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Quantum-mechanical ground state of dysprosium trichloride hexahydrate
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This paper deals with the quantum-mechanical ground state of dysprosium tricnloride hexahy-

drate (DyC13 6H20). The method used is that presented in the preceding companion paper. A dis-

cussion of the assumptions o e mef th thod for the extreme case of an Ising-like dipolar Hamiltonian
is made, and the case of slightly modified correlation assumptions is examined. The quantum-

mechanical groun state o y 3 q id f D Cl 6H 0 is found to be ferromagnetic with a strong magnetization
r —0 340 K er ram ion of Dy'+component along the magnetic z axis, and corresponding energy —0.340 K per gram ion of Dy

The results found agree well with the existing experimental information about DyC13 6H20 and

with the results of the semiclassical Luttinger-Tisza treatment.

I. INTRODUCTION

In this paper the method developed in the preceding pa-
per' for the calculation of the ground state of dipolar
crystals with two magnetic ions per unit cell is applied on
the paramagnetic crystal of DyC13 6H20 (dysprosium tri-
chloride hexahydrate).

The paramagnetic behavior of DyC13 6H20 is due to
the dipole-dipole interaction between Dy + ions. Thus, in
dealing with the magnetic properties of DyC13 6H20, one
has to consider only the dysprosium ions. The spin (total

3+ 23angular momentum) of Dy in the crystal field is —, . '

The two dysprosium ions in the crystallographic unit cell
are magnetically equivalent.

The crystal structure of DyC13 6H20 is monoclinic,
with point group C2i, and space group P2/rn The .lat-
tice of the dysprosium ions is shown in Fig. 1. 8 is the

4monoclinic symmetry axis. The cell parameters are

A =9.61 A, 8=6.49 A, C=7.87 A,
and

P=93'40' .

The position vector specifying the site of the one dysprosi-
um ion relative to the other in the unit cell, is

1d= —,a)+O. 3042a2+ —,a3 .

In the following we shall use as a coordinate system the

B=y

FIG. 1. Crystal structure of DyC13 6H20. Only the magnetic
ions Dy + are indicated. Two monoclinic unit cells are shown,
each containing two Dy + ions.

3+FIG. 2. The principal axes x,y, z of the g tensor of the Dy
ions and the crystallographic axes A, B,C of the DyC13-6H20
crystal.
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x.~ P '

X, = 23

P 93.67'

FIG. 3. The crystallographic plane AC of DyCl3 6820 and
the magnetic axes z and x. The magnetic axis y coincides with

the crystallographic axis 8 and is vertical to the plane of the fig-
llre.

system of the magnetic axes, i.e., the principal axes of the

g tensor of the dysprosium ions. The magnetic y axis
coincides with the crystallographic axis B, but the other
magnetic axes are not simply related to the crystal axes. '

The two systems of axes are presented in Figs. 2 and 3.
We used the g values of Ref. 3:

g~~
——g, =16.52 and gj ——1.76.

As the distances between the magnetic ions are large, and
the 4f orbitals which give rise to their spin are localized,
exchange interactions are negligible.

The experimental results of Lagendijk and Huiskamp
suggest that DyC13 6H20 is ferromagnetic at tempera-
tures below T, =0.289 K. The ground-state energy ob-
tained from their specific-heat data with an exponential
extrapolation is estimated to be between —0.32 K (Ref.
2) and —0.35 K (Ref. 5) per gram ion of Dy +.

Lagendijk and co-workers2' as well as Niemeijer and

Blote calculated the ground state of DyC13 6H20, using
the classical method of Luttinger and Tisza. They de-
rived a ferromagnetic ground state with classical magnetic
moments oriented along the magnetic z axis, and a
ground-state energy of —0.338 K per gram ion of Dy +.

ErC13.6H20 and GdC13 ~ 6H20 have similar crystal
structures to DyC13 6H20. The classical ground state of
ErC13 6H20 was found by Felsteiner' to be ferromagnetic.
This is not the case with the ground state of GdC13'6HQO
which, according to Misra and Felsteiner, is antifer-
romagnetic. However, in this crystal the exchange in-
teractions are not negligible.

Section II of this paper deals with the Hamiltonian of
the magnetic ions of DyC13 6H2O. In Sec. III we com-
ment on the assumptions of the Niemeijer-Meijer method
for the extreme case of an Ising-like dipolar Hamiltonian.
In Sec. IV we present our results for the ground state of
DyC13 6H20 and their relation to the experimental data.

For the sake of completeness, we give in Table I the lat-
tice sums in the coordinate system of the magnetic axes,
derived from the corresponding calculations of Niemeijer
and Blote.

II. THE EFFECTIVE HAMILTON
OF DYSPROSIUM IONS

The Hamiltonian of the system of dysprosium ions of
the dipolar crystal DyCl& 6HqO is the typical dipole-
dipole interaction Hamiltonian

(V,; R,q)(izq R,J )

)R

The hypotheses:

TABLE I. The lattice sums A'i'{R), a,P=x,y, z, REC, in units of K per gram ion of Dy'+, for the choice I =I ~ in the coordi-
nate system of the magnetic axes.

AP'{R)

al
a2

aI +a2
a3

a)+a3
a2+a3

aI+a2+a3
d

al+ d
a2+d

aI+a2+d
a3+d

aI+a3+ d
a2+a3+d

a1+ay+ a3+d

—0.000 19
—0.0001 54

0.001 41
—0.00060

0.00005
—0.000 39

0.00005
—0.00029
—0.001 30

0.000 31
—0.000 50

0.000 18
0.00031

—0.001 30
0.000 18

—0.000 50

—0.000 52
0.00051

—0.003 72
—0.00045

0.00020
0.00009

—0.000 19
—0.00008

0.000 35
0.00030

—0.00042
—0.000 35

0.000 30
0.000 35

—0.000 35
—0.00042

—0.005 50
0.022 76
0.134 85
0.024 97

—0.090 21
—0.041 72
—0.05644
—0.034 36

0.015 57
—0.121 54

0.013 58
—0.053 53
—0.121 54

0.015 57
—0.053 53

0.013 58

0
0
0
0
0
0
0
0

—0.00066
0.000 13
0.00047

—0.000 10
—0.000 13

0.000 66
0.000 10

—0.00047

—0.000 85
—0.01128
—0.000 78
—0.005 52

0.005 45
0.001 59
0.003 58
0.001 28
0.008 81

—0.004 82
0.003 83

—0.002 34
—0.004 82

0.008 81
—0.002 34

0.003 83

0
0
0
0
0
0
0
0

0.003 13
0.005 19
—0.002 25
—0.003 91
—0.005 19
—0.003 13
0.003 91
0.002 25
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where a,P=x,y, z, R,R'CC, and t, t'Pr' (see Ref. 1),
lead to the effective eight-ion cluster Hamiltonian H:

H =H'+Hg,
H'= —,

' g Q g A ~(R—R')S (R)s~(R'), (6)
a,P=x,y, z REC R'EC

H, =-,' g A ~ g (eiS (R)ie&Si'(R)
a,P=x,y, z REC

A-(0),
a =%,y)s

where the quantities A ~(R) are defined in Ref. 1. Be-
cause of the nonlinearity of Hs, we find the eigenvalues
and eigenstates of the linear operator H', and treat Hs by
using perturbation theory (see Ref. 1).

Since the classical solution for the ground state of
DyC13 6H30 is ferromagnetic, by the argument presented
in Ref. 1, we can choose any axis as the direction of single
periodicity. Thus, we made three different choices of
periodicity specified by (A), (8), and (C), which indicate
the crystallographic axis chosen as the direction of single
periodicity in each case. The subgroup I" of lattice
translations' we consider in each case is as follows: in
case (A),

I"=I i
——(t=niui+2nia2+2n3a3),

in case (8),

I"=I 2 ——(t=2n iai+n2a2+2n3a3},

and in case (C),

r = r3 —(t —2n ilRi+2n2a2+n3cÃ3) .

The coefficients A ~(R) needed in each case, can be
found from the lattice sums of Table I by addition, e.g. , in
case (A):

A (R)=A (R)+A,'(R+a, ) .

Due to the strong anisotropy g, =g~i &~gz, and the ab-
sence of exchange interactions, we expect the interactions
between the dysprosium ions to be Ising-like. Hence the
dipolar Hamiltonian (1) of DyC13 6H20 can be approxi-
mated by the Ising Hamiltonian:

,
' g J-(R-, —R, )S'(R, )S'(R, ),

where

g (R)= ' ' i '
' '

R. 0

The linear operator H' that we have to diagonalize, can
also be approximated by the Ising operator:

III. DISCUSSION ON THE ASSUMPTIONS

If we apply the quantum-mechanical method developed
in the preceding paper, under the Niemeijer-Meijer corre-
lation assumptions, i.e., (2), (3), and (4), we will find
among the 256 solutions 14 eigenstates of H,' of the fol-
lowing form:

I++,(k'-)&= g ix" (s )&+s g ix" (s )&
2 REC REC

(10a)

I+„:+«')&= P &" (s )& —SH I&" (s»
REC ReC

with k-&ko+, where S is the spin-flip operator

S= g [S+(R)+S-(R)].
REC

( lob)

The state
I
XR (SR) & is the spin state of the ion at site R

of the basic cell. It is an eigenstate of S'(R) with eigen-
value —,

' times the value of the k+-irreducible representa-
tion for the lattice translation or inversion transforming
site 0 to site R. We would like to mention again that
these representations are one dimensional.

States I4 +(k+-)& and
I

4&+(k+-)& are both antifer-

romagnetic:

(e+,(k-')
I

s'(R)
I
e+,(k-) &

=(4 (k+-}
I

S'(R}
I
4 (k+-) &=0 . (12)

States
I
4„++(k-)& and

I
4„+(k-)& are degenerate

eigenstates of the operator H,
'

with eigenvalue A.'„+, equal

to the energy of the corresponding classical solution

I g&+ &. These states are exact eigenstates of the nonlinear

Hamiltonian:

H, =H,' —A (0)+ —,'A (0) g (4 IS'(R)
I

+&S'(R)
REC

(13)

with eigenvalue equal to A,'„+—A (0). However, they

have the disadvantage that they do not satisfy conditions

Hg ———, Q g A (R—R')S'(R)S'(R') .
RECR'EC

This is the simplest possible case to which we can apply
the Niemeijer-Meijer quantum method, " so we were able
to test our assumptions [Eqs. (2), (3), and (4)] for this spe-
cial case.
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(3) and (4) simultaneously (see proof in Appendix A), i.e.,
they are not acceptable solutions. The physical conclusion
is that it is not possible to have the spin value at site R
not correlated to that of its next-nearest neighbor, while
there is full correlation with its nearest neighbors.

It is to be noted that the
i
4++(k-+)) and

i
@&+(k-)}

are degenerate states of the linear operator 8,'. The state
derived by their sum is a product of single-particle states.
This state, which does not belong to a particular irrep of
our group, satisfies the conditions (2), (3), and (4). This is
a very welcome state as it corresponds to a classical spin
state, and is an exact eigenstate of the nonlinear operator
H, [see Eq. (13)t with an eigenvalue that is the same as
that of H,'.

Since the assumption, that spins at lattice sites differing
by a sublattice translation are uncorrelated, does not
derive from any fundamental principle, we thought of
searching for self-consistent solutions when other correla-
tion assumptions are made. Thus we tried the case that
the spins at R and R+t are fully correlated. Then in-
stead of condition (3) we have the following condition:

(e
i
S'(R+t)S'(R+t')

i
e) =-,' . (14)

Conditions (2), (4), and (14) are derivable from wave func-
tions of the following form (see Appendix 8):

256

i
~) =X II II i~'(s" ». (15)

1=1 t&I"R&c

where the coefficients ci obey the normalization condition

i i c& i
=1 and the state iXR(SR+, )) is the one-spin

state of the ion at R+ t, depends only on R, and is an
eigenstate of S'(R+t) with eigenvalue + —,'. These wave

functions allow nonzero correlation between any spin pair.
The resulting equation for the extrema of (4

i A, i
4 }

is 0,' i
'p) =E,

i
ip). The resulting 8,' is the same as that

defined by Eq. (9) (see Appendix 8). Thus no nonlinear
term appears.

A11 resulting solutions are consistent with the assump-
tions (2), (4), and (14). In addition, the states correspond-
ing to the extrema are single products of one-spin states,
while because of the degeneracies, linear combinations of
such states appear as solutions.

IV. RESULTS

We performed our calculations for all cases (A), (8),
and (C) (see Sec. II). Both sets of correlation assumptions
were used for each case.

The two sets of correlation assumptions yield almost
the same approximate eigenstates, i.e., the eigenstates of
the linear operator H' [see Eq. (6)j. The only difference is
that, when we assume condition (3), we substitute the
eigenstates of the form (10) by their linear combinations,
although the latter do not belong to a particular irrep of
the translation group. As is well known, nonlinear effec-
tive Hamiltonians possess eigenstates which do not belong
to a single irrep of the invariance group of the exact Ham-
iltonian.

We also found almost the same energy values with the
two sets of correlation assumptions for the lowest-energy
solutions. The correction term for the nonlinear Hamil-
tonian was very small and positive for the solutions com-
patible with the correlation assumptions (see Table II).
This agreement is due to the fact that the dipolar Hamil-
tonian of DyCli 6HzO is almost an Ising Hamiltonian.

According to our results for all three cases of periodici-
ty conditions (A), (8), and (C), the dipolar crystal
DyCli 6HiO is ferromagnetic in its ground state, with
strong magnetization component along the magnetic z
axis. The ground state is found doubly degenerate, be-

longing to the identity (ko ) irrep, with energy —0.340 K
per gram ion of Dy +. The semiclassical treatment gives
the value —0.338 K. Thus, as in the case of cerium mag-
nesium nitrate (CMN), the semiclassical treatment gives
quick and accurate results when no magnetic field is
present. "

Contrary to the ground state, the next lower-energy
state is found to be different. It is an antiferromagnetic,
doubly degenerate solution, with energy —0.319 K in ease
(A), —0.317 K in case (C), and —0.261 K in case (8).

Our theoretical calculations agree with the experimental
results of Lagendijk and Huiskamp, who find a ferromag-
netic ground state with energy in the range —0.32 K to
—0.35 K per gram ion. '

TABLE II. The two lowest energy states calculated for cases {A), {8),and {C). The correction ener-

gies when condition {3)is assumed are indicated by EE. The energy units are K per gram ion of Dy +.
By 0 we indicate the ground state, which in all cases is found to be ferromagnetic, doubly degenerate,
and transforming according to the identity irreducible representations. The next lower energy state is

indicated by 1. It is antiferromagnetic, doubly degenerate, and is a linear combination of k —states indi-

cated in parentheses in the third column.

Case
Irreducible

representations

k+

{ko+, k2+ )

k+

{k.-,k;)

—0.339 35
—0.318 74

—0.34006
—0.260 57

+ 0.002 69
+ 0.001 70

+ 0.003 04
+ 0.003 37

ii}g// EI
(%%uo)

0.8
0.5

0.9
1.3

+

{j+ k+)
—0.337 54
—0.31651

+ 0.00082
+ 0.00045

0.2
0.1
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APPENDIX A

We shall show that a cluster state
I
4) as specified by

Eq. (10) gives correlations not compatible with a total
crystal state

I

'0) obeying the conditions given by Eqs. (3)
and (4).

Let
I
0') be a total crystal state, i.e., a state describing

all magnetic ions of the crystal, that corresponds to the
above cluster state I4p). This correspondence specifies
that states

I
4I~) and

I
ql) give the same expectation

values of the spin operators and the same spin correla-
tions, in the cluster, and

I
4) gives the expectation values

of the spins and spin correlations for magnetic ions in dif-
ferent clusters, as specified by conditions (2), (3), and (4).
Consequently,

I

qi) gives the same energy per cluster, as
the expectation value of the effective Hamiltonian [see
Eqs. (5), (6), and (7)] for the cluster state

I
4').

Then, according to conditions (3) and (4), state
I

4') has
the following properties [see Eqs. (10) and (12)]:

&4 IS'(R+t)s'(R+t')
I

P) =0, t@t'

&4 Is'(R+t)s'(R'+t') I% &=+—,', R@R',
(Al)

(A2)

tCl 'RCC
(A6)

where ILK+i(Sa+, )) is an eigenstate of S'(R+t) with
eigenvalue pa+, ——+ —,', as the

I %i) form a complete
orthonormal set of states for the crystal.

Equation (A4) implies that, for all l with ci&0,
l l l l

PaPa, =PaPa, =+ 4 .

Hence, for all l with ci&0,
l l

Pa, =Pa,

(A7)

(AS)

which contradicts Eq. (A3).
Thus, one deduces that relations (Al) and (A2) cannot

hold simultaneously. Then, according to the hypotheses
(3) and (4), the cluster states

I
4&&+(k-) ) and

I
4„+(It+-))

[see Eq. (10)] correspond to no total crystal state and
therefore they should be rejected.

APPENDIX 8

In this appendix we shall determine the form of the
solutions and derive the cluster equations when condition
(3) is substituted by condition (14). We shall first prove
that a total crystal state I'll) that fulfills the condition
given by Eq. (14) is always a state of the form (15). The

where R,R'Ec and t, t'C I".
The spin correlations between three particular sites

Ra=0, R, & C, and R2& I", given by state
I
0'), are

& O'
I

s'(Ro)s'(R, )
I
4) =0, (A3)

&O'
I

s'(Ro)s'(R, )
I
e& = &4

I
s'(R, )s'(R, )

I

4'& =+ —,
' .

(A4)

Any total crystal state
I
4) has the form

I
IJ R+t=PR+t' (B2)

for every l with ci&0, REC, and t, t'E I". Hence pa+,
does not depend on t. As IXa+,(Sa+,)) is uniquely
determined by the eigenvalue of S*(R+t), it follows that
it does not depend on t. Thus state

I
4) is reduced to the

form of (15).
Conversely, for a total crystal state

I
4) of the form of

(15), it is easily seen that

(83)

256

&4
I

S'(R+t)S'(R'+t')
I

0') = g I ci
I papa, (B4)

1=1

therefore conditions (2), (4), and (14) hold.
For any cluster state

I
4p), we can construct the corre-

sponding total crystal state
I
4) that gives the same ex-

pectation values of the spin operators and the same spin
correlations as

I
4) in the cluster, and the ones specified

by conditions (2), (4), and (14), for magnetic ions in dif-
ferent clusters. The construction procedure is very sim-
ple.

The cluster states

I+'&= g IX'(s )&
RGC

(85)

form an orthonormal basis for the cluster state space.
Thus every solution of our method can be written in the
orm:

256

(86)

A total crystal state
I
4) given by Eq. (15) with ci =ai

corresponds to every solution 4). This
I

qi) has the
properties described above, and consequently gives the
same energy per cluster, as the expectation value of the
linear part of the effective Hamiltonian [see Eq. (9)] for
the solution

I
4):

—
& ~

I
A',

I
~ ) =

& 4Ii
I
H;

I
4P ),1

(B7)

i.e., the cluster Harniltonian is now the linear operator H,'.
Furthermore, if H,

'
I
4) =E,

I
4), then

—m,
I
e) =z,

I
e&,1

i.e., I
4) is an exact eigenstate of the total Hamiltonian

A, with the same eigenvalue E,.
Therefore, when our Hamiltonian is exactly Ising (and

s = —, ), we can apply the method of the preceding paper,
with the only modification that we do not correct the
eigenvalues of H' with the perturbation term H~, which
does not exist.

converse is also true, i.e., if
I
'p) is of the form (15), then

it satisfies conditions (2), (4), and (14).
By introducing into condition (14) the explicit form of

I
4') given by Eqs. (A5) and (A6) of Appendix A, we get

Q I
ci

I pa+&pa+4 =
4 .I l (Bl)

l

Since gi I
ci

I

= 1 and pa+, ——+ —,, it follows that
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