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In view of a renewed interest in the theory of multiply excited resonances [M. Bylicki, Phys. Rev. A
39, 3316 (1989); 40, 1748 (1989); 41, 4093 (1990)) and the related comment by Chung [Phys. Rev. A 41,
4090 (1990)], I present a brief analysis of aspects of the theory for the identification and computation of
resonances in many-electron systems. As examples, I use the He 2s2p' P and D triply excited reso-
nances.

PACS number(s): 32.80.0z, 34.80.—i

I. HOLE-PROJECTION IN TERMS
OF ONE-PARTICLE ORTHOGONALITY CONSTRAINTS

The papers [1—9] that present and discuss the "saddle-
point technique" for the computation of atomic reso-
nances are characterized by three concepts, which justify
and qualify the computations. The first is the application
of a hole-projection operator to a trial wave function so
as to achieve convergence of the variational calculation
to the proper root. The second is the variation of a single
parameter of the hole orbital (hydrogenic function) so as
to maximize the total energy and then identify the saddle
point as the unshifted resonance position. The third is
the use of the solution thus obtained on the real axis in
combination with a new term representing the asymptot-
ic part of the resonance with complex coordinates so as
to obtain total widths [8].

The idea and first practical implementation of shell-
structure-dependent orthogonalities of trial functions of
arbitrary ¹lectron autoionizing states in variational cal-
culations were presented by the author [10,11], together
with other aspects of the theory of resonances including
the justification of doing state-specific Hartree-Fock (HF)
or multiconfiguration Hartree-Fock (MCHF) calculations
based on the concept of localization and its relation to
the shell structure, number of nodes, square integrability
of solutions, and the virial theorem. Use of one-electron
projection operators in terms of Hartree-Fock orbitals
implies the exclusion of undesirable X-electron lower
states and open channels while providing upper bounds
to third order in the total energy [12].

In Ref. [10] the orthogonality operators for the X-
electron problem were written as q, = 1 —

~
nl ) ( nl~, where

~nl ) is the core orbital on which orthogonality of the or-
bital or correlated trial functions is imposed. (See p. 2088
of Ref. [10].) Consider a three-electron correlated trial

wave function representing the square-integrable part 4o
of an autoionizing state, which we wish to optimize varia-
tionally subject to orthogonality constraints to the hydro-
genic 1s orbital. If for simplicity's sake we choose the
Schmidt orthogonalization to effect only one prespecified
spin orbital, then it follows from Ref. [10] that (A is the
antisymmetrizer)

0'u'= Aq), %'0(r], r2, r3)

= A (1—
~
ls ) ( ls~ )%'u(r &, r2, r 3 ), (1)

which is exactly the form used by Chung in the "hole-
projection method" [1—9].

As an example, consider the case of the He
ls2s2p 'P' resonance discussed by Chung [1]and Bylicki
[3]. Chung initially studied this state in Ref. [5]. On p.
1080 he states that for a ls2s2p ) function, the ls ortho-
gonality would apply to the 2s orbital. The resulting ex-
pression from Eq. (1) [his Eq. (5)] would be a function of
the form

i ls2s2p )+c~ lsls'2p ),
where the ls' spin orbital is diff'erent from the ls (see
below). It is clear that this wave-function form emerges
directly if the 2s orbital of a 1s2s2p configuration is
Schmidt orthogonalized to a 1s' function. Alternatively,
as it can be seen from the theory of Komninos,
Aspromallis, and Nicolaides [13] of the He ls2s2p P'
resonance, this form, albeit with 1s = 1s', can be obtained
directly from a state-specific rnulticonfigurational
Hartree-Fock calculation as

/=0. 995' ls2s2p ) —0.099' ls22p )

[Eq. (10) of Ref. [13]].
In the theory of Ref. [10], the hole projector is built in

terms of state-specific Hartree-Fock orbitals correspond-

46 690



COMMENTS 691

ing to the core of lower states. On the other hand, Chung
chooses the q; as a very simple function that is optimized
in the search for a saddle point of the eigenvalue. Let us
see the background and utility of this approach.

II. CHOICE OF ORBITAL PROJECTORS
AND THE MINIMUM-MAXIMUM THEOREM:

THK OPTIMAL CHOICE FOR LOCATING
THE EXACT POSITION OF A RESONANCE

Higher roots of Hamiltonian matrices of interacting
levels show saddle points [14]. This property was used by
Chung [4] in connection with q; to offer a "proof of a
theorem" (see the abstract and Sec. IV of Ref. [4]) for the
general many-electron problem of resonances. I agree
with Bylicki who pointed out [2,3] the serious weaknesses
of this *'proof. "Furthermore, I point out the fact that the
minimum-maximum (minimax) property of eigenvalues
[14] had already been studied in connection with the
theory of resonance states. Perkins [15] identified this
property as a possible practical tool for understanding
the stabilization of roots expected to represent reso-
nances. I quote excerpts from his abstract: "%e vary
constraint parameters so as to maximize the minimum
energy which is accessible subject to constraints. By
maximum-minimum property of eigen values, this is
equivalent to taking suitable root of unconstrained secu-
lar equation. .. ." "This explains 'stabilization of roots' in
Holoien's calculations, but the method will be most use-
ful for atoms with more than two electrons. "

Later, Dalgarno and Drake [16], in an article entitled
"An energy maximization method for autoionizing states"
proposed the saddle point of the lowest eigenvalue, deter-
mined with respect to one-electron radial nodal proper-
ties, as a computational element for the recognition of
resonant states. They demonstrated their idea on the He
2s2p 'P' states. Finally, Hahn [17] also discussed the
minimax theorem in relation to the "extremal properties
of resonance eigenvalues. "

As a heuristic tool, the minimax property of eigenval-
ues is indeed useful in the context of the proposals of Per-
kins [15],of Dalgarno and Drake [16],and of Hahn [17].
However, achieving a saddle point of a particular root as
a function of one parameter in the hole orbital does not
imply more rigor or a better accuracy than the case
where the hole orbital is fixed from the Hartree-Fock
shell structure [10,11,18]. The exact position of the reso-
nance is determined only when the effects of the open
channels are taken into account and this causes a shift of
the initial energy whose exact magnitude and sign depend
on the function spaces used. In order to underline this
point, I consider the following. Bylicki has recently re-
ported [19] results on the He 2s2p P resonance. He
compares two variational calculations, both carried out
with the orthogonality constraint achieved by the appli-
cation of system-dependent one-electron projection
operators [10]. In the first type, the ls orbital is fixed as
hydrogenic He . In the second type, the structure con-
cept is again used, only that now the orbital is optimized
by maximizing the eigenvalue as a function of a nonlinear
parameter in the 1s orbital. Bylicki obtained an energy of

57.420 eV with the optimized hole projector and 57.395
eV with the unoptimized one. These results suggest that,
once orthogonality to the physically important orbital
has been imposed [10], the approximation of optimizing
the one-parameter hole orbital according to the minimax
theorem does not add any physically significant quantita-
tive information. In other words, the association of the
He 2s2p I' resonance with the energy 57.420 eV rather
than with 57.395 eV is an arbitrary choice. (The
difference of 0.025 eV is the same as the energy shift 5,
which was computed [20] to be 0.027 eV.)

An important result would indeed be the one stating
that, given a trial square-integrable %0 representing a
many-electron resonance, at the saddle of the correspond-
ing eigenvalue of a variational calculation the energy shift
due to the interaction with the continuum is minimized.
However, such a proof has not yet been produced.

On the other hand, if the failure to obtain a saddle in a
particular implementation of the minimax theorem im-
plied beyond any doubt the nonexistence of an autoioniz-
ing state, as in Chung's conclusion [7,9] of the absence of
the He D resonance, then the criterion of hole-orbital
optimization in the determination of resonance energies
and wave functions would indeed be necessary. However,
the new results [20] on He 2s2p D, verify the existence
of this resonant state, suggesting that Chung's interpreta-
tion of his results is unfounded.

III. CASE OF THE He 2s2p D RESONANCE
AND THE STATE-SPECIFIC THEORY OF RESONANCES

The story of the 2s2p D resonance as seen through
the Chung writings [7,9] is as follows. In the 1960s and
early 1970s, experimentalists [21,22] and theoreticians
[10,23—27] alike agreed on the existence of the He
2s2p D resonance around 58.3 eV above the He ground
state. Chung [7] and Chung and Davis [9] disputed the
correctness of this work and claimed that this resonance
does not exist. The arguments were based on their un-

converged, saddle-point-technique calculations and on a
critical appraisal of the previous theoretical work. For
example, in Ref. [9], p. 94, they conclude, "This result
does not corroborate the previous assignment by Fano
and Cooper. %hat has been seen in the experiment could
be the result of a postcollision interaction effect."

On discussing the particularities of this state, Chung
[7] stressed that "one must exclude the [(s,s) 'Sd) and

[(p,p) 'Sd] angular terms in the variational calculation, "
otherwise it will either collapse to the He 2s 'S energy or
it will not be very meaningful. Then he pointed to the
characteristics of the Nicolaides wave function [10], as
quoted by Schulz [22], p. 406, which contained 83%%uo of
HF 2s2p and 17%%uo from the correlation vectors, witQ the
main contribution coming from 2s nd and 2p nd
configurations. Thus he concluded that these early calcu-
lations did not offer "conclusive evidence for the ex-
istence of this Feshbach resonance since the inclusion of
these terms may lead to erroneous results. "

The answer to these remarks is based on the very
essence of the nature of the state-specific theory (SST) of
autoionizing states [10,11,18,28 —31]. By the end of the
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1960s, the many-electron problem for nonstationary
states embedded in the continuous spectrum presented
conceptual and computational problems beyond those
characterizing the ordinary ground state. The SST for
such excited states has been formulated so as to be able to
treat the many-electron problem for nonstationary states
in the continuous spectrum, regardless of the number of
electrons and of the features of the multichannel continu-
um. Furthermore, as regards the systematic computa-
tion, the foundations of the theory are practical. This
feature is essential. For although when dealing with
model potentials supporting nonstationary states it is pos-
sible to carry out experimental computations (e.g. , vary
parameters of interaction strength or of box size) in order
to see some of the wave-function characteristics, for real
polyelectronic atoms and molecules this luxury is prohi-
bitive.

Briefly, the SST puts emphasis on the dynamical locali-
zation that must characterize all X-electron autoionizing
states regardless of their mode of excitation or decay, and
on the recognition that this can best be brought out from
an MCHF (or similar) calculation of the important
zeroth-order near-degeneracy effects. Since MCHF
theory is variational, the justification for its implementa-
tion to the calculation of states embedded in the continu-
um was the shell-structure constraint of orthogonality to
core orbitals, the proper orbital nodal structure, and the
satisfaction of the virial theorem, a property which is in-
trinsic to converged HF or MCHF solutions as well as to
localized systems. Thus the theory associates MCHF
zerotk-order solutions with physical, quasilocalized states
in the continuous spectrum.

A converged MCHF solution means that at the partic-
ular energy of the continuous spectrum this solution has
the largest coefficient in the full expansion of the wave
function. The correlating orbitals describe state-specific
localized correlations and not open channels. For exam-

ple, in the case of the 2s2p D state the MCHF 3d bound
orbital of the 2s 3d correlating configuration is square in-

tegrable and nodeless and does not resemble the cd
scattering functions. Yet, since this 3d function is ob-
tained independently of the cd channel and is not made
orthogona1 to it, it contains contributions from the con-
tinuous spectrum, just as the correlating bound orbitals
of ground states do. The net overa11 effect is that the
2s 3d eigenvalue is above the 2s2p solution, which cor-
responds to the lowest root. Thus, in the state-specific
variational scheme, whether using an analytic HF 2s2p
solution and radially compact virtual orbitals of d sym-

metry [10] or the numerical MCHF solution as in this
work, the optimized 2s 3d and 2p 3d configurations sim-

ply contribute to the localized 4'0.
This can be further understood from the arguments of

Ref. [11] (pp. 460—465) and of Ref. [18(b)], p. 109. That
is, the correlating virtual orbitals, such as the 3d in the
He case, pick up just a part of the continuous spectrum,
which does not destroy the square integrability of the
zeroth-order function. Of course, the remaining physi-
cally important portion of the continuum must be com-
puted via an appropriate theory [18,28 —31].

In order to demonstrate the above, and hence the ex-

istenee of the D resonance, a numerical MCHF calcula-
tion with all the n =2 and 3 configurations was carried
out [20] while keeping the MCHF 2s and 3s orbitals or-
thogonal to the 1s. The converged solution has a weight
of 86% for the 2s2p eonfiguration, in agreement with
my previous calculation [10],which gave 83%.

%(p) =a (8)PO(p)+b (8)X„(p), p=re'
with

& +0(p) l~(p) lq'0(p) &
=

& +,I&l+o & =E, ,

(3)

(4)

and related simplifications due to the back rotation for
the S-particle off-diagonal matrix elements, and

&+lair& =&,+~——' I . (5)

4'o is the square-integrable projection on the rea1 axis
containing the localized components [see Eqs. (1)—(4) of
Ref. [10]] and X„(or, the basis set u„) represents the
asymptotic component carrying the information on the
energy shift 6 and width I .

In their "new procedure" (see abstract of Ref. [8]),
Chung and Davis also employ a fixed Eo from a calcula-
tion of %0 on the real axis and obtain 6 and I upon the
addition of new functions, [see my Eqs. (2) and (3)], which

yield this information via the diagonalization of the non-
Hermitian Hamiltonian matrix. In their conclusion (Ref.
[8], p. 3282), Chung and Davis state how "their" method
differs from that of Junker and Huang. On the other
hand, they fail to mention the fact that they have simply
carried out an application of the theory of Refs.
[11,28,31].

The reader can easily make comparisons of the pub-
lished work. However, I think that it is immediately
helpful if I quote from the 1978 Nieolaides and Beck pa-

IV. EXTENSION TO THE COMPLEX ENERGY PLANE

The third item is the "saddle-point complex-rotation
method" [8]. The essence of this method is that once you
have obtained the real energy Eo and wave function +0
representing the square-integrable part of the resonance,
then by adding terms with complex coordinates
representing the asymptotic part of the resonance, a prac-
tical approach to the computation of widths is achieved.
This is exactly the theory presented earlier in Refs.
[11,28 —31] and since applied to inner-hole states such as
Ne+ is2s 2p S [30] as well as to doubly excited states
such as He 2s2p 'P' [28] and H ns 'S, n =3—7 [29].

Our theory emphasized the relation between asymptot-
ic boundary conditions and eigenvalues of the fu11 or of
effective Hamiltonians, the significance of separating the
one- or the 5-particle function spaces according to the
physics of decay, and the concomitant simplification of
the many-body problem based on matrix-element invari-
ances upon rotation. In particular, the state-specific,
square-integrable resonance function is written, in the
context of different discussions, as

4=4o+ ga„u„, (2)
n

where u„ is a set of complex functions for the asymptotic
region (Eq. 7.7 of Ref. [11])or, as
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per [11]and from the 1982 Chung and Davis paper [8].
We stated (Ref. [11],p. 506) "I.e., an arbitrarily chosen
set of square-integrable functions may be a good repre-
sentation of the real axis, but in the 8 plane they need
not. " Chung and Davis in justifying "their" approach,
state (Ref. [8], p. 3279), "The nonlinear parameters in 4l
which are most suitable for the solution of H (R&,Q&)
may not be suitable for that of H(R&e', 0&)."

An application [20] of our approach to the computa-
tion of the width of the aforementioned He 2s2p P
resonance through the diagonalization of a small, 11X 11
complex matrix, yields 6=0.027 eV and I =0.015 eV.

V. CONCLUSION

In view of the recent publications [1,3] on aspects of
the calculation of the square-integrable part of reso-
nances and the statement [1] as to the origin of the
"saddle-point technique, " I have brought to the reader' s
attention the fact that all the important elements of this
approach, one-electron —core orthogonalities, identi-
fication of resonances with iigenvalue saddles, two-step
computation of complex eigenvalues via use of complex
scaling etc. , were in the literature [10,11,15—
18,28 —31] long before 1979 [4] or 1982 [8].

Furthermore, by reviewing and emphasizing aspects of

the state-specific approach to resonances, I have argued
that the He 2s2p D resonance is real, regardless of
whether it is above or below the He 2s2p P' threshold
[20]. The fundamental reason for the reality of this reso-
nance is the fact that well-converged self-consistent
multiconfigurational calculations establish its localiza-
tion. Such a wave function contains the important long-
range correlations and dynamical screening effects while
satisfying the virial theorem and the correct zeroth-order
nodal structure and boundary conditions.

For many-electron systems, the one-electron-core
orthogonality constraints [10] may be implemented
within an electronic-structure-dependent theory
[10,11,13,18] or by optimizing a parametrized one-
electron function while searching for the saddle of the ei-
genvalue [15,16,1—9]. Perkins's proposal [15] to associ-
ate the variationally obtained saddles of certain eigenval-
ues of the Hamiltonian matrix with resonance positions,
is an important heuristic tool for computational methods
that depend on configuration-interaction expansions with
arbitrary square-integrable basis sets [16,1—9]. However,
since there is no way of predicting quantitatively the
effect of the open channels, given a very accurate square-
integrable representation of a resonance, it is still un-
known whether the exact resonance position is closer to
the saddle or not.
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