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We have decided to study the electronic contribution ¥*
to the total second hyperpolarizability ¥ of 1-C,;H,NO, for
the following reasons:

(i) It has been argued that 7° of 1-C,,;H,NO, is expected
to be small and thus its contribution to ¥ can be neglected.’
In many cases, including C;H;NO.,, this is a good approxi-
mation. However an examination of nine monosubstituted
benzene derivatives—including the following substituents:
F, Cl, Br, I, NO, CN, NH, N(CH,), and OH—has shown
that y* of the derivative is larger than y* of the parent {unsub-
stituted) molecule.? It should also be noted that y* of the
parent (unsubstituted) molecule.? It should also be noted
that * of C,,Hy (naphthalene) is 61 900 a.u. while ¥ (at
110 °C) for 1-C,;H,NO, is 222 000 a.u.’

(ii) There are few experimental data available for y* of
organic molecules.”® Furthermore the experimental deter-
mination is associated with various uncertainties of which
the most significant is the choice of the appropriate local
field model.* However, quantum mechanical computations
of isolated systems may be useful for the establishment of a
reliable and, if possible, generally applicable local field mod-
el.

(iii) Substituent effects on the electric properties of mul-
tiring aromatic systems have received very little attention.
The most notable case is Bethea’s study.!

For the computations reported here the CHF-PT-EB-
CNDO procedure has been employed.5® This method has
been demonstrated to succesfully predict the polarizabilities
and hyperpolarizabilities of some alkanes, polyenes, and
aromatics.*™® The following basis set has been used for the
calculations herein:

C: 25(1.325), 2p(1.325),

H: 15(0.8), 25(0.4), 2p(0.4),

N: 25(1.95), 2p(1.95),

O: 25(2.275), 2p(2.275).

The exponents for C and H allowed a reasonable de-
scription for the charge polarization of some unsaturated
systems’ while the exponents, for N and O, are given by the
Slater rules.’

The suitability of this basis for the proposed problem
has been checked by using C;H;NO, as a test case. The rea-
sonably accurate description of 4, @, and ¥ for C;H;NO,
denotes that the essential characteristics of both the unper-
turbed and the perturbed charge cloud are appropriately
considered (Table I). It is also observed that the values of the
dipole moment for 1-C,,H,NO, and 2-C,;H,NO, are in re-
markably good agreement with the experimental values (Ta-
ble II). This is a further indication that the wave function
provides a balanced description of the charge cloud.

It is noted that the ratio
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TABLE 1. The dipole moment {in D), polarizability, and hyperpolarizabi-
lity {in a.u.} of C;qH,NO,.*

Property® CHF-PT-EB-CNDO  Experiment
P 4.1 41

a 91.3 87.0¢

¥ 49 400 46 000°

*Conversion factors of a.u. to e.s.u. and SI are given in (Ref. 6-8).
®The geometry of CcH;NO, is from (Ref. 13).

“Reference 11.

4 Reference 10.

“Reference 2.

has the values 0.15,% 0.11, and 0.06° (this value is deter-
mined by employing a bond additivity estimate for y*) for
CcHsNO,, while for 1-C,,H,NO, the values are 0.55 (383 K)
and 0.48 (355 K) (Table II, and Ref. 1). That is, the present
computations show that 7* of 1-C,,H,NO, makes quite an
essential contribution to its total hyperpolarizability.

An interesting consequence of this 3 value is the
change in the value of 8 which will be only half (approxi-
mately) compared to that which has been reported.! Thus
from the equation’

- uB

Y=v+ KT
where K is Boltzmann’s constant and 7" the absolute tem-
perature, we find 8= 116 a.u. for xy = 4.1 D! and 8 =139
a.u. for x = 3.3 D, using the experimental ¥ (T = 355 K).

It is known that straightforward comparison of theo-
retical S values with experimental ones does not make sense,
due to the pronounced sensitivity of this nonlinearity on en-
vironmental interactions.!®

However, the reported B values contain the local field
effects (since they are determined employing the experimen-
tal ) and thus they are directly comparable with an experi-
mentally determined one.

The hyperpolarizability ¥ being a very sensitive prop-
erty, can be used to probe the effect of ring B ** on the elec-
tron cloud of the remaining nitro substituted fragment. It is,
thus, observed that ring B has a considerable effect on the

TABLE II. The dipole moments (in D), the polarizabilities and the elec-
tronic contribution to the second hyperpolarizabilities of 1-C,,H,NO, and
2-C,,H,NO, in a.u.

Molecule® 7 a Ve
1-C,,H,NO, 3.3,3.3%,4.1° 164 122 000
2-C,(H,NO, 4.6, 4.4° 167 129 000

*The geometry of 1-C,(H,NQ, and 2-C,;H,NQ, is from Ref. 13.
b Reference 14.
“Reference 1.
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perturbed (by the uniform electric field) charge cloud of the
other fragment. The remarkable difference between »* of
Ce¢H,NO, and 1-C,,H,NO, (Tables I and II}—much larger
than the difference between ¥* of C;H, and C, Hg which is
~35000 a.un."#1%—indicates that the induced moment in
ring B increases the charge transfered from ring 4 to the
nitro group. The results of Table II show that remarks simi-
lar to that for 4 also apply to a.

Finally, the comparison of the properties of 1-
C,oH,NO, and 2-C,;H,NO, demonstrates that isomerism
has a small effect on the magnitude of 7 and an even smaller
effect on a. The difference in sensitivity between a and ¥ can
be understood by perturbation theory arguments according
to which 9 is proportional to the inverse of the third power
of state energy differences while ¢ is inversely proportional
to the first.'

We would like to thank Dr. Oudar and Dr. Chemla for
some useful correspondence.
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On the spherical representation of the polarizability tensor
of an ensemble of interacting molecules within the DID model.

Comparison with previous resulits
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The electric polarizability of a system of N correlated
molecules is not restricted to the simple sum of the polariza-
bilities of all N molecules. Their mutual interactions give rise
to changes in the polarizational properties of the system as a
whole.! The interaction-induced contribution 4 A to the po-
larizability tensor within the dipole-induced dipole (DID)
model has been widely and successfully applied to the de-
scription of absorption and scattering of electromagnetic ra-
diation®"® as well as other processes in which the interactions
of atoms and molecules are significant. In the lowest-order
DID, the contribution 4 A for an N-molecular sample has

the form (in Cartesian representation)'~:
N N
AA=3Y ‘o T(r,)a, (1)
T jEi

where ‘a denotes the ith molecule’s intrinsic polarizability
tensor and T(r,) the tensor of interaction of two electric di-
poles distant by r;;.

The spherical tensor representation of 4 A has been giv-
en in several recently published papers.>~” However, the for-
mulas proposed there are mutually divergent. Moreover, in
some cases their analytical forms have been derived inconsis-
tently or even incorrectly.

In our opinion, because of the generally accepted im-
portance and applicability of the DID model*** (e.g., nu-
merical simulation of a fluid of interacting molecules), the
spherical representation of 4 A should be reanalyzed.
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The/,A (|4 |<!)component of the spherical tensor 4 A")
is obtained by direct transformation of Eq. (1) into spherical
basis

() _ g1/2 ud 1y +h 11”’
A4 =57 % 3 (=) L L k]

i L,k 111
(1))
[? B }{"a""e(T"’(r.-j)sfa"z’)""}h”. (2a)

This natural automatic coupling scheme of the tensors is
inconvenient when separation of the translational and orien-
tational degrees of freedom is required. However, by some
recoupling algebra, we obtain from Eq. (2a):
. I12H
449 =52 D Z (=1 H L LH11,
ij 1,L,H

(i#h 111,

XTry) @ (o o)), (2b)
In the above expressions

abc

{Zb; and { def
¢ ghi

denote 6j and 9j coefficients, respectively, and
[ab..f] = {(2a + 1)2b + 1)..2f + 1)}~

The tensors ‘a’’, T? (r;), and ‘' are the spherical equiv-
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