# An accurate description of the ground and excited states of SiH

Apostolos Kalemos and Aristides Mavridis<sup>a)</sup>

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, PO Box 64 004, 157 10 Zografou, Athens, Greece

#### Aristophanes Metropoulos

Institute of Theoretical and Physical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece

(Received 10 December 2001; accepted 25 January 2002)

The astrophysical importance of the SiH radical has motivated significant experimental and theoretical work. However, only the  $X^2\Pi$  and  $A^2\Delta$  states of SiH have been extensively investigated experimentally, while the study of higher excited states is rather limited. From a theoretical point of view, most of the studies have been focused on spectroscopic and thermochemical quantities of the ground state. The lack of accurate spectroscopic parameters  $(r_e, D_e, \omega_e, \omega_e, \omega_e, \alpha_e, \overline{D}_e, T_e)$ pertaining to higher excited states was the driving force of the present work, in line with our previous study of the isovalent CH molecule [A. Kalemos, A. Mavridis, and A. Metropoulos, J. Chem. Phys. 111, 9536 (1999)]. Using the multireference configuration interaction approach coupled with very large correlation-consistent basis sets, we have constructed potential energy curves for 18 molecular states correlating to  $Si({}^{3}P, {}^{1}D, {}^{1}S, {}^{5}S, {}^{3}P, {}^{1}P) + H({}^{2}S)$ . At the same level, the potential energy curve of the ground  $SiH^+$  state  $(X^1\Sigma^+)$  has also been constructed. We report total energies, dissociation energies, and the usual spectroscopic constants for <sup>28</sup>Si-<sup>1,2</sup>H and for all states studied. Most of our results are in excellent agreement with existing experimental values. In particular, we believe that our dissociation energy for the X state,  $D_e = 73.28$  kcal/mol, is the most reliable reported so far in the literature. © 2002 American Institute of Physics. [DOI: 10.1063/1.1461817]

#### I. INTRODUCTION

The SiH radical was first observed by optical spectroscopy in the 1930's.<sup>1-4</sup> It is the simplest of the four silicon hydrides and its role in the chemistry of these hydrides as well as in the process of chemical vapor deposition (CVD) of hydrogenated amorphous silicon thin films is well documented.<sup>5-34</sup> References 31 and 33 list many papers, up to 1991 and 1995, respectively, pertaining to various aspects of silicon hydride chemistry. SiH is also of astrophysical importance because of its presence in stellar atmospheres and its suspected, but not yet proven, presence in interstellar clouds.<sup>35–51</sup>

SiH has been studied by optical, infrared, and farinfrared spectroscopy, by radio frequency transitions, and by mass spectroscopy. It is usually produced from the silane (SiH<sub>4</sub>) molecule by flash photolysis, laser-induced photolysis, rf discharge, or by reaction with fluorine atoms. Because of its importance, the assignments of spectral lines and the determination of accurate spectroscopic and thermochemical quantities comprise a large body of experimental<sup>52–84</sup> and theoretical<sup>85–131</sup> work on SiH and SiD.

Only the  $X^{2}\Pi$  and the  $A^{2}\Delta$  states of SiH and SiD have been extensively investigated experimentally. Work on these two states includes the determination of  $\Lambda$ -doubling transition frequencies for  $X^{2}\Pi$ , <sup>38,63,65,76</sup> radiative lifetimes and oscillator strengths of the  $A^{2}\Delta - X^{2}\Pi$  system, <sup>43,45,47,61,64,74</sup> various molecular constants, <sup>55,56,67,72,78,79,84</sup> transition moments, <sup>66</sup> ionization potentials, <sup>55,80,81</sup> and dissociation energies and enthalpies of formation. <sup>55,59,64,68,80,81,83</sup> To our knowledge, only a limited number of experimental papers deal with the higher excited states, but the extracted parameters useful to the present theoretical work are very few, limited mostly to term values. These papers include the work of Verma, <sup>55</sup> Herzberg *et al.*, <sup>60</sup> Bollmark *et al.*, <sup>62</sup> and Johnson and Hudgens.<sup>82</sup> The latter authors have located a state at 46 700±10 cm<sup>-1</sup> and identified it as either a <sup>2</sup>Π or a <sup>2</sup>Σ<sup>+</sup> state. Based on our present work (*vide infra*) it is the F<sup>2</sup>Π state. It is noteworthy that there is no experimental value for the dipole moment of SiH and that the values of its dissociation energy vary significantly. A list of papers on the SiH and SiD spectroscopy up to 1998 and a brief summary of each work is given by Ram *et al.*<sup>84</sup>

The first theoretical treatment of SiH appeared in the literature in 1966 and reported its energy of formation and the excitation energies of the ground- and the low-lying excited states using a semiempirical method.<sup>86</sup> *Ab initio* calculations soon followed, first at the SCF level and then at levels of accuracy beyond SCF. Table I shows results of such calculations relevant to the present work along with the corresponding latest experimental values. Often, work on SiH was part of a larger investigation on silicon hydrides. Oikawa *et al.*<sup>109</sup> investigated the mechanism of formation of SiH during plasma CVD. Allen and Schaefer<sup>111</sup> did an extensive investigation of the ground-state properties of the silicon hydrides and gave extensive references to related experimental

0021-9606/2002/116(15)/6529/12/\$19.00

6529

<sup>&</sup>lt;sup>a)</sup>Electronic mail: mavridis@chem.uoa.gr

TABLE I. Previous theoretical estimates of total energies E(hartree), dissociation energies  $D_e(\text{kcal/mol})$ , bond distances  $r_e(\text{Å})$ , harmonic frequencies  $\omega_e(\text{cm}^{-1})$ , anharmonic corrections  $\omega_e x_e(\text{cm}^{-1})$ , rotational-vibrational coupling constants  $\alpha_e(\text{cm}^{-1})$ , centrifugal distortions  $\overline{D}_e(\text{cm}^{-1})$ , dipole moments  $\mu(D)$ , and energy separations  $T_e(\text{kcal/mol})$  along with recent experimental values of the SiH molecule and in different states.

| -E                    | $D_{e}$                | r <sub>e</sub>       | $\omega_e$    | $\omega_e x_e$     | $\alpha_{e}$  | $\bar{D}_e(10^4)$ | $\mu$   | $T_{e}$     | Ref./year                         |
|-----------------------|------------------------|----------------------|---------------|--------------------|---------------|-------------------|---------|-------------|-----------------------------------|
| $\overline{(X^2\Pi)}$ |                        |                      |               |                    |               |                   |         |             |                                   |
|                       | 76.33                  |                      |               |                    |               |                   |         |             | 86/1966 <sup>a</sup>              |
| 289.4362              | 51.43                  | 1.521                |               |                    |               |                   |         |             | 87/1967 <sup>b</sup>              |
| 289.3234              |                        | 1.561                | 2200          |                    |               |                   |         |             | 90/1971 <sup>c</sup>              |
| 289 540 770           | 71.26                  | 1.526                | 2034.7        | 36.0               | 0.216         |                   | 0.141   |             | 96/1975 <sup>d</sup>              |
| 289,505,20            | 65.72                  | 1.552                | 1965.9        | 37.2               | 0.215.1       | 39                | 01111   |             | $104/1982^{e}$                    |
| 289 518 0             | 70.11                  | 1 544                | 2015          | 39.0               | 0.208         | 017               | 0 124   |             | $105a/1983^{f}$                   |
| 289.513.87            | 72.60                  | 1 515 21             | 19/19         | 57.0               | 0.200         |                   | 0.121   |             | 107/1985 <sup>g</sup>             |
| 207.515 07            | 65.93                  | 1.515 21             | 2181 24       |                    |               |                   |         |             | 108/1985 <sup>h</sup>             |
|                       | 05.75                  | 1 520                | 2044          |                    |               |                   | 0.160   |             | 110/1986 <sup>i</sup>             |
|                       |                        | 1.520                | 2044          |                    |               |                   | 0.100   |             | 110/1986 <sup>j</sup>             |
| 280 528 786           |                        | 1.525                | 2022          | 38 5               | 0 217 55      |                   | 0.110   |             | 111/1086 <sup>k</sup>             |
| 289.528780            | 72.00                  | 1.520                | 2002          | 27.9               | 0.217 55      |                   | 0.077   |             | $112/1087^{l}$                    |
| 289.541 250           | 72.09                  | 1.520                | 2037.8        | 28.04              | 0.218         |                   | 0.123   |             | 113/1987<br>114/1087 <sup>m</sup> |
| 209.333.39            |                        | 1.541                | 1990.4        | 20.94              |               |                   | 0.000   |             | 114/1907<br>$122/1002^{n}$        |
| 280 554 544           | 72.20                  | 1.520 1              |               |                    |               |                   | 0.1210  |             | 122/1992                          |
| 269.534 344           | 75.20                  | 1.521 42             |               |                    |               |                   |         |             | 123/1992<br>124/1002P             |
| 289.546 30            | /0.01                  | 1.525 9              |               |                    |               |                   |         |             | 124/1993 <sup>r</sup>             |
| 289.529.03            | 72.00                  | 1.510.8              | 2026.2        | 25.0               | 0.014.7       |                   |         |             | 125a/1993 <sup>4</sup>            |
| 289.552.25            | 72.90                  | 1.523.6              | 2036.2        | 35.8               | 0.214 /       |                   |         |             | 126/1993                          |
| 200 524 250           |                        | 1.533                | 2050          |                    |               |                   | 0.001   |             | 127/1994                          |
| 289.524 369           |                        | 1.520 1              |               |                    |               |                   | 0.091   |             | 128/1996                          |
| 289.5568              | 73.61                  | 1.521                |               |                    |               |                   |         |             | 131/1999 <sup>a</sup>             |
|                       | 0                      | 1.503                |               |                    |               |                   | 0.140   |             | 132/1999 <sup>v</sup>             |
|                       | $D_{o}^{o} \leq 70.57$ | 1.520 1 <sub>0</sub> | 2041.80       | 35.51              | 0.2190        | 3.97              |         |             | 67/1979 <sup>w</sup>              |
| 4-1-1-1               | 72.35-73.46            | 1.519 66(7)          | 2042.5229(8)  | 36.0552(5)         | 0.218 14(2)   | 4.0556(45)        |         |             | 78/1986 <sup>x</sup>              |
| $(a^{+}\Sigma)$       |                        |                      |               |                    |               |                   |         |             |                                   |
|                       |                        |                      |               |                    |               |                   |         | 61.57       | 86/1966ª                          |
| 289.285 7             |                        | 1.522                | 2255          |                    |               |                   |         | 23.98       | 90/1971°                          |
| 289.447 68            | 29.70                  | 1.522                | 1982.5        | 60.6               | 0.285 8       | 4.3               |         | 36.09       | 104/1982 <sup>e</sup>             |
|                       | 33.90                  | 1.511                | 2030          | 65.0               | 0.313         |                   | 0.030   | 36.44       | 105a/1983 <sup>1</sup>            |
|                       |                        | 1.520 1              |               |                    |               |                   | 0.1383  |             | 122/1992 <sup>n</sup>             |
| 289.472 80            |                        | 1.510 8              |               |                    |               |                   |         | 35.28       | 125a/1993 <sup>q</sup>            |
|                       |                        | 1.501                | 2086          |                    |               |                   |         | 38.97       | 127/1994 <sup>s</sup>             |
| 2.1                   |                        |                      |               |                    |               |                   |         | 14.30       | 66/1979 <sup>y</sup>              |
| $(A^{-2}\Delta)$      |                        |                      |               |                    |               |                   |         |             |                                   |
| 289.209 6             |                        | 1.554                | 1955          |                    |               |                   |         | 71.49       | 90/1971°                          |
|                       | 20.06                  | 1.546                | 1797          | 91.0               | 0.420         |                   | 0.118   | 71.26       | 105a/1983 <sup>1</sup>            |
| 289.426 924           |                        | 1.517                | 1884.4        | 68.4               | 0.242         |                   |         | 71.72       | 113/1987 <sup>1</sup>             |
|                       |                        | 1.520 1              |               |                    |               |                   | 0.1451  |             | 122/1992 <sup>n</sup>             |
| 289.415 11            |                        | 1.510 8              |               |                    |               |                   |         | 71.49       | 125a/1993 <sup>q</sup>            |
|                       |                        | 1.523 4 <sub>7</sub> | 1858.90       | 99.17 <sub>5</sub> | 0.344 5       | 5.24              |         | 69.48       | 67/1979 <sup>w</sup>              |
| 2-1                   | 20.58 - 21.69          | 1.519 781 6(21)      |               |                    | 0.215 119(15) |                   |         | 69.35       | 84/1998 <sup>z</sup>              |
| $(B^2\Sigma^-)$       |                        |                      |               |                    |               |                   |         |             |                                   |
|                       |                        |                      |               |                    |               |                   |         | 70.71       | 86/1966 <sup>a</sup>              |
| 289.201 1             |                        |                      |               |                    |               |                   |         | 76.75       | 90/1971°                          |
|                       |                        |                      |               |                    |               |                   |         | 75.64       | 105a/1983 <sup>r</sup>            |
| 289.408 49            |                        | 1.5108               |               |                    |               |                   |         | 75.64       | 125a/1993 <sup>q</sup>            |
| 2                     |                        |                      |               |                    |               |                   |         | 73.31-76.24 | 53/1960 <sup>aa</sup>             |
| $(C^2\Sigma^+)$       |                        |                      |               |                    |               |                   |         |             |                                   |
|                       |                        |                      |               |                    |               |                   |         | 100.78      | 86/1966 <sup>a</sup>              |
| 289.1780              |                        | 1.585                | 1710          |                    |               |                   |         | 91.09       | 90/1971 <sup>c</sup>              |
|                       |                        | 1.553                | $1550 \pm 50$ |                    |               |                   | 0.171   | 89.71       | 105a/1983 <sup>f</sup>            |
|                       |                        | 1.520 1              |               |                    |               |                   | 0.114 1 |             | 122/1992 <sup>n</sup>             |
| 289.383 14            |                        | 1.5108               |               |                    |               |                   |         | 91.55       | 125a/1993 <sup>q</sup>            |
| 1st min               |                        | 3.85                 |               |                    |               |                   |         | 91.01       | $67/1979^{w}$                     |
| 2nd min               |                        | 1.618                |               |                    |               |                   |         | 91.04       | $67/1979^{w}$                     |
| $(D^{2}\Sigma^{+})$   |                        |                      |               |                    |               |                   |         | 104.70      | 105a/1983 <sup>f</sup>            |
| $(E^2\Sigma^+)$       |                        |                      |               |                    |               |                   |         | 114.61      | 105a/1983 <sup>f</sup>            |
| $(c^4\Sigma^-)$       |                        |                      |               |                    |               |                   |         |             |                                   |
|                       |                        | 1.970                | 1245          | 22.0               | 0.094         |                   |         | 150.13      | 105a/1983 <sup>f</sup>            |
|                       |                        |                      |               |                    |               |                   |         | 131.5       | 66/1979 <sup>y</sup>              |
| $(F^2\Pi)$            |                        |                      |               |                    |               |                   |         |             |                                   |
| 289.048 9             |                        | 1.571                | 1944          |                    |               |                   |         | 172.27      | 90/1971°                          |
|                       |                        |                      |               |                    |               |                   |         | 132.14      | 105a/1983 <sup>f</sup>            |
|                       |                        |                      |               |                    |               |                   |         | 133 52      | 82/1989 <sup>bb</sup>             |

| TABLE I. ( | (Continued.) |
|------------|--------------|
|------------|--------------|

| -E                         | $D_{e}$ | r <sub>e</sub> | $\omega_e$ | $\omega_e x_e$ | $\alpha_e$ | $\bar{D}_e(10^4)$ | μ | $T_{e}$                   | Ref./year              |
|----------------------------|---------|----------------|------------|----------------|------------|-------------------|---|---------------------------|------------------------|
| $\overline{(G^2\Sigma^+)}$ |         |                |            |                |            |                   |   | 130.06                    | 105a/1983 <sup>f</sup> |
| $(H^2\Delta)$              |         |                |            |                |            |                   |   | 139.52                    | 105a/1983 <sup>f</sup> |
|                            |         | 1.481          |            |                |            |                   |   | 141.59                    | 67/1979 <sup>w</sup>   |
| $(I^2\Pi)$                 |         |                |            |                |            |                   |   | 140.44                    | 105a/1983 <sup>f</sup> |
| $(J^2\Pi)$                 |         |                |            |                |            |                   |   | $\sim \! 148.74^{\rm cc}$ | 105a/1983 <sup>f</sup> |
| $(^{2}\Sigma^{+})$         |         |                |            |                |            |                   |   | 149.44                    | 105a/1983 <sup>f</sup> |
|                            |         | 1.5172         |            |                |            | 3.92              |   | 152.66                    | $67/1979^{w}$          |
| $(e^{-4}\Pi)$              |         | -              |            |                |            |                   |   | 163.73                    | 105a/1983 <sup>f</sup> |

<sup>a</sup>Semiempirical calculations at r = 1.48 Å.

<sup>b</sup>SCF with a large basis set of STFs (6s5p1d/3s1p), and extensive optimization of the orbital exponents; the total energy reported has been calculated at the experimental  $r_e$ . An "experimental" energy value of -290.549 hartree is also reported.

<sup>c</sup>SCF/CISD [6s3p/1s] basis; reported energies and  $T_e$ 's at r = 2.87 bohr.

<sup>d</sup>CEPA [13s10p2d1f/6s2p1d<sub> $\sigma$ </sub>] basis set; the reported  $r_e$  value is estimated to be reduced by 0.004 Å when core-valence correlation effects are taken into account.

<sup>e</sup>MCSCF+1+2, [4s3p1d/3s1p] basis set.

<sup>f</sup>Full-CI estimate of the MRD-CI results using two different basis sets, [7s5p4d1f/3s1p1d], and [7s5p2d1f/3s1p1d] for the description of Rydberg and valence states, respectively.  $T_e$ 's are vertical excitations from the ground state at the equilibrium geometry of the  $a^{4}\Sigma^{-}$  state; dipole moments are also calculated at this internuclear separation.

 ${}^{g}$ MP4/6-31+G(2*df*,*p*)//HF/6-31G(*d*) results; the *r<sub>e</sub>* was not optimized to five significant figures but is given to this precision for reasons of reproducibility.  ${}^{h}$ MP4/6-31G\*\*//HF/6-31G\* results, coupled with empirical correction factors to account for systematic deficiencies due to basis set truncation.

<sup>i</sup>SCF+1+2 (=CISD) using large STO basis sets (8s6p3d2 f/4s3p2d).

<sup>j</sup>Coupled pair functional (CPF) calculations, basis set the same as in i.

<sup>k</sup>CISD/[6s5p2d/4s2p].

<sup>1</sup>CASSCF+ contracted CI/[8s6p4d2 f/7s4p1d].

 $^{\mathrm{m}}\mathrm{CI4}(\mathrm{SDQ})/[6s5p2d/4s2p].$ 

<sup>n</sup>Valence-shell Hamiltonian method based on quasidegenerate MBPT; [7s5p2d/3s1p1d] basis set. All calculations at the  $r_e$  of the X-state. <sup>o</sup>CCSD(T)/[6s5p3d2 f1g/4s3p2d1f]//CISD/[6s5p2d/4s2p].

 ${}^{p}G1//MP2/6-31G(d)$ .

<sup>q</sup>MRCI/TZP; reported  $T_e$ 's are vertical excitation energies calculated at r = 2.855 bohr.

rCASSCF+1+2/cc-pV5Z.

<sup>s</sup>MRCI+Q//MCSF results using pseudopotential on Si.

<sup>t</sup>CISDT<sup>+</sup>/POL1; [7s5p2d/3s2p] basis at the experimental  $r_e = 1.5201$  Å from Ref. 67.

<sup>u</sup>UGA-CCSD(T)/aug-cc-pV6Z results for the total energy and  $r_e$ , while the  $D_e$  value takes into account the CBS limit. Corrections for core-valence correlation effects, scalar relativistic, and spin-orbit effects give a  $D_e$  value of 73.3 kcal/mol.

<sup>v</sup>Multi-reference CC approach/[7s5p2d/3s2p].

<sup>w</sup>Experimental results.

<sup>x</sup>Experimental results from analysis of the infrared emission spectrum of the <sup>28</sup>SiH radical;  $D_e$  value from Ref. 113.

<sup>y</sup>Shock-tube determination of absorption cross sections.

<sup>2</sup>Fourier transform emission spectroscopy on the  $A^{2}\Delta \leftarrow X^{2}\Pi$  transitions of SiH;  $T_{e}$  (=24 257.127(1) cm<sup>-1</sup>) from Ref. 65.

<sup>aa</sup>Experimental value from absorption spectroscopy.

<sup>bb</sup>Experimental value from resonance-enhanced multiphoton ionization spectroscopy.

<sup>cc</sup>Approximately obtained from Fig. 4 of Ref. 105a.

and theoretical work. Kalcher<sup>114</sup> did extensive comparisons between *ab initio* and pseudopotential calculations at various levels of accuracy for the neutral and anionic species of  $SiH_n$ (n=1,2,3), trying to judge the validity of pseudopotentials for calculations on larger silicon hydride clusters. Greeff and Lester<sup>129</sup> have done a Monte Carlo (MC) calculation on SiH as a means of estimating the advisability of MC calculations on larger silicon hydride molecules where huge basis sets would be required for accuracy comparable to MC. Other papers deal exclusively with the ground- and the low-lying excited states of SiH. Meyer and Rosmus<sup>96,98</sup> used large basis sets with the pseudonatural orbitals-configuration interaction (PNO-CI) and coupled electron pair approximation (CEPA) methods to calculate energies, ionization potentials, and spectroscopic constants of the ground state. Richards and co-workers<sup>97,102,103</sup> calculated the  $\Lambda$ -doubling in the lowest rotational level of the  $X^2\Pi$ . Mavridis and Harrison<sup>104</sup> have done *ab initio* calculations on the  $X^2\Pi$  and  $a^4\Sigma^-$  states. Petterson and Langhoff<sup>110</sup> calculated dipole moments of the

TABLE II. Total energies E(hartree) of the  ${}^{3}P(3s^{2}3p^{2})$ ,  ${}^{1}D(3s^{2}3p^{2})$ ,  ${}^{1}S(3s^{2}3p^{2})$ ,  ${}^{5}S(3s^{1}3p^{3})$ ,  ${}^{3}P(3s^{2}3p^{1}4s^{1})$ ,  ${}^{1}P(3s^{2}3p^{1}4s^{1})$ ,  ${}^{3}D(3s^{1}3p^{3})$ , and  ${}^{3}D(3s^{2}3p^{1}4p^{1})$  Si states and corresponding energy gaps  $\Delta E$  (eV) with respect to the ground state at the MRCI level of theory. Experimental values in parentheses.

| State                         | $-E^{b}$    | $\Delta E^{\rm c}$ |
|-------------------------------|-------------|--------------------|
| ${}^{3}P(3s^{2}3p^{2})^{a}$   | 288.940 143 | 0.0(0.0)           |
| $^{1}D(3s^{2}3p^{2})$         | 288.911 836 | 0.770(0.762)       |
| ${}^{1}S(3s^{2}3p^{2})$       | 288.870 350 | 1.899(1.890)       |
| ${}^{5}S(3s^{1}3p^{3})$       | 288.795 048 | 3.948(4.113)       |
| ${}^{3}P(3s^{2}3p^{1}4s^{1})$ | 288.757 063 | 4.982(4.923)       |
| ${}^{1}P(3s^{2}3p^{1}4s^{1})$ | 288.751 215 | 5.141(5.064)       |
| $^{3}D(3s^{1}3p^{3})$         | 288.735 503 | 5.569(5.598)       |
| ${}^{3}D(3s^{2}3p^{1}4p^{1})$ | 288.720 387 | 5.980(5.953)       |

<sup>a</sup>The SCF energy of the  ${}^{3}P$  state is -288.854346h as compared to the numerical HF value of -288.8543624h, Ref. 138.

<sup>b</sup>The active space of the CASSCF wave functions includes 13 orbitals related to the 3s, 3p, 3d, 4s, and 4p atomic orbitals. Spherical symmetry was induced by performing state-average CASSCF calculations.

<sup>c</sup>Experimental values, averaged over  $M_J$ , are taken from the Atomic Spectra Database of NIST, Ref. 140. 1 hartree=27.2114 eV.

TABLE III. Total energies E(hartree), dissociation energies  $D_e(\text{kcal/mol})$ , bond distances  $r_e(\text{\AA})$ , dipole moments  $\mu(\text{D})$ , and energy separations  $T_e(\text{kcal/mol})$  of all bound calculated states of the SiH system. Existing experimental results are also included.

| State             | Method <sup>a</sup> | -E               | $D_e$                    | r <sub>e</sub>          | $\mu$  | T <sub>e</sub>  |
|-------------------|---------------------|------------------|--------------------------|-------------------------|--------|-----------------|
| $X^2\Pi$          | SCF                 | 289.437 788      | 52.25                    | 1.5127                  | 0.269  | 0.0             |
|                   | CASSCF              | 289.533 299      | 65.63                    | 1.5196                  | 0.150  | 0.0             |
|                   | MRCI                | 289.557 373      | 73.55                    | 1.5223                  | 0.124  | 0.0             |
|                   | MRCI+0              | 289.5577         | 73.73                    | 1.5227                  |        | 0.0             |
|                   | CCSD(T)             | 289.556 482      | 73.57                    | 1.522.1                 |        | 0.0             |
|                   | Expt                | 20710000 102     | 72 35-73 46 <sup>b</sup> | 1 519 66-°              |        | 0.0             |
| $a^{4}\Sigma^{-}$ | SCF                 | 289 406 304      | 32.49                    | 1 465 3                 | -0.144 | 19.76           |
| u <u>1</u>        | CASSCE              | 289 476 683      | 29.69                    | 1 500 6                 | -0.022 | 35.53           |
|                   | MRCI                | 289 495 594      | 34 73                    | 1 497 4                 | -0.022 | 38.77           |
|                   | MRCI+0              | 289 495 7        | 34.79                    | 1 497 4                 | 0.027  | 38.90           |
|                   | CCSD(T)             | 289.494.509      | 34.68                    | 1 / 95 3                |        | 38.89           |
|                   | Expt <sup>d</sup>   | 207.474 507      | 54.00                    | 1.475 5                 |        | 14.30           |
| 1 <sup>2</sup> 1  | CASSCE              | 280 /18 708      | 15.86                    | 1 535 1                 | 0.110  | 71.85           |
| ΑΔ                | MPCI                | 209.410 /90      | 13.80                    | 1.5351                  | 0.008  | 68.00           |
|                   | MDCLLO              | 209.447 424      | 22.20                    | 1.524 0                 | 0.098  | 68.01           |
|                   | MIKCI+Q             | 269.4479         | 22.43<br>20.58 21.60°    | 1.323 /<br>1.5107.916 f |        | 00.91<br>60.25g |
| <b>D</b> 25 -     | Expt.               | 200 440 547      | 20.38-21.09              | 2 440                   | 0.002  | 09.55           |
| B - 2,            | MRCI                | 289.440.547      | 0.19                     | 3.440                   | 0.093  | /3.31           |
|                   | MRCI+Q              | 289.440 6        | 0.20                     | 3.426                   |        | /3.49           |
|                   | Expt."              |                  |                          |                         |        | /3.31-/6.24     |
|                   |                     |                  | Local minimum            |                         |        |                 |
|                   | MRCI                | 289.439 778      |                          | 1.7154                  | 0.621  |                 |
| 2                 | MRCI+Q              | 289.4400         |                          | 1.7128                  |        |                 |
| $C^2\Sigma^+$     | MRCI                | 289.416 551      | 2.89                     | 1.5338                  | 0.178  | 88.37           |
|                   | MRCI+Q              | 289.417 1        | 3.17                     | 1.5328                  |        | 88.26           |
|                   | Expt. <sup>1</sup>  |                  |                          |                         |        |                 |
|                   |                     |                  | Local minimum            |                         |        |                 |
|                   | MRCI                | 289.414 926      |                          | 2.40                    | -1.245 |                 |
|                   | MRCI+Q              | 289.415 3        |                          | 2.38                    |        |                 |
|                   | Expt. <sup>i</sup>  |                  |                          |                         |        |                 |
| $D^{2}\Sigma^{+}$ | MRCI                | 289.402 681      | 20.29                    | 1.7923                  | -0.279 | 97.07           |
|                   | MRCI+Q              | 289.403 6        | 20.94                    | 1.7943                  |        | 96.73           |
| $E^{2}\Sigma^{+}$ | MRCI                | 289.374 571      | 73.67                    | 1.5374                  | -0.975 | 114.71          |
|                   | MRCI+Q              | 289.3757         | 74.30                    | 1.5346                  |        | 114.22          |
|                   |                     |                  | Local minimum            |                         |        |                 |
|                   | MRCI                | 289.303 480      |                          | 3.1824                  | -9.552 |                 |
|                   | MRCI+Q              | 289.304 9        |                          | 3.1949                  |        |                 |
| $c^{4}\Sigma^{-}$ | CASSCF              | 289.325 673      | 22.60                    | 1.9802                  | -0.031 | 130.29          |
|                   | MRCI                | 289.343 814      | 30.60                    | 1.9453                  | 0.049  | 134.01          |
|                   | MRCI+0              | 289.344 1        | 30.74                    | 1.9428                  |        | 134.08          |
|                   | Expt. <sup>d</sup>  |                  |                          |                         |        | 131.5           |
| $F^{2}\Pi$        | MRCI                | $\sim 289.341.2$ |                          | $\sim 1.43$             | -0.363 | ~135            |
|                   | MRCI+0              | $\sim 289.342$   |                          | ~1.43                   |        |                 |
|                   | Expt <sup>j</sup>   | 20,1012          |                          | 1110                    |        | 133.52          |
| $G^{2}\Sigma^{+}$ | MRCI                | 289 279 506      | 17.66                    | 2 5387                  | -2.009 | 100.02          |
| 0 4               | MRCI+0              | 289 280 9        | 18 38                    | 2.5340                  | 2.007  |                 |
| $H^{2}\Lambda$    | MRCI                | $\sim 289.2009$  | ~54.8                    | ~1.56                   | 0.331  | $\sim 147.2$    |
| 11 🗅              | MRCI+0              | $\sim 289.322.0$ | ~81.6                    | ~1.56                   | 0.551  | $\sim 110$      |
|                   | Expt $k$            | 207.302          | 01.0                     | 1.50                    |        | 1/1 59          |
| $I^2\Pi$          | MPCI                | 280 310 652      | 33.63                    | 3 175                   | -0.543 | 154.82          |
| 1 11              | MPCI+O              | 289.310 032      | 24.15                    | 2.17                    | 9.545  | 154.02          |
| a <sup>4</sup> Π  | CASSCE              | 269.311 0        | 10.67                    | 3.17                    | -2 201 | 154.45          |
| e 11              | MPCI                | 207.211 442      | 17.07                    | 1.5157                  | -2.301 | 160.00          |
|                   | MRCL                | 289.300 964      | 21.33                    | 1.5081                  | -2.316 | 160.90          |
| c 4 A             | MKCI+Q              | 289.301.3        | 27.08                    | 1.5082                  | 0 1 40 | 100.9           |
| $f^{-}\Delta$     | MKCI                | 289.263 953      | 17.86                    | 1.5497                  | -2.149 | 181.12          |
| <b>• )</b> • •    | MRCI+Q              | 289.264 6        | 7.86                     | 1.5545                  |        | 183.9           |
| $J^2\Pi$          | MRCI                | ~289.2577        | ~4.06                    | ~2.33                   |        | ~188            |
| $g^{+}\Sigma^{+}$ | MRCI                | 289.259 725      | 1.60                     | 1.5483                  | -1.847 | 186.78          |
|                   | MRCI+Q              | 289.2602         | 1.78                     | 1.551                   |        | 186.7           |

 $^{a}+Q$ , refers to the multireference Davidson correction.

<sup>b</sup>Reference 113.

<sup>c</sup>Reference 84.

<sup>d</sup>Reference 66.

<sup>e</sup>Reference 113; see also the text.

<sup>f</sup>Reference 84.

<sup>g</sup>Reference 65.

<sup>h</sup>Reference 53.

<sup>i</sup>See the text.

<sup>j</sup>Reference 82.

<sup>k</sup>Reference 67.

TABLE IV. Harmonic frequencies  $\omega_e$ , anharmonicites  $\omega_e x_e$ , rotational vibrational couplings  $\alpha_e$ , and centrifugal distortions  $\bar{D}_e$  in cm<sup>-1</sup> of the <sup>28</sup>Si<sup>-1,2</sup>H system in different states at the MRCI level.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                             | State                     | ω <sub>e</sub> | $\omega_e x_e$                   | $\alpha_{e}$ | $\bar{D}_e \times 10^4$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------------------------------|--------------|-------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               |                           |                | ${}^{28}Si - {}^{1}H$            |              |                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $X^2\Pi$                  | 2043.15        | 35.09                            | 0.213        | 4.01                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | Expt. <sup>a</sup>        | 2042.52        | 36.06                            | 0.218        | 4.06                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $a {}^{4}\Sigma^{-}$      | 2059.16        | 61.07                            | 0.287        | 4.44                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $A^{2}\Delta$             | 1853.15        | 78.39                            | 0.375        | 5.39                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | Expt. <sup>b</sup>        | 1858.90        | 99.17                            | 0.344        | 5.24                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $B^{2}\Sigma_{\rho}^{-c}$ | 81.74          |                                  |              |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $C^{2}\Sigma_{\rho}^{+c}$ | 285.12         |                                  |              |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $D^{2}\Sigma^{+}$         | 2147.31        | 402.51                           |              |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $E^{2}\Sigma_{l}^{+c}$    | 647.85         | 20.40                            | 0.021        | 0.506                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $E^{2}\Sigma_{o}^{+c}$    | 2410.86        | 70.76                            | 0.257        | 2.59                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $c {}^{4}\Sigma^{-}$      | 1253.63        | 15.60                            | 0.042        | 2.47                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $I^2\Pi$                  | 599.33         | -0.815                           | -0.007       | 0.48                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $e^{-4}\Pi$               | 1925.53        | 61.61                            | 0.349        | 4.89                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $f$ $^{4}\Delta$          | 1661.86        | 65.66                            | 0.319        | 4.37                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $g^{4}\Sigma^{+}$         | 1639.63        | 32.94                            | 0.217        | 3.92                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               |                           |                | <sup>28</sup> Si- <sup>2</sup> H |              |                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $X^2\Pi$                  | 1470.75        | 18.54                            | 0.080        | 1.07                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | Expt. <sup>b</sup>        | 1469.32        | 18.23                            | 0.078        | 1.054                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $a {}^{4}\Sigma^{-}$      | 1480.17        | 30.65                            | 0.107        | 1.17                    |
| Expt. <sup>b</sup> 1328.0848.110.1321.379 $B^{2}\Sigma_{\pi^{c}}^{-c}$ 60.59 $C^{2}\Sigma_{\pi^{c}}^{+c}$ 229.71 $D^{2}\Sigma^{+}$ 1570.38253.34 $E^{2}\Sigma_{l}^{+c}$ 456.333.180.011 $0.125$ $E^{2}\Sigma_{l}^{+c}$ 1725.99 $27.66$ 0.1010.699 $c^{4}\Sigma^{-}$ 902.859.090.015 $0.66$ $I^{2}\Pi$ 435.332.150.002 $I^{4}\Pi$ 1384.9331.790.1231.29 $f^{4}\Delta$ 1210.5044.810.1541.42 $g^{4}\Sigma^{+}$ 1219.2345.620.1531.39 | $A^{2}\Delta$             | 1333.66        | 40.79                            | 0.137        | 1.33                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | Expt. <sup>b</sup>        | 1328.08        | 48.11                            | 0.132        | 1.379                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $B^{2}\Sigma_{g}^{-c}$    | 60.59          |                                  |              |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $C^{2}\Sigma_{g}^{+c}$    | 229.71         |                                  |              |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $D^{2}\Sigma^{+}$         | 1570.38        | 253.34                           |              |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                               | $E^{2}\Sigma_{l}^{+c}$    | 456.33         | 3.18                             | 0.011        | 0.125                   |
| $\begin{array}{ccccccc} c \ ^4\Sigma^{-} & 902.85 & 9.09 & 0.015 & 0.66 \\ I \ ^2\Pi & 435.33 & 2.15 & 0.002 & 0.14 \\ e \ ^4\Pi & 1384.93 & 31.79 & 0.123 & 1.29 \\ f \ ^4\Delta & 1210.50 & 44.81 & 0.154 & 1.42 \\ g \ ^4\Sigma^+ & 1219.23 & 45.62 & 0.153 & 1.39 \end{array}$                                                                                                                                                 | $E^{2}\Sigma_{g}^{+c}$    | 1725.99        | 27.66                            | 0.101        | 0.699                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                              | $c  {}^{4}\Sigma^{-}$     | 902.85         | 9.09                             | 0.015        | 0.66                    |
| $\begin{array}{cccccccc} e \ ^{4}\Pi & 1384.93 & 31.79 & 0.123 & 1.29 \\ f \ ^{4}\Delta & 1210.50 & 44.81 & 0.154 & 1.42 \\ g \ ^{4}\Sigma^{+} & 1219.23 & 45.62 & 0.153 & 1.39 \end{array}$                                                                                                                                                                                                                                       | $I^2\Pi$                  | 435.33         | 2.15                             | 0.002        | 0.14                    |
| $ \begin{array}{ccccccccc} f & ^{4}\Delta & 1210.50 & 44.81 & 0.154 & 1.42 \\ g & ^{4}\Sigma ^{+} & 1219.23 & 45.62 & 0.153 & 1.39 \end{array} $                                                                                                                                                                                                                                                                                   | $e^{-4}\Pi$               | 1384.93        | 31.79                            | 0.123        | 1.29                    |
| $g^{4}\Sigma^{+}$ 1219.23 45.62 0.153 1.39                                                                                                                                                                                                                                                                                                                                                                                         | $f^{4}\Delta$             | 1210.50        | 44.81                            | 0.154        | 1.42                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    | $g~^4\Sigma^+$            | 1219.23        | 45.62                            | 0.153        | 1.39                    |

<sup>a</sup>Reference 78.

<sup>b</sup>Reference 67.

<sup>c</sup>"g" and "l" refer to global and local minima; see the text.

 $X^{2}\Pi$  state using a large Slater-type orbitals (STO) basis set with a singlereference CISD. Larsson<sup>113</sup> used a complete active space self-consistent field (CASSCF)-contracted CI method and calculated the potential curves of the  $X^2\Pi$  and  $A^{2}\Delta$  states, transition moments, and dipole moments as functions of internuclear separation, as well as useful spectroscopic parameters. Winter and Millié<sup>125</sup> explained in terms of hybridization the differences in the  $X^2\Pi - a^4\Sigma^-$  gaps between the states of SiH and CH. Calculations on higher excited states of SiH were first done by Wirsam,<sup>90</sup> who studied six states by a low-accuracy calculation employing a limited CI and a double-zeta basis but without polarization functions. Lewerenz et al.,<sup>105</sup> were the first to do extensive calculations on SiH at an acceptable accuracy including many excited states. They used DZP-type basis sets with the multireference double configuration interaction (MRDCI) package and a selection threshold resulting in about 10 000 spinadapted functions. They computed the potential energy curves for all valence- and many Rydberg states, as well as dipole moments, electronic transition moments, spin-orbit coupling parameters, and other spectroscopic and thermochemical properties. They also did a charge distribution analysis. Other workers have computed, at various degrees of



FIG. 1. Potential energy curves of all calculated states of SiH and the  $X^{-1}\Sigma^{+}$  state of SiH<sup>+</sup> at the MRCI level of theory. All energies have been shifted by +289.00 hartree.

accuracy, values for the ionization energy,  $^{87,90,98,115,123}$  the electron affinity,  $^{88,105,114,124}$  the transition probabilities and *f*-factors ( $A^2\Delta \leftarrow X^2\Pi$ ),  $^{92,100,113}$  the  $\Lambda$ -doubling,  $^{97,102,103}$  the spin–orbit constant (for  $X^2\Pi$ ),  $^{102,119}$  and the enthalpy of formation.  $^{107,108,116-118,120,121,123,124}$  Notice that not all states have been identified in the literature and there is a confusion regarding their labeling.

The aim of the present work is to construct with the highest accuracy presently possible the potential energy curves (PEC) for all molecular states arising from the lowest six states of Si plus the ground state of H. In particular, we have generated curves for all states emanating from the  ${}^{2}S$  of H and the  ${}^{3}P$ ,  ${}^{1}D$ ,  ${}^{1}S$ ,  ${}^{5}S$ ,  ${}^{3}P(3s^{2}3p^{1}4s^{1})$ ,  ${}^{1}P(3s^{2}3p^{1}4s^{1})$  states of the Si atom. Two more states, a  ${}^{2}\Delta$  and a  ${}^{4}\Delta$ , originating from the Si  ${}^{3}D(3s^{1}3p^{3})$  have also been computed. Overall, 18 PECs have been constructed spanning an energy range of about 8 eV, at the same accuracy, we also report the potential energy curve of the SiH<sup>+</sup> ground state,  $X {}^{1}\Sigma^{+}$ . For all states studied we report absolute and binding energies, equilibrium distances, dipole moments, and usual spectroscopic parameters.

#### **II. METHODS AND COMPUTATIONAL DETAILS**

The one electron correlation-consistent basis set of Dunning and co-workers<sup>132</sup> was used throughout the present work. In particular, for the Si atom the aug-cc-pV6Z basis set was employed, while for the H atom the plain cc-pV5Z. The final one electron generally contracted orbital space,  $[9s8p6d5f4g3h2i/_{Si}5s4p3d2f1g/_{H}]$ , contains 248 spherical Gaussian functions.

Our goal to construct accurate potential energy curves for all states examined dictated a multireference approach.





FIG. 2. Potential energy curve of the B  $^2\Sigma^-$  state of SiH at the MRCI level of theory.

FIG. 3. Potential energy curves of the C-, D-, E-, and  $G^{2}\Sigma^{+}$  states of SiH at the MRCI level of theory.

Our zero-order function, namely a complete active space SCF (=CASSCF), correlates at infinity to  $(3s+3p_{\sigma,\pi}+3d_{\sigma,\pi,\delta}+4s+4p_{\sigma,\pi})_{Si}+(1s)_{H}=14$  atomic functions, providing a common orbital space for both valence- and Rydberg molecular states. By distributing the five "valence" (active) electrons among the 14 orbitals of the active space, configuration functions (CF) of  $|\Lambda|=0^{\pm}$ , 1, and 2 symmetry are generated. Additional valence correlation was obtained by single and double excitations out of the CASSCF space (CASSCF+1+2=MRCI), using at the same time the internal contraction (ic) scheme as implemented in the MOLPRO package.<sup>133</sup> For the  $X^2\Pi$  and the first excited  $a^4\Sigma^-$  states the coupled-cluster CCSD(T) method was also used for comparison purposes.

For excited states of  ${}^{2}\Sigma^{+}$  and  ${}^{2}\Pi$  symmetry and for purely technical reasons, the state average<sup>134</sup> methodology was followed. The large size of the one-electron basis set precludes significant basis-set superposition errors (BSSE). Indeed, the BSSE error of the ground SiH  $X {}^{2}\Pi$  state, calculated by the usual counterpoise technique,<sup>135</sup> does not exceed 10 cm<sup>-1</sup>(=0.03 kcal/mol). Also, size nonextensivity errors are practically negligible due to the small number of active electrons.

Spectroscopic constants for the isotopomers <sup>28</sup>Si<sup>-1,2</sup>H were extracted by obtaining rovibrational energy levels through a numerical Numerov solution of the nuclear Schrödinger equation, and then by a least-squares fit to the expansion  $E(v,J) = \sum_{k,l} Y_{kl} (v + \frac{1}{2})^k [J(J+1)]^l$ , where  $Y_{kl}$  represent the unknown spectroscopic constants.<sup>136</sup>

#### **III. ATOMIC STATES**

Table II lists the MRCI absolute and relative (to  ${}^{3}P$ ) energies of the Si atom for all states involved in the formation of SiH either explicitly or implicitly. With the exception of the  ${}^{5}S$  state, the agreement between the experimental and theoretical energy levels is excellent. The theoretical level of the  ${}^{5}S$  state is lower than the experimental one by 0.165 eV(=1331 cm<sup>-1</sup>). This is attributed to the spin difference between the  ${}^{3}P$  and  ${}^{5}S$  states, which produces unbalanced correlation effects. It is noteworthy that the Si  ${}^{5}S$  state is not listed in the 1971 Moore tables.<sup>137</sup>

#### **IV. RESULTS AND DISCUSSION**

Total energies (*E*), binding energies ( $D_e$ ), equilibrium bond distances ( $r_e$ ), dipole moments ( $\mu$ ), and energy separations ( $T_e$ ) with respect to the ground SiH state are presented in Table III at different levels of theory. Table IV lists spectroscopic constants ( $\omega_e, \omega_e x_e, \alpha_e, \overline{D}_e$ ) of the isotopomers <sup>28</sup>Si<sup>-1,2</sup>H for all bound states. Potential energy curves for all computed states of SiH and the ground state of SiH<sup>+</sup> are shown in Fig. 1.

In what follows we analyze the important characteristics of every state, contrasting them at the same time with the corresponding states of the CH molecule,<sup>139</sup> isovalent to SiH.

TABLE V.  $D_e(\text{kcal/mol})$ ,  $r_e(\text{Å})$ , and  $T_e(\text{kcal/mol})$  values of SiH contrasted to the corresponding values of the CH system at the MRCI level of theory.

|                   | $CH^{a}$ |                |                |                      | SiH            |                |                 |  |
|-------------------|----------|----------------|----------------|----------------------|----------------|----------------|-----------------|--|
| State             | $D_e$    | r <sub>e</sub> | T <sub>e</sub> | State                | $D_e$          | r <sub>e</sub> | $T_{e}$         |  |
| $X^2\Pi$          | 83.37    | 1.1204         | 0.0            | $X^2\Pi$             | 73.55          | 1.5223         | 0.0             |  |
| $a^{4}\Sigma^{-}$ | 66.03    | 1.0892         | 17.22          | $a {}^{4}\Sigma^{-}$ | 34.73          | 1.4974         | 38.77           |  |
| $A^{2}\Delta$     | 45.54    | 1.1056         | 66.89          | $A^{2}\Delta$        | 22.28          | 1.5240         | 68.99           |  |
| $B^{2}\Sigma^{-}$ | 8.59     | 1.1468         | 74.74          | $B^{2}\Sigma^{-}$    | 0.19           | 3.440          | 73.31           |  |
| $C~^2\Sigma^+$    | 20.98    | 1.1164         | 91.85          | $C \ ^2\Sigma^+$     | 2.89           | 1.5338         | 88.37           |  |
| $D^2\Sigma^+$     | 9.35     | 1.6635         | 136.11         | $D^{2}\Sigma^{+}$    | 20.29          | 1.7923         | 97.07           |  |
| $c^{4}\Sigma^{-}$ | 22.31    | 1.7866         | 157.38         | $c^{4}\Sigma^{-}$    | 30.60          | 1.9453         | 134.01          |  |
| $E^{2}\Pi$        |          | 1.1437         | 169.68         | $F^2\Pi$             |                | ~1.43          | ~135            |  |
| $F^2\Pi$          | 75.22    | 1.3751         | 181.57         | $I^2\Pi$             |                |                |                 |  |
| $G^{2}\Sigma^{+}$ | 69.30    | 1.1482         | 187.36         | $E^{2}\Sigma^{+}$    | 73.67          | 1.5374         | 114.71          |  |
| $H^{2}\Pi$        | 61.03    | 1.3762         | 201.14         | $J^2\Pi$             |                |                |                 |  |
| $I^{2}\Sigma^{+}$ | 57.85    | 1.2639         | 204.15         | $G^{2}\Sigma^{+}$    |                |                |                 |  |
| $J^{2}\Delta$     | 48.92    | 1.6661         | 221.05         | $H^{2}\Delta$        | $\sim \! 54.8$ | $\sim 1.56$    | $\sim \! 147.2$ |  |
|                   |          |                |                | $e^{-4}\Pi$          | 27.53          | 1.5081         | 160.90          |  |
|                   |          |                |                | $f$ $^{4}\Delta$     | 17.86          | 1.5497         | 181.12          |  |
|                   |          |                |                | $g^{4}\Sigma^{+}$    | 1.60           | 1.5483         | 186.78          |  |

<sup>a</sup>Reference 139.

## A. $X^2\Pi$ state

The bonding in the  $X^2\Pi$  state can be clearly pictured by the following valence-bond Lewis (vbL) icon:



supported by the CASSCF equilibrium Mulliken populations (Si/H)

$$3s^{1.80}3p_z^{0.96}3p_x^{0.98}3p_y^{0.06}3d^{0.12}/1s^{1.04}2p^{0.03}$$

The accurate experimental dissociation energy of SiH( $X^{2}\Pi$ ) is still questionable; its chronological evolution is given in detail by Larsson,<sup>113</sup> who concluded that  $3.012 \le D_0$  $\leq$  3.06*ey*. Using the experimental spectroscopic constants<sup>78</sup>  $\omega_e = 2042.5229(8) \text{ cm}^{-1}$ , and  $\omega_e x_e = 30.0552(5) \text{ cm}^{-1}$ , the corresponding  $D_e(=D_0 + \omega_e/2 - \omega_e x_e/4)$  inequality (in kcal/ mol) is  $72.35 \le D_e \le 73.46$ . In Table III we report  $D_e$ =73.55, 73.73, and 73.57 kcal/mol at the MRCI, MRCI + Davidson correction (+O), and CCSD(T) levels of theory, respectively. According to Feller and Dixon,<sup>130</sup> scalar relativistic effects  $\Delta E(sr)$  decrease the binding energy by  $\Delta E(sr) = 0.1$  kcal/mol, while core-valence  $\Delta E(cv)$  contributions do not affect the  $D_e$  value.<sup>130</sup> Taking into account the experimental atomic<sup>137</sup> and molecular<sup>84</sup> spin-orbit splittings,  $Si({}^{3}P_{2}-{}^{3}P_{0})=223.31 \text{ cm}^{-1}$ ,  $SiH({}^{2}\Pi_{\pm 3/2}-{}^{2}\Pi_{\pm 1/2})$ =  $151.5508 \text{ cm}^{-1}$ , the binding energy should also be corrected by

$$\Delta E(so) = \frac{E({}^{2}\Pi_{3/2}) \times 4 + E({}^{2}\Pi_{1/2}) \times 2}{6} - \frac{E({}^{3}P_{0}) \times 1 + E({}^{3}P_{1}) \times 3 + E({}^{3}P_{2}) \times 5}{9}$$

=101.0338–149.680 07 cm<sup>-1</sup>=-48.646 cm<sup>-1</sup> (=-0.14 kcal/mol). Finally, including the BSSE correction of -0.03 kcal/mol we obtain  $D_e$  (corrected)= $D_e$ (MRCI) +  $\Delta E(so)$  +  $\Delta E(sr)$  +  $\Delta E(cv)$  +  $\Delta E(BSSE)$  = 73.55–0.27 =73.28 kcal/mol, in complete agreement with the (corrected) results of Feller and Dixon.<sup>130</sup> Our MRCI bond distance,  $r_e$  = 1.5223 Å, obtained by a Dunham analysis, is by 0.0026 Å longer as compared to the experimental value of 1.519 66(7) Å,<sup>78</sup> probably because the core–valence correlation effects<sup>96</sup> are not included in the present calculations.



FIG. 4. Relative energy levels of the isovalent species of CH and SiH at the MRCI level of theory. Dotted lines connect corresponding states between the two species.

By solving the radial Schrödinger equation numerically, the rovibrational levels are obtained; it is found that the SiH( $X^{2}\Pi$ ) potential (Fig. 1) can sustain 20 vibrational levels, v=0-19. In particular, for the vibrational transitions 0-1, 1-2, and 2-3 we predict 1972.84, 1902.30, and 1831.54 cm<sup>-1</sup>, respectively, in excellent agreement with the corresponding experimental values,<sup>79</sup> 1971.0413, 1900.0585, and 1829.8196 cm<sup>-1</sup>, reflecting the accuracy of the potential energy function.

## B. $a^{4}\Sigma^{-}$ and $c^{4}\Sigma^{-}$ states

In essence, for both states above there are no experimental findings (but see below). The  $a^{4}\Sigma^{-}$  state correlates to  $\mathrm{Si}({}^{3}P; M=0) + \mathrm{H}({}^{2}S)$ , Fig. 1. The CASSCF leading equilibrium configuration is  $\sim 0.97 |1\sigma^{2}2\sigma^{1}1\pi_{x}^{1}1\pi_{y}^{1}\rangle$  (counting only "valence" electrons), with  $1\sigma \sim 0.72(3s) + 0.30(3p_{z})$ + 0.66(1s), and  $2\sigma \sim 0.62(3s) - 0.67(3p_{z}) - 0.54(1s)$ . The atomic CASSCF Mulliken atomic populations at infinity and equilibrium are

$$r_{\infty}: \quad 3s^{1.91}3p_{z}^{0.05}3p_{x}^{0.99}3p_{y}^{0.99}3d^{0.06}/1s^{1.0},$$
  
$$r_{e}: \quad 3s^{1.45}3p_{z}^{0.56}3p_{x}^{0.99}3p_{y}^{0.99}3d^{0.09}/1s^{0.90}2p^{0.04}.$$

Upon bonding, a strong  $3s3p_z$  hybridization occurs caused by the promotion of  $0.46e^-$  from the Si 3s to the  $3p_z$  orbital; thus, the *in situ* Si atom acquires a partial <sup>5</sup>S character. The emerging bonding picture can be described as a superposition of two limiting vbL icons

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

The  $D_e$  value obtained at the MRCI, MRCI+Q, and CCSD(T) level is practically the same (Table III), the MRCI value being 34.73 kcal/mol compared to 32.49 kcal/mol at the SCF level.

An experimental  $a {}^{4}\Sigma^{-} \leftarrow X {}^{2}\Pi$  separation of  $\sim 5000 \text{ cm}^{-1}(=14.3 \text{ kcal/mol})$  has been reported by Park,<sup>66</sup> based on a separation  $X {}^{2}\Pi \rightarrow b {}^{4}\Pi$  (repulsive) of 24 800 cm<sup>-1</sup>, and to the observed transition  $b {}^{4}\Pi \leftarrow a {}^{4}\Sigma^{-}$  of about 20 000 cm<sup>-1</sup>. Our  $T_{e}(a {}^{4}\Sigma^{-} \leftarrow X {}^{2}\Pi) = 13559 \text{ cm}^{-1}$  (=38.77 kcal/mol) at the MRCI level, leaves no doubt that the experimental value is wrong. Our corresponding vertical transitions  $b {}^{4}\Pi \leftarrow X {}^{2}\Pi$ , and  $b {}^{4}\Pi \leftarrow a {}^{4}\Sigma^{-}$  are 48 607 and 35 913 cm<sup>-1</sup>, respectively.

The  $c^{4}\Sigma^{-}$  state traces its origin to Si(<sup>5</sup>S) + H(<sup>2</sup>S), and in contrast to the  $a^{4}\Sigma^{-}$  is not dominated by a single configuration function. Indeed, the leading equilibrium CASSCF configurations are

$$\begin{aligned} |c \,{}^{4}\Sigma^{-}\rangle &\sim |(0.86 \times 1\,\sigma^{2}2\,\sigma^{1} - 0.39 \times 2\,\sigma^{2}3\,\sigma^{1} \\ &- 0.19 \times 2\,\sigma^{1}3\,\sigma^{2})1\,\pi_{x}^{1}1\,\pi_{y}^{1}\rangle, \end{aligned}$$

with  $1\sigma \sim 0.41(3s) - 0.57(3p_z) - 0.70(1s)$ ,  $2\sigma \sim 0.90(3s) + 0.12(3p_z) + 0.35(1s)$ ,  $3\sigma \sim 0.20(3s) + 0.98(3p_z) - 0.76(1s)$ , and the following atomic CASSCF populations:  $3s^{1.21}3p_z^{0.76}3p_x^{0.98}3p_y^{0.98}3d^{0.10}/1s^{0.96}2p^{0.02}$ . Based on the

atomic distributions we can claim that the *in situ* Si atom is in a  ${}^{5}S$  state, so the bonding can be described by the icon

$$\overset{\sim 2\sigma}{\underbrace{\bigcirc}} \overset{\bigcirc}{\underbrace{\bigcirc}} \overset{\sim}{\underbrace{\bigcirc}} \overset{\sim}{\underbrace{\frown}} \overset{\sim}{\underbrace{\circ}} \overset{\sim}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ} \overset{\circ}{\underbrace{\circ}} \overset{\circ}{\underbrace{\circ} \overset{\circ}$$

At the MRCI level  $T_o(c \ ^4\Sigma^- \leftarrow X^2\Pi) = T_e + 1/2[\omega_e(c \ ^4\Sigma^-) - \omega_e(X^2\Pi)] = 134.0 - 1.14 = 132.9$  kcal/mol (Tables III and IV) is in very good agreement with the corresponding experimental  $T_o$  separation of 46 000 cm<sup>-1</sup>(=131.52 kcal/mol).<sup>66</sup> With respect to Si( $^5S$ ) + H( $^2S$ ),  $D_e$  = 30.60(30.74) kcal/mol and  $r_e$  = 1.945(1.943) Å at the MRCI(+Q) level, Table III.

### C. $A^{2}\Delta$ state

As the PEC of Fig. 1 shows, the  $A^{2}\Delta$  state correlates to Si( ${}^{1}D; M = \pm 2$ ) + H( ${}^{2}S$ ). The dominant CASSCF configurations are

$$|A^{2}\Delta\rangle \sim 0.67(|1\sigma^{2}2\sigma^{1}1\pi_{x}^{2}\rangle - |1\sigma^{2}2\sigma^{1}1\pi_{y}^{2}\rangle),$$

dictating a  $\sigma$  bond as the following vbL icon suggests



very similar to that of the CH  $A^2\Delta$  state.<sup>139</sup> The above picture is corroborated by the atomic equilibrium and asymptotic CASSCF distributions

$$r_{\infty}: \quad 3s^{1.91} 3p_{z}^{0.05} 3p_{x}^{1.0} 3p_{y}^{1.0} 3d^{0.07}/1s^{1.0},$$
  
$$r_{e}: \quad 3s^{1.55} 3p_{z}^{0.50} 3p_{x}^{0.96} 3p_{y}^{0.96} 3d^{0.10}/1s^{0.88} 2p^{0.04},$$

indicating a promotion of  $0.36e^-$  from the Si 3s to  $3p_z$  resulting in a  $3s3p_z$  hybrid orbital, with the synchronous transfer to that hybrid of  $0.09e^-$  from the 1s hydrogen function.

Although the experimental dissociation energy of the  $A^2\Delta$  state is not explicitly reported in the literature, it can be deduced by the relationship  $D_e(A^2\Delta) = D_e(X^2\Pi) + \Delta E(\text{Si}; D \leftarrow ^3P) - T_e(A^2\Delta \leftarrow X^2\Pi)$ . Employing the experimental values (in kcal/mol),  $72.35 \leq D_e(X^2\Pi) \leq 73.46$ ,<sup>113</sup>  $\Delta E(\text{Si}; D \leftarrow ^3P) = 17.58$ ,<sup>137</sup> and  $T_e(A^2\Delta \leftarrow X^2\Pi) = 69.35$ ,<sup>65</sup> one obtains  $20.58 \leq D_e^{\exp}(A^2\Delta) \leq 21.69$ . This range of values should be contrasted with our  $D_e = 22.28$  kcal/mol at the MRCI level, Table III. Now, the MRCI(+Q)  $r_e = 1.5240(1.5237)$  Å is longer by 0.0042 Å than the latest experimental value of 1.5197816(21) Å.<sup>84</sup> As already mentioned, this discrepancy is rather caused by core–valence correlation effects not taken into account in the present study.

#### D. $B^2\Sigma^-$ state

By coupling the electrons of the  $a^{4}\Sigma^{-}$  state into a doublet, the "quasirepulsive"  $B^{2}\Sigma^{-}$  state is obtained, correlating to Si( ${}^{3}P;M=0$ ) + H( ${}^{2}S$ ), Figs. 1 and 2. By following its PEC (Fig. 2) more closely, two minima are observed, the first

one at  $r_e = 6.5$  bohr, displaying an interaction of just  $66.5 \text{ cm}^{-1}(=0.19 \text{ kcal/mol})$ , clearly of van der Waals origin. As we move closer, an energy barrier of 1.28 kcal/mol(r=4.0 bohr) with respect to the van der Waals minimum is developed, followed by a second, non-van der Waals minimum of 0.79 kcal/mol at  $r_e = 1.715 \text{ Å}$ . The situation is closely analogous to the  $B^2\Sigma^-$  state of CH;<sup>139</sup> hence, it is conjectured that the second SiH minimum is caused by the intervention of a  ${}^2\Sigma^-$  state correlating to Si( ${}^3D$ )+H( ${}^2S$ ).

## E. $b^{4}\Pi$ and $e^{4}\Pi$ states

The  $b^{4}\Pi$  is a purely Pauli repulsive state succinctly described by the picture



and displaying a van der Waals interaction of 8.1 cm<sup>-1</sup> at about 10 bohr. The corresponding CH values are 4.5 cm<sup>-1</sup> at r=9 bohr.<sup>139</sup> It is interesting to observe that an avoided crossing occurs at 2.4 bohr with the repulsive part of the  $e^{4}\Pi$  Rydberg state (see below), tracing its lineage to Si $(3s^{2}3p^{1}4s^{1}, {}^{3}P; M = \pm 1) + H({}^{2}S)$ , Fig. 1.

Now, the  $e^{4}\Pi$  (Rydberg) state shows a repulsive character up to 6.5 bohr, giving rise to an energy barrier of 1.72 kcal/mol. Passing this point the PEC plummets, resulting in an equilibrium distance  $r_e = 1.5081$  Å and  $D_e = 27.53$  kcal/mol with respect to the adiabatic products. The dominant equilibrium MRCI configuration and corresponding Mulliken atomic populations are  $|e^{4}\Pi\rangle \sim 0.96|1\sigma^2 2\sigma^1 3\sigma^1 1\pi_x^1\rangle$ , and  $(3s+4s)^{2.45}3p_z^{0.64}$  $3p_x^{0.99}3p_y^{0.04}3d^{0.12}/1s^{0.73}2p^{0.04}$ , showing a significant total transfer of  $0.23e^-$  from H to Si, and in particular to the  $3p_z$ orbital, causing the creation of a half (one electron)  $\sigma$  bond.

## F. $C^{2}\Sigma^{+}$ , $D^{2}\Sigma^{+}$ , $E^{2}\Sigma^{+}$ , and $G^{2}\Sigma^{+}$ states

The *C* and  $D^{2}\Sigma^{+}$  states correlate adiabatically to

$$\operatorname{Si}({}^{1}D; M=0) = \frac{1}{\sqrt{6}} [2|3s^{2}3p_{z}^{2}\rangle - |3s^{2}3p_{x}^{2}\rangle - |3s^{2}3p_{x}^{2}\rangle - |3s^{2}3p_{y}^{2}\rangle],$$

and

$$\operatorname{Si}({}^{1}S) = \frac{1}{\sqrt{3}} [|3s^{2}3p_{z}^{2}\rangle + |3s^{2}3p_{x}^{2}\rangle + |3s^{2}3p_{y}^{2}\rangle],$$

respectively. The  $C^{2}\Sigma^{+}$  PEC presents two minima: one at  $r_{e}=2.40$  Å and an interaction energy of 1.87 kcal/mol, maintaining in essence the character of the asymptote, and a second one at  $r_{e}=1.534$  Å with an interaction energy of 2.89 kcal/mol with respect to the asymptotic products, Fig. 3. The second minimum results from an avoided crossing with the  $D^{2}\Sigma^{+}$  state, so the internal bond strength of the *C* state is  $2.89+\Delta E[Si(^{1}S) \leftarrow Si(^{1}D)]=29.0$  kcal/mol. The minimum (equilibrium) of the  $D^{2}\Sigma^{+}$  state is located at the top of the avoided crossing (r=1.792 Å), corresponding to  $D_{e} = 20.3$  kcal/mol with respect to Si( ${}^{1}S$ ) + H( ${}^{2}S$ ).

Experimental results exist for, presumably, two states tagged *B*- and  $C^{2}\Sigma^{+}$  (see Ref. 67, and Table I):  $T_{e}^{\exp}(C \leftarrow X) = 31\,832.4 \text{ cm}^{-1}$ ,  $r_{e} = 3.8_{5}\text{ Å}$ , and  $T_{e}^{\exp}(B\leftarrow X) = 31\,842.2 \text{ cm}^{-1}$ ,  $r_{e} = 1.61_{8}\text{ Å}$ . We believe that the *B*- and  $C^{2}\Sigma^{+}$  experimental states correspond to the two minima of our  $C^{2}\Sigma^{+}$  state. Indeed, at  $r_{e} = 2.40$  and 1.53 Å mentioned above, the corresponding  $T_{e}$  values are 89.4 kcal/mol (= 31\,263 \text{ cm}^{-1}), and 88.4 kcal/mol(= 30\,918 \text{ cm}^{-1}), respectively, with respect to the  $X^{2}\Pi$  state. Finally, it is worth mentioning that the PEC morphologies and their explanation of the *C*- and  $D^{2}\Sigma^{+}$  states of CH.<sup>139</sup>

The  $E^{2}\Sigma^{+}$  state correlates to the Rydberg Si(<sup>3</sup>*P*;*M* = 0)+H(<sup>2</sup>*S*) fragments, with its PEC presenting a local (*l*) and a global (*g*) minima, Fig. 3. The leading CAS configurations for the *l*- and *g*-minima are

$$|E^{2}\Sigma^{+};l\rangle \sim 0.60|1\sigma^{2}2\sigma^{1}3\sigma^{2}\rangle + 0.56|1\sigma^{2}2\sigma^{2}3\sigma^{1}\rangle - 0.16|1\sigma^{2}2\sigma^{2}4\sigma^{1}\rangle,$$

with

$$\begin{aligned} 1\sigma &\sim 3s, \ 2\sigma &\sim 0.44(3p_z) + 0.79(1s), \\ 3\sigma &\sim 1.0(3p_z) - 0.45(1s), \\ 4\sigma &\sim 4s, \\ &|E^2\Sigma^+;g\rangle &\sim 0.76|1\sigma^2 2\sigma^2 3\sigma^1\rangle \\ &+ 0.54|1\sigma^2 2\sigma^2 4\sigma^1\rangle, \end{aligned}$$

with

$$1\sigma \sim 0.83(3s) + 0.25(3p_z) + 0.56(1s),$$
  

$$2\sigma \sim 0.58(3s) - 0.68(3p_z) - 0.59(1s),$$
  

$$3\sigma \sim 0.23(3s) + 0.77(3p_z) - 0.52(1s), \quad 4\sigma \sim 4s.$$

The  $r_e$  and  $D_e$  parameters of the *l*- and *g*-minima are (in Å and kcal/mol) 3.18, 29.1, and 1.537, 73.7, respectively. The bonding in the *l*-min can be attributed to the  $2\sigma$  orbital, the  $3\sigma$  being simply the orthogonal counterpart of the  $2\sigma$ with no practical participation of the 3s or 4s atomic Si orbitals. It is interesting that the dipole moment is  $\mu =$ -9.55 D, with  $0.25e^{-1}$  transferred from the Si to the H atom. Due to an avoided crossing of the *E*- with the  $G^{2}\Sigma^{+}$  (Rydberg) state at 4.8 bohr, an energy barrier of about 7.6 kcal/mol is created with respect to the *l*-minimum (Fig. 3); thus, the  $g-E^{2}\Sigma^{+}$  minimum correlates diabatically to  $Si(3s^23p^14s^1; P) + H(^2S)$ . A second avoided crossing is observed in the repulsive part of the E state with the previously discussed  $D^{2}\Sigma^{+}$  state, and close to 2.8 bohr, Fig. 3. From the CAS configurations and the explicit form of the orbitals, we can speak of two "bonding" orbitals, namely the  $1\sigma$  and  $2\sigma$ , with the  $3\sigma$  and  $4\sigma(\sim 4s)$  carrying the spin symmetry. Overall, less than  $0.1e^{-}$  are transferred from Si to H, resulting in a (relative) negative dipole moment ten times smaller than that of the *l*-minimum. Finally, the similarity

between the SiH  $E^{2}\Sigma^{+}$  state and the corresponding CH state  $(G^{2}\Sigma^{+})$ , is remarkable: instead the CH PEC barrier is 9.1 kcal/mol and the  $g-D_{e}=69.3$  kcal/mol.<sup>139</sup>

Due to severe technical difficulties, only part of the PEC of the Rydberg  $G^{2}\Sigma^{+}$  state has been computed, Fig. 3. The only certain thing that can be said about the *G* state is that its *l*-minimum occurs at 4.8 bohr (the point of the avoided crossing), giving rise to  $D_{e} = 17.7$  kcal/mol with respect to Si( ${}^{1}P$ ) + H( ${}^{2}S$ ). A global minimum surely exists as indicated from a few calculated energy points in the PEC's repulsive part, and the work of Lewerenz *et al.*<sup>105(a)</sup>

### G. $F^{2}\Pi$ , $I^{2}\Pi$ , and $J^{2}\Pi$ states

None of the PECs of the above SiH states has been fully calculated in the present work due to severe technical problems, with the most complete among the three being that of the  $F^2\Pi$  state, Fig. 1.

The repulsive part of the  $F^2\Pi$  state shows a van der Waals interaction of 56.8 cm<sup>-1</sup> correlating to Si( ${}^{1}D;M=$  $\pm 1$ ) =  $|3s^2 3p_z^1 3\bar{p}_x^1\rangle - |3s^2 3\bar{p}_z^1 3p_x^1\rangle + H(^2S)$ . This character is preserved along the PEC and up to 3.15 bohr, where an avoided crossing takes place with the incoming  $I^2\Pi$  Rydberg state. The resulting energy barrier has a height of 9.1 kcal/mol with respect to the minimum; therefore, the latter acquires the character of the  $I^2\Pi$  Rydberg state, and thus diabatically traces its lineage to the Rydberg  $Si(3s^23p^14p^1, {}^{3}D)$ , 5.95 eV above the Si  ${}^{3}P$  state, Table II. Assuming that our lowest calculated point corresponds to the minimum, we predict  $r_e = 1.43$  Å and  $T_e = 135$  kcal/mol, in very good agreement with the experimental  $T_o$  value of 46700±10 cm<sup>-1</sup> (=133.5 kcal/mol).<sup>82</sup> At  $r_e$  the dominant CASSCF configuration is  $\sim 0.95 |1 \sigma^2 2 \sigma^2 2 \pi_x^1\rangle$ , with the following atomic Mulliken densities  $3s^{1.80}3p_z^{1.04}4p_x^{1.02}3p_y^{0.05}3d^{0.13}/1s^{0.94}2p^{0.02}$  displaying clearly the in situ <sup>3</sup>D character of the Si atom. Notice that the bond length  $r_e = 1.43$  Å of the Rydberg minimum is the shortest of all states studied, 0.09 Å shorter than the X state, with a diabatic bond strength [with respect to Si( $^{3}D$ )] of 75.8 kcal/ mol. The bonding can be described by the diagram



indicating a single  $\sigma$  bond, with no participation of the symmetry-carrying Rydberg  $2\pi_x \sim 4p_x$  electron, and, that, in essence, the H atom binds to a Si<sup>+</sup> <sup>2</sup>P state resulting in SiH<sup>+</sup>  $X^{1}\Sigma^{+}$  state plus a loosely bound  $\pi$  electron.

The  $I^2\Pi$  Rydberg state correlates to  $Si(3s^23p^14s^1, {}^{3}P; M = \pm 1) + H({}^{2}S)$ , with its PEC showing a broad minimum at  $r_e = 3.175$  Å and  $D_e = 33.6$  kcal/mol with respect to the asymptote. The interaction of the *I*- and  $J^2\Pi$  states gives rise to the first avoided crossing of the *I* state at about 4.2 bohr, thus creating an energy barrier of 10.9 kcal/mol with respect to the minimum. A second avoided

crossing previously discussed with the *F* state occurs at 3.15 bohr. According to the present results and the results of Lewerenz *et al.*,<sup>105(a)</sup> the complete  $I^2\Pi$  PEC should exhibit three minima at distances 3.175 (present work), ~1.78,<sup>105(a)</sup> and 1.52 Å.<sup>105(a)</sup>Õ

The  $J^2\Pi$  Rydberg state correlates to Si $(3s^23p^14s^1, {}^1P; M = \pm 1) + H({}^2S)$  with a few calculated points shown in Fig. 1.

### H. $H^2\Delta$ state

A part of the PEC's  $H^2\Delta$  is shown in Fig. 1, correlating to

$$Si(^{3}D; M = \pm 2)$$
  
 $\sim 0.54 |3s^{1}3p_{z}^{1}(3p_{x}^{2} - 3p_{y}^{2})\rangle$   
 $- 0.41 |3s^{2}3p_{z}^{1}3d_{x^{2}-y^{2}}^{1}\rangle + 0.21 |3s^{2}(3p_{x}^{1}3d_{xz}^{1})|$   
 $- 3p_{y}^{1}3d_{yz}^{1}\rangle + H(^{2}S).^{140}$ 

Close to equilibrium, the dominant configurations are

$$|H^{2}\Delta\rangle \sim 0.61|1\sigma^{2}2\sigma^{2}1\delta_{+}^{1}\rangle + 0.24|1\sigma^{1}2\sigma^{2}(1\pi_{x}^{2}-1\pi_{y}^{2})\rangle,$$

following the atomic character. Our numerical results, Table III, cannot be considered reliable enough, since the reference orbitals originate from a state average procedure of four  ${}^{2}\Sigma^{+}$  states.

### I. $f^4 \Delta$ and $g^4 \Sigma^+$ states

Only part of the PEC's  $f^4\Delta$  state has been computed due to technical difficulties, Fig. 1. Adiabatically it should correlate to Si $(3s^13p^3, ^3D; M = \pm 2) + H(^2S)$ ; however, the equilibrium character implies the entanglement of the Si $(3s^23p^14p^1, ^3D)$  Rydberg state through an (assumed) avoided crossing. At equilibrium  $(r_e$ = 1.550 Å), the dominant MRCI configurations read  $|f^4\Delta\rangle \sim 0.67|1\sigma^22\sigma^1(1\pi_x^{12}\pi_x^{1}-1\pi_y^{12}\pi_y^{1})\rangle$  with  $1\sigma\sim 0.85$  $(3s)+0.24(3p_z)+0.58(1s), 2\sigma\sim 0.60(3s)-0.73(3p_z)-0.62(1s),$  $1\pi\sim 3p_{\pi}, 2\pi\sim 4p_{\pi}$ , and populations

$$(3s+4s)^{1.56} 3p_z^{0.54} (3p_x+4p_x)^{0.95} 3d_{xz}^{0.05} (3p_y + 4p_y)^{0.95} 3d_{yz}^{0.05} 3d^{0.16} / 1s^{0.78} 2p^{0.04}.$$

A bonding picture consistent with the above orbitals and distributions is the following:



A total of 0.17  $e^-$  are transferred from H to the Si atom.

The  $g^{4}\Sigma^{+}$  state correlates to the (Rydberg) Si( $3s^{2}3p^{1}4s^{1}$ ,  ${}^{3}P$ ; M=0) + H( ${}^{2}S$ ), and as expected shows a repulsive character up to r=4.6 bohr, Fig. 1. At this point an avoided crossing is observed with a (not calculated)  ${}^{4}\Sigma^{+}$ state, correlating to Si( $3s^{2}3p^{1}4p^{1}$ ,  ${}^{3}D$ ) as evidenced from the equilibrium character of the  $g^{4}\Sigma^{+}$  state, resulting to a minimum at  $r_{e}=1.548$  Å. The leading configurations, with a

"+" instead of a "-" sign, orbitals, distributions, and bonding are identical to those of the  $f^{4}\Delta$  state. Finally, the  $g^{4}\Sigma^{+}$ is bound with respect to its adiabatic asymptote by 1.60 kcal/ mol, or by 24.7 kcal/mol with respect to Si $(3s^{2}3p^{1}4p^{1}, {}^{3}D)$  + H(<sup>2</sup>S).

## J. $d^{6}\Sigma^{-}$ state

A purely repulsive state correlating to  $Si({}^{5}S) + H({}^{2}S)$ , Fig. 1. A van der Waals attractive interaction of 9.5 cm<sup>-1</sup> is recorded at about 9 bohr.

### K. The SiH<sup>+</sup> $X^{1}\Sigma^{+}$ state

The fact that an accurate ionization energy (IE) of SiH( $X^2\Pi$ ) has been reported,<sup>81</sup> motivated us to examine the SiH<sup>+</sup> ground state. Its potential curve is depicted in Fig. 1. The following parameters are obtained at the MRCI/aug-cc-pV6Z level of theory (experimental results in parentheses): E = -289.266576 hartree,  $r_e = 1.5057 (1.5041)^{67}$  Å,  $D_e = 3.43 (3.30)^{67}$  eV with respect to Si<sup>+</sup>( ${}^2P$ ;M = 0) +  $H({}^2S)$ ,  $\omega_e({}^{28}\text{SiH}^+) = 2159.3(2157.17)^{67}\text{cm}^{-1}$ ,  $\omega_e x_e = 33.72 (34.24)^{67}$  cm<sup>-1</sup>, and  $IE = 7.92 (7.91 \pm 0.01)^{81}$  eV.

#### V. SUMMARY

Employing large valence correlation-consistent basis sets, namely aug-cc-pV6Z/<sub>Si</sub> cc-pV5Z/<sub>H</sub>, and MRCISD techniques, we have constructed a series of 18 potential energy curves of the SiH radical, plus the PEC of the *X* state of the SiH<sup>+</sup> cation.

We report total energies, dissociation energies, bond lengths, dipole moments, and common spectroscopic parameters ( $\omega_e$ ,  $\omega_e x_e$ ,  $\alpha_e$ ,  $\overline{D}_e$ ) for the isotopic species <sup>28</sup>Si-<sup>1,2</sup>H. All our calculated values are in excellent agreement with the rather limited experimental results. In particular, we believe that our estimated  $D_e(X^2\Pi)$  value of 73.28 kcal/mol is the most accurate value reported so far in the literature. The +0.0026 Å discrepancy between calculated and observed bond lengths for the X state could be attributed to core– valence correlation effects.  $D_e$  and  $r_e$  CCSD(T) results for the  $X^2\Pi$  and  $a^4\Sigma^-$  states are identical to those of the MRCI method.

Most of the SiH states are in close correspondence with the states of the isovalent CH system, as shown in Table V and visualized in Fig. 4.

- <sup>1</sup>C. V. Jackson, Proc. R. Soc. London, Ser. A **126**, 373 (1930).
- <sup>2</sup>R. S. Mulliken, Phys. Rev. **37**, 733 (1931).
- <sup>3</sup>R. W. B. Pearse, Publ. Am. Astron. Soc. 7, 12 (1931).
- <sup>4</sup>G. D. Rochester, Z. Phys. 101, 769 (1936).
- <sup>5</sup>J. E. Smith, Jr. and T. O. Sedgwick, Thin Solid Films 40, 1 (1977).
- <sup>6</sup>B. Drevillon, J. Huc, A. Lloret, J. Perrin, G. deRonsy, and J. P. M. Schmitt, Appl. Phys. Lett. **37**, 646 (1980).
- <sup>7</sup>M. Taniguchi, M. Hirose, T. Hamasaki, and Y. Osaka, Appl. Phys. Lett. **37**, 787 (1980).
- <sup>8</sup>A. Matsuda, K. Nakagawa, K. Tanaka, M. Matsumura, S. Yamasaki, H. Okushi, and S. Iizima, J. Non-Cryst. Solids **35/36**, 183 (1980).
- <sup>9</sup>J. Perrin and E. Delafosse, J. Phys. D **13**, 759 (1980).
- <sup>10</sup>I. Haller, Appl. Phys. Lett. **37**, 282 (1980).
- <sup>11</sup>B. Drevillon, J. Huc, A. Lloret, J. Perrin, G. deRonsy, and J. P. M. Schmitt, Appl. Phys. Lett. **37**, 282 (1980).
- <sup>12</sup>G. Turban, Y. Catherine, and B. Grolleau, Thin Solid Films 67, 309 (1980); 77, 287 (1981).

- <sup>13</sup>F. J. Kampas and R. W. Griffith, J. Appl. Phys. 52, 1285 (1981).
- <sup>14</sup>J. Perrin and J. P. M. Schmitt, Chem. Phys. 67, 167 (1982).
- <sup>15</sup>A. Matsuda and K. Tanaka, Thin Solid Films **92**, 171 (1982).
- <sup>16</sup>R. Robertson, D. Hils, H. Chatham, and A. Gallagher, Appl. Phys. Lett. 43, 544 (1983).
- <sup>17</sup>J. P. M. Schmitt, J. Non-Cryst. Solids **59/60**, 649 (1983).
- <sup>18</sup>P. Ho and W. G. Breiland, Appl. Phys. Lett. **43**, 125 (1983); **44**, 51 (1984).
- <sup>19</sup> J. P. M. Schmitt, P. Gressier, M. Krishnan, G. de Rosny, and J. Perrin, Chem. Phys. 84, 281 (1984).
- <sup>20</sup> Y. Toyoshima, K. Kumada, U. Itoh, K. Arai, A. Matsuda, N. Washida, G. Inoue, and K. Katsuumi, Appl. Phys. Lett. 46, 584 (1985).
- <sup>21</sup>N. Washida, Y. Matsumi, T. Hayashi, T. Ibuki, A. Hiraya, and K. Shobatake, J. Chem. Phys. 83, 2769 (1985).
- <sup>22</sup>K. Tanaka, A. Matsuda, and N. Hata, Organosilicon and Bioorganosilicon Chemistry (Ellis Horwood, Chichester, 1985), Chap. 24.
- <sup>23</sup> P. A. Longeway, H. A. Weakliem, and R. D. Estes, J. Appl. Phys. 57, 5499 (1985).
- <sup>24</sup>Y. Matsumi, T. Hayashi, H. Yoshikawa, and S. Komiya, J. Vac. Sci. Technol. A 4, 1786 (1986).
- <sup>25</sup>W. G. Tong and R. W. Shaw, Appl. Spectrosc. 40, 494 (1986).
- <sup>26</sup> P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, and J. P. M. Schmitt, J. Opt. Soc. Am. B **3**, 687 (1986).
- <sup>27</sup>A. Loret and L. Abouaf-Marguin, Chem. Phys. **107**, 139 (1986).
- <sup>28</sup> M. Nemoto, A. Suzuki, H. Nakamura, K. Shibuya, and K. Obi, Chem. Phys. Lett. **162**, 467 (1989).
- <sup>29</sup> M. H. Begemann, R. W. Dreyfus, and J. M. Jasinski, Chem. Phys. Lett. 155, 351 (1989).
- <sup>30</sup>P. Ho, W. G. Breiland, and R. J. Buss, J. Chem. Phys. **91**, 2627 (1989).
- <sup>31</sup>J. M. Jasinski and S. M. Gates, Acc. Chem. Res. 24, 9 (1991).
- <sup>32</sup>S. Tsurubuchi, K. Motohashi, S. Matsuoka, and T. Arikawa, Chem. Phys. 161, 493 (1992).
- <sup>33</sup>J. M. Jasinski, R. Becerra, and R. Walsh, Chem. Rev. **95**, 1203 (1995).
- <sup>34</sup>U. K. Das and P. Chaudhuri, Chem. Phys. Lett. **298**, 211 (1998).
- <sup>35</sup>D. N. Davis, Publ. Astron. Soc. Pac. **52**, 280 (1940).
- <sup>36</sup>H. D. Babcock, Astrophys. J. 102, 154 (1945).
- <sup>37</sup>A. Schadee, Bull. Astron. Inst. Neth. **17**, 311 (1964).
- <sup>38</sup>A. E. Douglas and G. A. Elliot, Can. J. Phys. 43, 496 (1965).
- <sup>39</sup>C. E. Moore-Sitterly, in Proceedings of the Meeting on Sunspots (Firenze, Italy, 1964), Vol. 2, p. 181 (1966).
- <sup>40</sup>C. E. Moore, M. G. J. Minnaert, and J. Houtgast, National Bureau of Standards, Monograph 61, Washington, D.C. (1966).
- <sup>41</sup>A. Schadee, J. Quant. Spectrosc. Radiat. Transf. 7, 169 (1967).
- <sup>42</sup>H. J. Habing, Bull. Astron. Inst. Neth. **19**, 421 (1968).
- <sup>43</sup>A. J. Sauval, Sol. Phys. **10**, 319 (1969).
- <sup>44</sup>A. E. Douglas and B. L. Lutz, Can. J. Phys. 48, 247 (1970).
- <sup>45</sup>D. L. Lambert and E. A. Malia, Mon. Not. R. Astron. Soc. **148**, 313 (1970).
- <sup>46</sup>N. Grevesse and A. J. Sauval, Astron. Astrophys. 9, 232 (1970).
- <sup>47</sup>N. Grevesse and A. J. Sauval, J. Quant. Spectrosc. Radiat. Transf. **11**, 65 (1971).
- <sup>48</sup>T. D. Fay, Jr., W. L. Stein, and W. H. Warren, Jr., Publ. Astron. Soc. Pac. 86, 772 (1974).
- <sup>49</sup>J. L. Turner and A. Dalgarno, Astrophys. J. **213**, 386 (1977).
- <sup>50</sup>R. A. Bell and M. J. Tripicco, Astron. J. **102**, 777 (1991).
- <sup>51</sup>C. Jascheck and M. Jascheck, *The Behavior of Chemical Elements in Stars* (Cambridge University Press, Cambridge, U.K., 1995).
- <sup>52</sup>A. E. Douglas, Can. J. Phys. **35**, 71 (1957).
- <sup>53</sup>B. A. Thrush, Nature (London) **186**, 1044 (1960).
- <sup>54</sup> P. G. Wilkinson, Astrophys. J. **138**, 778 (1963).
- <sup>55</sup>R. D. Verma, Can. J. Phys. 43, 2136 (1965).
- <sup>56</sup>L. Klynning and B. Lindgren, Ark. Fys. **33**, 73 (1966).
- <sup>57</sup> M. S. Vardya, Mon. Not. R. Astron. Soc. **134**, 877 (1966).
- <sup>58</sup>S. Morris and A. A. Wyller, Astrophys. J. **150**, 877 (1967).
- <sup>59</sup>A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London, 1968).
- <sup>60</sup>G. Herzberg, A. Lagerqvist, and B. J. McKenzie, Can. J. Phys. **47**, 1889 (1969).
- <sup>61</sup>W. H. Smith, J. Chem. Phys. **51**, 520 (1969).
- <sup>62</sup>P. Bollmark, L. Klynning, and P. Pagès, Phys. Scr. 3, 219 (1971).
- <sup>63</sup>R. S. Freedman and A. W. Irwin, Astron. Astrophys. 53, 447 (1976).
- <sup>64</sup>T. A. Carlson, N. Đurić, P. Erman, and M. Larsson, J. Phys. B **11**, 3667 (1978).
- <sup>65</sup>L. Klynning, B. Lindgren, and U. Sassenberg, Phys. Scr. 20, 617 (1979).
- <sup>66</sup>C. Park, J. Quant. Spectrosc. Radiat. Transf. 21, 373 (1979).

- <sup>67</sup>K. P. Huber and G. Herzberg, *Constants of Diatomic Molecules* (Van Nostrand Reinhold, New York, 1979).
- <sup>68</sup>R. Walsh, Acc. Chem. Res. 14, 246 (1981).
- <sup>69</sup> J. C. Knights, J. P. M. Schmitt, J. Perrin, and G. Guelachvili, J. Chem. Phys. **76**, 3414 (1982).
- <sup>70</sup> P. Chollet, G. Guelachvili, and M. Morillon-Chapey, Bull. Soc. Chim. Belg. **92**, 152 (1983).
- <sup>71</sup>J. Perrin and J. F. M. Aarts, Chem. Phys. 80, 351 (1983).
- <sup>72</sup>J. M. Brown and D. Robinson, Mol. Phys. **51**, 883 (1984).
- <sup>73</sup> J. M. Brown, R. F. Curl, and K. M. Evenson, J. Chem. Phys. 81, 2884 (1984).
- <sup>74</sup> W. Bauer, K. H. Becker, R. Düren, C. Hubrich, and R. Meuser, Chem. Phys. Lett. **108**, 560 (1984).
- <sup>75</sup>P. B. Davies, N. A. Isaacs, S. A. Johnson, and D. K. Russell, J. Chem. Phys. 83, 2060 (1985).
- <sup>76</sup>J. M. Brown, R. F. Curl, and K. M. Evenson, Astrophys. J. **292**, 188 (1985).
- <sup>77</sup> J. M. Jasinski, J. Phys. Chem. **90**, 555 (1986).
- <sup>78</sup> M. Betrencourt, D. Boudjaadar, P. Chollet, G. Guelachvili, and M. Morillon-Chapey, J. Chem. Phys. 84, 4121 (1986).
- <sup>79</sup> W. Seebass, J. Werner, W. Urban, E. R. Comben, and J. M. Brown, Mol. Phys. **62**, 161 (1987).
- <sup>80</sup>B. H. Boo and P. B. Armentrout, J. Am. Chem. Soc. 109, 3549 (1987).
- <sup>81</sup>J. Berkowitz, J. P. Greene, H. Cho, and B. Ruščić, J. Chem. Phys. 86, 1235 (1987).
- <sup>82</sup>R. D. Johnson, III and J. W. Hudgens, J. Phys. Chem. 93, 6268 (1989).
- <sup>83</sup>B. H. Boo, J. L. Elkind, and P. B. Armentrout, J. Am. Chem. Soc. **112**, 2083 (1990).
- <sup>84</sup> R. S. Ram, R. Englemen, Jr., and P. F. Bernath, J. Mol. Spectrosc. 190, 341 (1998).
- <sup>85</sup> R. S. Mulliken, Rev. Mod. Phys. 4, 1 (1932).
- <sup>86</sup> P. C. Jordan, J. Chem. Phys. 44, 3400 (1966).
- <sup>87</sup> P. E. Cade and W. M. Huo, J. Chem. Phys. **47**, 649 (1967).
- <sup>88</sup> P. E. Cade, Proc. Phys. Soc. **91**, 842 (1967).
- <sup>89</sup> P. E. Cade, R. F. W. Bader, W. H. Henneker, and I. Keaveny, J. Chem. Phys. **50**, 5313 (1969).
- <sup>90</sup>B. Wirsam, Chem. Phys. Lett. **10**, 180 (1971).
- <sup>91</sup>T. V. Ramakrishna Rao and S. V. J. Lakshman, Physica 56, 322 (1971).
- <sup>92</sup> W. H. Smith and H. S. Liszt, J. Quant. Spectrosc. Radiat. Transf. 11, 45 (1971).
- 93 L. Veseth, Physica 56, 286 (1971).
- <sup>94</sup>A. Dalgarno and R. A. McCray, Annu. Rev. Astron. Astrophys. 10, 375 (1972).
- <sup>95</sup>J. Higuchi, S. Kubota, T. Kumamoto, and I. Tokue, Bull. Chem. Soc. Jpn. 47, 2775 (1974).
- <sup>96</sup>W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356 (1975).
- <sup>97</sup>I. D. L. Wilson and W. G. Richards, Nature (London) 258, 133 (1975).
- <sup>98</sup> P. Rosmus and W. Meyer, J. Chem. Phys. **66**, 13 (1977).
- <sup>99</sup>M. S. Gordon, Chem. Phys. Lett. **59**, 410 (1978).
- <sup>100</sup> P. D. Singh and F. G. Vanlandingham, Astron. Astrophys. 66, 87 (1978).
- <sup>101</sup> W. A. Goddard, III and L. B. Harding, Annu. Rev. Phys. Chem. **29**, 363 (1978).
- <sup>102</sup> H. P. Trivedi and W. G. Richards, J. Chem. Phys. **72**, 3438 (1980).
- <sup>103</sup>D. L. Cooper and W. G. Richards, J. Chem. Phys. **74**, 96 (1981).
- <sup>104</sup> A. Mavridis and J. F. Harrison, J. Phys. Chem. 86, 1979 (1982).
- <sup>105</sup> (a) M. Lewerenz, P. J. Bruna, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. **49**, 1 (1983); (b) J. Phys. B **16**, 4511 (1983).
- <sup>106</sup> D. Power, P. Brint, and T. Spalding, J. Mol. Struct.: THEOCHEM **108**, 81 (1984).

- <sup>107</sup> J. A. Pople, B. T. Luke, M. J. Frisch, and J. S. Binkley, J. Phys. Chem. 89, 2198 (1985).
- <sup>108</sup> P. Ho, M. E. Coltrin, J. S. Binkley, and C. F. Melius, J. Phys. Chem. 89, 4647 (1985).
- <sup>109</sup>S. Oikawa, M. Tsuda, J. Yoshida, and Y. Jisai, J. Chem. Phys. 85, 2808 (1986).
- <sup>110</sup>L. G. M. Pettersson and S. R. Langhoff, Chem. Phys. Lett. **125**, 429 (1986).
- <sup>111</sup> W. D. Allen and H. S. Schaefer, III, Chem. Phys. 108, 243 (1986).
- <sup>112</sup> (a) A. Amore-Bonapasta, C. Battistoni, A. Lapiccirella, E. Semprini, F. Stefani, and N. Tomassini, Nuovo Cimento **6D**, 51 (1985); (b) **9D**, 156 (1987).
- <sup>113</sup>M. Larsson, J. Chem. Phys. 86, 5018 (1987).
- <sup>114</sup> J. Kalcher, Chem. Phys. **118**, 273 (1987).
- <sup>115</sup> J. A. Pople and L. A. Curtiss, J. Phys. Chem. **91**, 155 (1987).
- <sup>116</sup>D. S. Horowitz and W. A. Goddard, III, J. Mol. Struct.: THEOCHEM 163, 207 (1988).
- <sup>117</sup>L. A. Curtiss and J. A. Pople, Chem. Phys. Lett. 144, 38 (1988).
- <sup>118</sup> P. Ho and C. F. Melius, J. Phys. Chem. **94**, 5120 (1990).
- <sup>119</sup>K. K. Baeck and Y. S. Lee, J. Chem. Phys. 93, 5775 (1990).
- <sup>120</sup>A. F. Sax and J. Kalcher, J. Phys. Chem. **95**, 1768 (1991).
- <sup>121</sup>G. Leroy, M. Sana, C. Wilante, and D. R. Temsamani, J. Mol. Struct.: THEOCHEM 259, 369 (1992).
- <sup>122</sup> J. K. Park and H. Sun, Chem. Phys. Lett. **195**, 469 (1992).
- <sup>123</sup>R. S. Grev and H. F. Schaefer, III, J. Chem. Phys. 97, 8389 (1992).
- <sup>124</sup>H. H. Michels and R. H. Hobbs, Chem. Phys. Lett. 207, 389 (1993).
- <sup>125</sup> (a)C. Winter and P. Millié, Chem. Phys. **174**, 177 (1993); (b)**174**, 191 (1993).
- <sup>126</sup>D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 99, 1914 (1993).
- <sup>127</sup> J. Kalcher and A. F. Sax, J. Mol. Struct.: THEOCHEM **313**, 41 (1994).
- <sup>128</sup>J. Paldus and X. Li, Can. J. Chem. 74, 918 (1996).
- <sup>129</sup>C. W. Greeff and W. A. Lester, Jr., J. Chem. Phys. 106, 6412 (1997).
- <sup>130</sup>D. Feller and D. A. Dixon, J. Phys. Chem. A **103**, 6413 (1999).
- <sup>131</sup>D. Ajitha and S. Pal, Chem. Phys. Lett. **309**, 457 (1999).
- <sup>132</sup> (a) T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989); (b) Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 10/12/01, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
- <sup>133</sup> MOLPRO is a package of *ab initio* programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning *et al.* (2001).
- <sup>134</sup>(a) K. Docken and J. Hinze, J. Chem. Phys. **57**, 4928 (1972); (b) H.-J. Werner and W. Meyer, *ibid.* **74**, 5794 (1981).
- <sup>135</sup>S. F. Boys and F. Bernardi, Mol. Phys. **19**, 553 (1970).
- <sup>136</sup>ROVIB program developed in this laboratory (2001).
- <sup>137</sup>C. E. Moore, Atomic Energy Levels, NSRDS-NBS Circular 3 (U.S. Government Printing Office, Washington, DC, 1971).
- <sup>138</sup>C. F. Bunge, J. A. Barientos, A. V. Bunge, and J. A. Gogordan, Phys. Rev. A 46, 3691 (1992).
- <sup>139</sup> A. Kalemos, A. Mavridis, and A. Metropoulos, J. Chem. Phys. **111**, 9536 (1999).
- <sup>140</sup>NIST Atomic Spectra DataBase (http://physics.nist.gov/cgi-bin/AtData/ main\_asd)