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Work-function changes due to surface anisotropy and imperfections
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Our previously reported theory for semi-infinite metals, which incorporates lattice effects in a
direct way within a self-consistent scheme of the type of Hohenberg and Kohn, is used here for cal-
culating the variation of the work function of the Na{001) surface during the process of building up
a new (001) lattice plane on top of its surface plane. It is shown that this variation follows the trend
exhibited during alkali chemisorption onto a metal surface. In addition, more results are reported,
indicating the effect of the lattice anisotropy on the work function of the alkali metals.

I. INTRODUCTION

In the process of calculating the work function of sim-
ple metals it is usually assumed that the crystal surface is
a lattice plane with a positive-ion concentration and posi-
tioning defined via the bulk-crystal parameters. ' Under
these assumptions the bulk crystal is continued up to the
surface lattice plane which bounds the crystal from the
vacuum region. However, experimental and theoretical
studies have shown that these two conditions are not ful-
filled in general. The positioning of the surface lattice
plane is not the one which is expected from the lattice
constant of the (bulk) crystal. Instead the surface lattice
plane is relaxed to a position which satisfies the energetics
of the system. ' On the other hand, the surface lattice
plane may exhibit other defects which destroy the perfect-
ness of the surface lattice plane as compared to a bulk lat-
tice plane. The term "perfectness" of the surface plane is
associated here with the concentration of positive ions on
this plane as this concentration is compared with that of
the bulk lattice plane. Thus an (hkI) surface plane speci-
fied by the Miller indexes hkl is defined, here, as perfect if
the concentration of the positive ions on this plane is the
same as that of a bulk (hkl) crystal plane. No other type
of defects are considered.

For simplicity it is assumed throughout this work that
the semi-infinite crystal under consideration possesses a
Bravais lattice and all crystal planes parallel to the surface
are topologically equivalent.

The surface relaxation and the surface perfectness af-
fect the electronic configuration near the surface of the
metal and they are exhibited in the surface properties as
the work function and the surface energy of the metal.
While surface perfectness is of considerable importance, "
the surface relaxation may be neglected in work-function
and surface-energy calculations. '

Both the effects of the surface perfectness and surface
relaxation may be estimated within the jellium-model ap-
proximation. In the case of surface relaxation, the surface
region of the crystal is approximated by a jellium slab in
contact with the bulk jellium. The positive charge density
of the jellium slab depends on the relaxation and is speci-
fied by the condition of charge conservation. Similarly,

the imperfect surface plane of the crystal may be approxi-
mated by a jelliurn slab in contact with the bulk jellium.
The positive charge of the jellium slab which represents
the imperfect surface plane depends on the concentration
of the positive ions in this plane. The jellium approxima-
tion of an imperfect surface is similar to the jellium ap-
proxirnation proposed by Lang' in studying the depen-
dence of the work function of a metal upon alkali chem-
isorption.

The jellium-model approximation also proved useful in
studying the effect of crystal anisotropy on the work func-
tion. '" In the simplest case, in the jellium approximation
to a semi-infinite crystal in the (hkl ) orientation, the jel-
liurn edge is assumed to be located within the vacuum re-
gion at half the interplane distance, c&~kl&, of the (hkl)
lattice planes. This assumption is helpful in obtaining the
trends of the anisotropy effects. However, for quantita-
tive results the crystal anisotropy requires the explicit in-
clusion of the lattice geometry in describing the single-
electron potentials and wave functions of a metallic sys-
tem. The earlier approaches utilize the jellium approxi-
mation as the zeroth-order approximation (ZOA) to which
the lattice effects are added either perturbatively ' or/and
variationally. ' Although these approximations resulted
in theoretical estimations for the work function and the
surface energy which agree with the experimental ones,
they result in electron density profiles which are of jellium
type and exhibit neither the crystal periodicity nor the
trends found in complete three-dimensional calculations. '

In addition to these drawbacks, the jellium-based calcula-
tions fail to include band-structure effects due to the char-
acter of these models.

In previous papers' ' we proposed a model approxi-
mation which eliminates the above-mentioned drawbacks
of the jellium-based approaches. The proposed model re-
tains the simplicity of the jellium approximation in the
sense that it is a one-dimensional problem. In addition to
this it allows inclusion of band-structure effects, since the
band structure along the direction (hkl), which is per-
pendicular to the surface, is taken into account in the pro-
cess of calculating the single-electron wave functions of
the metal. Due to its nature this model introduces the
crystal geometry directly within the single-electron
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Schrodinger equation, avoiding in this way any perturba-
tive or variational treatment of the lattice effects. Our
model is the zeroth-order approximation of a general
three-dimensional model solution' which utilizes the
propagation matrix technique' in solving the Schrodinger
equation for the free electrons of a metal whose ion-
electron interactions are described by a local pseudopoten-
tial. The model solution follows the self-consistent
scheme of Hohenberg and Kohn. '

In the process of solving this three-dimensional model,
we expand the single-electron wave functions and poten-
tials in Fourier series with respect to the two-dimensional
reciprocal space of the surface lattice plane. The Fourier
coefficients are coordinate dependent. The zeroth or-der

approximation to this three-dimensional model solution
retains only the zeroth-order Fourier term in the Fourier
series expansions. Thus the ZOA model solution becomes
a one-dimensional problem. This approximation was
shown to be very good in the case of simple metals. ' We
used this ZOA model to calculate the changes in the work
function' and the surface energy due to the crystal an-
isotropy. Also, it was found that the electron density pro-
files obtained within the ZOA model solution follow the
trends found by more complicated calculations. '

The physical consequence of the ZOA is that within
this approximation the positive charge distribution, p+(z),
of the positive ions of the metal takes the form of a multi-
planar charge distribution

p+(z) = g 5(z —z()
" 2%

+
1=O a

in planes parallel to the surface (Fig. 1). In Eq. (1), z~
denotes the position of the (hkl) planes, i.e., z~ ———lc&~k~&,
where l is an integer &0. The a in Eq. (1) denotes the
area of the unit cell on the (hkl) lattice plane. For com-
pleteness we review the formalism of the proposed model
and then we apply it to study the effect of the surface per-
fectness on the electronic properties of a metal surface.
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a
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FIG. 1. In the zeroth-order approximation (see text), the
charge of the positive ions of a semi-infinite metal exhibiting the
(hkl ) orientation, is smeared cut along the (hkl) lattice planes.
The {positive) charge density p+ (per unit area) is 2m/a where a
is the area of the 2D unit cell on the (hkl) lattice plane. The in-

terplane distance is denoted by c. The surface plane is located
at z =0. It is assumed that the semi-infinite crystal occupies the
negative z space, possesses a Bravais lattice and all crystal
planes parallel to the surface are topologically equivalent.

II. REVIEW OF THE MODEL

The symmetry of the system and in particular the two-
dimensional (2D) periodicity on planes parallel to the sur-
face, allows the expansion of single-electron potentials and
wave functions in Fourier series with respect to the 2D re-
ciprocal lattice of the surface plane. Assuming that the
semi-infinite crystal occupies the negative z space, the
Fourier coefficients in the Fourier series expansions ap-
pear z-coordinate dependent.

The ion-electron interaction is described within the lo-
cal pseudopotential approximation of Ashcroft's type. z'

The zeroth-order Fourier coefficients of the pseudo-
ion-electron interaction V' '(r) and the Hartree term
V' '(r) of the electron-electron interactions are not de-
fined separately. ' This is due to the fact that these
zeroth-order coefficients exhibit a singularity with respect
to the 2D reciprocal-lattice vectors q which is of

~ q ~

type. However, it was shown' ' that a zeroth-order term
Vo(z ) of the sum of the two potentials may be defined as

Vo(z)= lim [Vq '(z)+ Vq '(z)],
q~o

(2)

where fq(z) denotes the Fourier coefficients of the func-
tion f(r). Our approximation to the zeroth-order Fourier
coefficients of the exchange and correlation potential
V„,(z) is taken within the local-electron-density form and
from Wigner's expression for the average exchange and
correlation energy per electron.

In the ZOA model solution, the Schrodinger equation

1 ~'kq

2 dz2
+[Vo(z)+ V„,(z)]g'&(z)=E&gz(z) (3)

is solved self-consistently for the single-electron wave
functions gz(z) and the single-electron potentials Vo(z)
and V„,(z). The latter are functionals of the electron den-
sity p(z) given by

p(z)= g(k~ —q )
~
gq(z)

~

(4)
2

q

where kz is the wave vector corresponding to the Fermi
energy EF———,kF.

On the one hand, it has been implicitly assumed that
the Fermi surface is a sphere of radius kz. On the other
hand, due to the explicit inclusion of the lattice periodici-
ty (ilong the z axis), Ez is the part of the band structure
of the crystal along the (hkl ) direction, namely the
(001) direction in this case. This is due to the fact that
Vo(z), obtained by the use of Eq. (2), exhibits the periodi-
city of the crystal along the z axis. This is the advantage
of our approach which allows a direct incorporation of
lattice effects within the Schrodinger equation. In this
way any perturbative or variational treatment of the lat-
tice effects is avoided.

The Schrodinger equation [Eq. (3)] is solved numerical-
ly in the bulk and vacuum regions. The solution in the
bulk region proceeds (as in the case of the three-
dimensional model solution) by calculating the propaga-
tion matrix which is subsequently diagonalized. The two
eigenvalues of the propagation matrix have absolute value
equal to one and correspond to two independent propaga-
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ting solutions within the bulk crystal. Then the bulk solu-
tion is matched with the surface solution. More details
about this approach and the numerical solution may be
found in our earlier reports. ' ' '

The ZOA model solution was originally used for es-
timating the effect of crystal anisotropy on the work func-
tion and the surface energy of the Na crystal. Some more
numerical results are given in Table I, which shows the ef-
fect of the crystal anisotropy on the work function of the
alkali metals. In Fig. 2 the relationship Eq E(q)——is
shown for the case of Al(001). It is clear that Eq exhibits
the band gap of the band structure of Al in the (001)
direction (I X part of the band).

It should be noted, however, that the ZOA model solu-
tion is more applicable to metals for which the Fermi sur-
face (sphere), when projected onto the 2D reciprocal space
of the surface lattice is found to be located approximately
within the first 2D Brillouin zone of the 2D reciprocal
lattice of the surface plane. In such cases, the assumed
approximation EF —,

"
kg is ex——pected to be satisfactory.

In the next section we refer to the use of the present ap-
proach in calculating the variation of the work function
due to imperfections in the surface plane.

III. INCORPORATION OF SURFACE PERFECTNESS

Cl

C3
I I I I I

0 0 O. 2 0 ' 0.6 0 8 l.o

q (a. u.

FIG. 2. The I X part of the occupied band structure
E =E(q) of Al(100) (in the extended-zone scheme) as obtained
self-consistently using the zeroth-order model approximation
described in the text. The energy values are shifted so that
E(q =0)=0.0.

Due to the multiplanar charge distribution this model
may also be used to calculate the work-function changes
due to ionic chemisorption. ' It is only necessary to speci-
fy the chemisorbed species and its concentration. Assum-
ing that the chemisorbed ions form a layer parallel to the
surface, we can derive an analytical form of the ion-
electron interaction for the chemisorbed system. This
ion-electron interaction is incorporated within the
Schrodinger equation which is solved subsequently. The
concentration of the chemisorbed ions may be defined
through an effective valency, Zdf, given by

&sub
BdSZeff =

aads
(5)

where a,„b denotes the area of the two-dimensional unit
cell of the surface plane of the substrate, a,d, denotes the
area of an average unit cell on the adsorbate layer (which
depends on the concentration of the adatoms), and finally
Z,d, is the actual valency of the chemisorbed ions. It may
be argued -that the position d of the chemisorbed layer
(from the surface lattice plane) leaves an undetermined
parameter. However, as we have shown, this parameter

/

TABLE I. Variation of the work function of the alkali metals Li, Na, K, and Rb due to the anisotropy of the crystal, as obtained
from self-consistent calculations using the zeroth-order model approximation (see text). The core radii r, describe Ashcroft s (Ref.
21) local pseudopotential used in these calculations. For comparison, results of other calculations are also included.

Element
r,

(a.u. )

This work
and

Ref. 16

Kiej�n-
aWoj�ciechows
(Refs. 23, 24)

Monnier
et al.

(Refs. 4,5)

Work function (eV)
8ohnen

Ying
{Ref. 15)

Lang-
Kohn

(Ref. 3) Expt. '
Li(110)
Li(100)
Li(111)
Na(110)
Na(100)
Na(111)
K(110)
K(100)
K(111)
Rb(110)
Rb(100)
Rb(111)

1.06

1.67

2.14

2.61

3.77
3.56
3.42

3.22
3.08
2.82

2.76
2.59
2.42

2.40
2.40
2.22

3.31—3. 18
3.26—3. 11
3.12—2.96
3.06—2.91
2.94—2.77
2.73—2.56
2.75 —2.58
2.60—2.43
2.38 —2.21

2.63—2.46
2.45 —2.28
2.23 —2.06

3.1

2.7

3.2
2.8

2.6
2.3

3.5
3.4
3.2
3.13
2.84
2.76
2.9
2.7
2.5
2.9
2.6
2.3

3.55
3.30
3.25

3.10
2.75
2.65

2.75
2.40
2.35

2.20
2.10
2.05

2.32
3.1

2.7
29

2.39

2.21

'Work function for polycrystalline samples as quoted in Ref. 3.
Work function for Na(110) (Ref. 25).
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is uniquely specified by minimizing the total energy of the
chemisorbed system with respect to the position of the ad-
layer. Numerical results for the systems Li+/Na(100)
and Na+/Al(100) have been reported elsewhere. In the
present work it is assumed that the chemisorbed layer
consists of ions of the same type as that of the substrate.
Surface relaxation effects are left out so that the chem-
isorbed layer is positioned at the interplane distance
c'&i,kI&. Varying the concentration of the ions of the ad-
layer or equivalently varying the effective valency Z,ff, we
follow the formation of a new lattice plane on top of the
surface of the substrate. For each concentration of the
adlayer, Schrodinger s equation is solved self-consistently.
Then the obtained electron density profile p(z) is used to
calculate the work function of the system whose surface
plane is an incomplete lattice p1ane. It should be under-

stood, however, that this model may not be appropriate
for very low adsorbate concentrations for the same
reasons that the corresponding jellium approximation is
not applicable. ' Our results are presented in the next sec-
tion.

IV. RESULTS AND DISCUSSION

Figure 3(a) shows the electron density profile of the
Na(001) crystal which occupies the negative z space. In
Figs. 3(b)—3(e) we present the electron density profiles for
the semi-infinite Na(001) crystal whose surface plane has
a variab1e positive-ion concentration. Figure 4 exhibits
the variation of the work function of the Na(001) crystal
due to surface imperfectness. In other words, Fig. 4

(b) (c)
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z (a. u. )

-11.0 -7.0 -3.0 1.0
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FICi. 3. (a)—(e) Electron density profiles p(z) obtained self-consistently for the free Na(001) crystal and the one on which a new
layer at different ionic concentrations is built on top of the free surface layer. The concentration is expressed in terms of Z,f~ {see
text). The electron density is given in units of the average value p of p(z) over a period along the z axis in the bulk crystal. The sur-
face plane is located at z =0.0. Figure 3(a) refers to the free Na(001) crystal. Figures 3(b)—3(e) refer to the case where a new surface
layer with ionic concentration Zdf ——0.5, 0.7, 0.9, and 1.0, respectively, is built up on top of the surface layer of the free Na(001) crys-
tal.
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FIG. 4. Work function (in eV) of the Na(001) semi-infinite
crystal as a function of the concentration of the positive ions on
the surface plane. The concentration is expressed in terms of
the effective valency Z,ff given by Eq. (5) of text. These results
(solid circles) are obtained self-consistently using the zeroth-
order model approximation.

shows how the work function of Na(001) is changed as a
new lattice plane is built on top of its surface in the case
where no relaxation effects are present.

The self-consistency achieved in these calculations al-
lows us to to define the average value of the effective
single-electron potential far from the surface, inside the
crystal with an error of +0.05 eV. At self-consistency,
the charge neutrality is smaller than 0.5% for a total neg-
ative charge of three unit cells of each crystal. A small
numerical error may be associated with a slight difference
in the two bulk peaks (the two left peaks in the figures) of
the electron density profiles.

For the perfect Na(001) crystal our computed work
function is 3.08+ 0.05 eV which is slightly higher than
our previously' reported value of 3.03+0.05 eV. The cal-
culated value for the work function of the Na(001) crystal,
on the surface of which a complete lattice plane is built, is
3.12 eV. The slightly higher value of the work function
of the Na(001) crystal with one layer built in its surface
may be attributed either to numerical errors associated
with an increase in the integration regions in the cases
where a new plane is built, or to the small increase in the
peak values of the electron density profile in the bulk re-
gion. These errors, however, are within our +0.05 eV al-
lowance in the average value of the single-electron effec-
tive potential during the process to self-consistency. It
may be claimed therefore that our presented results indi-
cate quite accurately (and to our knowledge for the first
time) the changes in a surface (electronic) property which
take place during the process of building up a new lattice
plane on a metallic surface. The comparison of the elec-
tron density profiles of Figs. 3(a) and 3(e) which corre-

spond to a perfect Na(001) crystal and another (perfect)
Na(001) crystal, which resulted after having built up a
complete lattice plane on its surface, indicates the signifi-
cance of the model calculations which incorporate lattice
effects within the zeroth-order approximation explained
above.

The variation of the work function with surface com-
pleteness exhibits, as expected, similarities with the work-
function changes due to ionic chemisorption. ' A deep
minimum of 0.5 eV is observed when the surface plane
has ionic concentration 20—25% of that of a correspond-
ing complete lattice plane. As the ionic concentration of
the surface plane is increased the work function increases
to reach finally the value of a perfect surface. In the case
of ionic chemisorption, the variation of the work function
is associated with the changes in the electrostatic surface
dipole moment as the tot@1 charge distribution is changing
in the surface region. At a concentration of a full mono-
layer, the work function of the chemisorbed system usual-
ly reaches the value of the chemisorbed (metallic) species.

The above explanation for the variation of the work
function due to ionic chemisorption of an absorbate
(which is either of the same or different type from the
substrate) is based on the work-function definition (at
zero temperature)

p —V ff(z = + oo ) —( Vgff( GO ) ) E+ (6)

which defines the work function P (in the local single-
electron approximation) as the energy difference of an
electron with kinetic energy EF far from the surface in-
side the metal (at z= —oo) and of an electron at rest in
the vacuum region (at z =+ 00). In Eq. (6), V,rr(z)
= Vo(z) + V„,(z) and V,rr(z=+ co) is taken as the zero-
level energy.

However, when high concentrations of the adsorbates
are involved, it is observed that the electron density pro-
files shown in Figs. 3(a)—3(c) exhibit a small region next
to the tail region where the average electron density is
smaller than its corresponding value deeply inside the
crystal. This structure of the electron density profile is re-
flected in the single-electron potential. Thus it may be ar-
gued about the appropriate average value of the effective
potential inside the bulk crystal (at z= —oo) which must
be used with Eq. (6). This question raises the problem of
inadequacy of the definition (6) and/or its nonlocal gen-
eralization. This question becomes more clear in the
case of chemisorbed systems. These systems exhibit the
work function of the absorbate when a complete chem-
isorbed layer is formed on the surface of the substrate. It
should be more reasonable for these systems to use the
definition for the work function,

/=[Ex i+ V,rr(z =+ m)] Ex, —
where E~ denotes the total energy of a system of N elec-
trons. The definition of Eq. (7) is equivalent to the defini-
tion of Eq. (6). Equation (7), however, is more difficult to
use in numerical applications than Eq. (6). Thus Eq. (6) is
of extensive use in the work-function calculations.

We have also used Eq. (6) in the calculation of the work
function. Thus, it is expected, the value for the work
function we find (in the case where the surface plane is an
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incomplete lattice plane with ionic concentration more
than 50% (of that of a complete lattice plane) to appear
slightly greater than the ones which would have been
found using Eq. (7). For concentrations less than 50%
our reported values are expected to be consistent with
both equations (6) and (7). This expectation is justified
from the fact that our computed electron density profiles
show (for concentrations less than 50%) a small shoulder
(near the position of the chemisorbed plane) which dis-
turbs slightly the tail region of the profile.

In concluding, we note that the zeroth-order model ap-
proximation proved very useful in following the work-
function changes during the process of building up a new
lattice plane on top of the surface plane. The advantage
of the present approach is that it incorporates band-
structure effects in a direct way within its self-consistent
scheme. Relaxation effects may be easily incorporated.
Finally, this method, since it is the zeroth-order approxi-
mation of a general three-dimensional theory, can be easi-
ly extended so as to include the lattice effects completely.

~J. Appelbaum and D. R. Hamann, Phys. Rev. 8 6, 2166 (1972).
N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970}.
N. D. Lang and W. Kohn, Phys. Rev. 8 3, 1215 (1971).

4R. Monnier and J. P. Perdew, Phys. Rev. 8 17, 2595 (1978).
R. Monnier, J. P. Perdew, D. C. Langreth, and J. W. Wilkins,

Phys. Rev. 8 18, 656 (1978).
F. Jona, D. Sondericker, and P. M. Marcus, J. Phys. C 13,

L155 (1980).
7A. Bianconi and R. Z. Bachrach, Phys. Rev. Lett. 19, 104

(1979).
8K. P. Bohnen, Surf. Sci. 115, L96 (1982).
J. N. Andersen, H. B. Nielsen, L. Petersen, and D. L. Adams,
J. Phys. C 17, 173 (1984}.
R. N. Barnett, U. Landman, and C. L. Cleveland, Phys. Rev.
8 28, 1685 (1983).
K. F. Wojciechowski, Surf. Sci. 80, 253 (1979).

2J. P. Perdew, Phys. Rev. 8 25, 6291 (1982}.
N. D. Lang, Phys. Rev. B 4, 4234 (1971).

4A. Kiejna and K. F. Wojciechowski, Solid State Commun. 31,
857 (1979}.
K. P. Bohnen and S. C. Ying, Phys. Rev. 8 22, 1806 (1980).

A. N. Andriotis, Surf. Sci. 116, 501 {1982).
A. N. Andriotis and C. A. Nicolaides, Surf. Sci. 116, 513
(1982).
D. W. Jepsen and P. M. Marcus, in Computational Methods in
Band Theory, edited by P. M. Marcus, J. F. Janak, and A. R.
Williams (Plenum, New York, 1971).
P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864 (1964).

OA. N. Andriotis, Surf. Sci. 138, 269 (1984).
N. W. Ashcroft, Phys. Lett. 23, 48 (1966).

~ E. P. Wigner, Phys. Rev. 46, 1002 (1934).
3A. Kiejna, J. Phys. C 15, 4717 (1982).

~4A. Kiejna and K. F. Wojciechowski, J. Phys. C 16, 6883
(1983).
S. Anderson, J. B.Pendry, and P. M. Echenique, Surf. Sci. 65,
539 (1977).

~6C. A. Nicolaides and A. N. Andriotis, Solid State Commun.
44, 99 (1982).

~7C. A. Nicolaides and A. N. Andriotis, Int. J. Quantum Chem.
23, 561 (1983).
J. Bardeen, Phys. Rev. 49, 653 (1936).
F. K. Schulte, Z. Phys. 8 27, 303 (1977).


