the fact that it overlaps one of i
thresholds, the He 2s2p 3Po resonance and this seems to e
plain the small difference in the total widths calculated
the CCR method@9# and by the present ICA.
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