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Nonhyperbolic escape and changes in phase-space stability structures
in laser-induced multiphoton dissociation of a diatomic molecule

Vassilios Constantoudi€* and Cleanthes A. Nicolaid&s"
lPhysics Department, National Technical University, Athens, Greece
Theoretical and Physical Chemistry Institute, Hellenic Research Foundation, 48 Vassileos Constantinou Avenue,
Athens 11635, Greece
(Received 19 April 2001; published 22 October 2p01

The dependence of photodissociation of a diatomic molewibeating according to the Morse potenjiain
the frequency of the laser field that induces it, is studied in the context of classical nonlinear dynamics. First,
it is observed that as the laser frequency increases towards the harmonic frequency of the potential, a transition
from stabilization due to Kolmogorov-Arnold-Moser tori to stabilization caused by the resonance stability
island occurs. Then, considering the photodissociation as a nonhyperbolic half-scattering process, we investi-
gate the influence of these changes in the phase space stability structures on dissociation dynamics via the
examination of the fractal set of singularities appearing in the time-delay function of the initial state. It is found
that the effective fractal dimension of this detfinite-scale approximation of the exact dimension which is
always equal to land the percentage of its singularities provide a link between these changes and the
dissociation rate.
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[. INTRODUCTION Although the scattering processes encountered in most
physical situations are typically nonhyperbolic, the vast ma-
During the last fifteen years, the influence of nonlinearityjority of recent research has focused on hyperbolic cgEes
on scattering processes has been studied extensively in ti@r example, the evolution of hyperbolic chaotic scattering
context of classical dynamid¢4]. A universal feature of this as a function of a parameter has been studied extensively
influence is the appearance of a fractal set of singularities if5—8|, whereas, to the best of our knowledge, the corre-
scattering functions. The scattering functions represent theponding problem in nonhyperbolic dynamics, as it will be
dependence of some output variable characterizing the tratated below, has not been addressed yet, although some at-
jectory after scatteringe.g., time delay, scattering anglen  tention has been paid to the more general problem of the
some input variable contributing to the initial condition of transition from hyperbolic to nonhyperbolic scatterimig9].
the trajectory. The trajectory can initially be located eitherSince parameter changes in nonhyperbolic dynamics are as-
outside the scattering regigscattering processesr inside  sociated with variations in the stability structures in phase
it (half-scattering processedn both cases, the presence of space, the problem actually has to do with the influence of
fractal singularities in scattering functions definefsaotic  these variations on the scattering dynamics. The study of this
scattering whereby very small changes in the initial condi- problem is motivated not only by the theoretical need to
tions may result in large changes in the output variable.  complete the theory of chaotic scattering, but also, and most
It has been established that chaotic scattering is due to thimportantly, by the fact that many scattering systems depend
existence of nonattracting chaotic invariant sets in phasen parameters whose variation modifies the structure of
space containing an infinite number of unstable periodic orstable regions. Thus, the aim of this paper is to investigate
bits. The dynamics on this set is classified as either hyperthis problem with respect to a real physical process, namely,
bolic or nonhyperbolic. In the hyperbolic chaotic scattering,that of themultiphoton dissociation of a diatomic molecule
there are no tori in the scattering region and all periodicinduced by a strong laser fieldn the context of classical
orbits are unstable. The typical survival probability function dynamics, this process can be considered as a nonhyperbolic
decays exponentially and the dimension of the fractal set dfalf-scattering process, where the laser frequency plays the
singularities is less than 1. On the other hand, nonhyperbolimle of the parameter whose variation modifies the features
chaotic scattering is connected to the presence of stable pef the stable regions.
riodic orbits in the scattering region and, as current evidence If we focus our attention on a line of initial conditions in
indicates, is characterized by power law decay of the survivgbhase space representing the initial state, then the influence
probability due to the stickiness effects of the stable regionsf the movement and deformation of the stability islands on
surrounding the stable periodic orbits. Moreover, it has beeithe escape dynamics is determined by two factors: the rela-
proposed 2] and verified numerically from the study of real tive position of this line with respect to the stable regions in
or model system$2—4] that the fractal dimension of the phase space and the strengthtiud stickiness effecfd0] in
singularities is always 1, even though their Lebesgue meahe borders of nearby stable regions. It will be shown that the
sure remains zero. role of these factors is revealed by examining the changes in
the structure of the set of singularities present in the time-
delay functions of the initial state, which serve as a finger-
*Email address: vconst@eie.gr print of the corresponding changes in the chaotic invariant
"Email address: can@eie.gr set in phase space. These changes, however, cannot be quan-
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tified by the exact value of the fractal dimension since, as wavhere Hq(r) =p?%2m+Vy(r) is the unperturbed Hamil-
said above, it is always equal to 1 for nonhyperbolic systemsonian,F is the amplitude of the electric field of the laskis

and hence irrelevant to the changes in the singular set. Oits frequencym is the reduced mass, anpdr) is the dipole
the contrarythe effective fractal dimensiongl, which is an  function.

approximation to the exact value since it is estimated for a For the parameters of the Morse potential we use the val-
particular range of finite scales, will be shown to be a goodues corresponding to the molecule HE2], whereas for the
descriptor of the aforementioned changes. The same will bdipole function we use the same analytical form as in Refs.
found to be true for the percentage of the singular initial[13,14],

conditions/\/’up over the escaping part of the initial state. In

particular, when a stable region in phase space approaches p(r)=Arexp( — ér?)

the initial state and at the same time the associated stickiness

effects are getting increasingly pronounced, an increment gfith A=0.4541 andt=0.0064(in a.u). We have confirmed
the de; of the singular set and a proliferation of the singu-that the results of our study are not sensitive to small varia-

larities (increment of the percentag¥,,) take place. This is tion of these_ choices. . .

in fact the situation for the classical dissociation of the The classical dynamics of our system can be obtained by
ground vibrational state of a diatomic molecule when thet"® numerical integration of Hamilton’s equations

laser frequency approaches the harmonic frequency of the

molecular potential. Moreover, this behavior seems to be the P= E, (39)
nonhyperbolic analog of thphenomenon of crisis and en- m
hancement of hyperbolic chaotic scatteriing8]. )

An important question concerns the observable conse- p=2Dae " Td(1-e 2" Te)

quences of the behavior af; and V. It will be shown

that both quantities are connected with the classical dissocia-

tion rate,Rcd, of th.e.initial state. In particulaRcq Fiecreases We can also use the action-angle variables of the unper-

exponentially sufficiently accurately @ or V,,, increases. turbed Morse oscillator

Therefore, we conclude that the effective fractal dimension

desr and the percentage of the singulariti€s, provide a link 2uD

between the movement and deformation of the stable regions J=—\/—>(1-J1-E), (4a)

in phase space induced by the change in some parameter and @

the behavior oR4 as a function of this parameter. L
The paper is organized as follows. We start in Sec. Il by _ a(r—r

presenting the system we study and by investigating the 0——sgr(p)arcco%fe( e)_ﬁl’ (4D)

changes in phase space structure as the frequency of the laser

field increases. These changes are associated with the behgyhereE=H,/D is the dimensionless energy of the unper-

ior of the dissociation probabilit? .4 and the red shift of the turbed molecule. The action-angle variables are limited to

optimum frequency. In Sec. lll, we use the tools of chaoticthe bound part of the unperturbed dynamiEs<(1) and this

scattering theory and focus our attention on the structure o why we prefer to integrate numerically the Hamilton’s

the fractal set of singularities of the time-delay functions. Inequations inr,p) representation and then transform them via

particular, we suggest a link between some characteristics ®q. (4) to the (9,J) or (6,E) representation.

this structure and the dissociation rate. Finally, Sec. IV con- |n order to mimic more effectively the quantum photodis-

tains an outlook of the paper and some thoughts about futuréociation process, we choose the initial classical state as

research. an ensemble of initial conditions with the energy of the

quantum state and angle variabl@ésuniformly distributed
Il. PHASE SPACE STRUCTURE VS LASER FREQUENCY between—7 and 7 [14,15. In the rest of the paper, we
._consider that initially the molecule vibrates in its ground

mo\llgﬁufg ?(?llrdsrfig:a% IC()e?:catr\(/;?l:ir(;a t::%rsl?ilgumrgttligg 21;1; udrllztaornllhceState with energyE, and interacts with a laser field of a
i i o . constant and strongnonperturbative intensity equal to
assumption that rotational motion is not excited. Then th gnonp e y €d

lecul tential be d ived b M tenti .3x10 3a.u. In addition, we focus our study on the fre-
[rr;(i]ecu ar potential may be described by a Morse potentia uency region in the neighborhood of the harmonic fre-

quencyf,= (2D a?/m)*? of the Morse potential, since it has
Vy(r)=D(1—e a0 o)), (1) be_e_n o_bserve_d t_hat in this region the photodissoc_iation prob-
ability is maximized and the quantum and classical results
where D is the dissociation energy, is the equilibrium resemble each oth¢i4,16.
bond distance, anad " is the range of the potential. HF, To understand the dependence of photodissociation on the
HCI, and NO are some examples of diatomic moleculedrequencyf of the laser field, first we have to examine the

where our assumptions are well satisfied. The Hamiltonian offovement of the stable regions in phase space as well as the
such a molecule in an external laser field can be given by deformation of their size caused by the increment of the fre-

quencyf. Roughly speaking, the overlap of the line of the
H(r)=Hg(r)—u(r)F cogft), (2 initial state with these regions in phase space gives the non-

+Ae & (4¢r— 1)F cosft. (3b)
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. - and theP 4 takes on its maximum valueP(4=1). This situ-
- ation holds untilo= w,=0.925, where a new overlap phe-
nomenon starts to occthird frequency regime The tori of

0.6
0.6 P the resonance region, initially lying at higher energies for
02 lower frequencies, now begin to overlap the initial state

causing the reduction of the.4. Finally, at higher frequen-
cies the resonant tori cover the whole classical state and the
P4 vanishes. Not surprisingly, the frequency region, where
the probability of photodissociation is maximized, lies
slightly to the left of the harmonic frequency & 1). This

red shift has been observed in both classical and quantum
studies and so cannot be considered an exclusively quantum
phenomenof3,14,17—-19. As we can conclude from inspec-
e e e tion of Fig. 1, in classical phase space terms, a transition
' 09 % 1o Il from KAM to resonant stabilization mechanisms lies behind
o this phenomenon, and in particular the enlargement of the
resonance area as frequency increases.

0‘ (0}
06 07 08 08 10 11
(0]

“-.resonance  region

FIG. 1. Energy ranges of KAM and resonance stability regions It is worth noting that the eneray ran f the resonan
vs rescaled frequenay=f/f,. The dashed curve shows the energy S Wo oting that he energy range of the resonance

E, of the initial state and the dotted curve the energy of the stabl&'€2 Sho_wn in I_:Ig. 1 is actually a rough estimation. 'I_'he
periodic orbit of the main resonance. The frequenaigsand w, fjlfﬂculty in Iocatmg the outer torus of the_ resonance region
mark the transition from KAM to resonant stabilization of the initial 1S due to the rich structure occurring at its bord26,21].
state. In between them, no stabilization occurs and the entire initial NS Structure involves both cantdremnants of broken tori
state dissociates. The inset shows the dependence of the classi@dld higher-order resonance zones resulting in strong sticki-
photodissociation probabilitp .4 on the rescaled frequeney. The ~ ness effect$10]. On the contrary, for the particular interval
P, is defined as the percentage of the chaotic and dissociatingf frequency values, the phase space structure around the
trajectories over the whole initial state. KAM region is quite different. Stroboscopic plots reveal that
no cantori exist and the high-order resonance zones are very
dissociating part of the initial state. The remaining part con-narrow. Therefore, the stickiness effects caused by the KAM
sists of transiently chaotic trajectories, which, after wandertori are much weaker than the corresponding effects of the
ing through the interaction region for some time, escape toesonance stable region. This difference, combined with the
infinity leading to molecular dissociation. For the particular movements of the stable regions described above, has dra-
choice of field intensity and frequency interval, there existmatic effects on the dissociation dynamics of the initial state
two types of stable regions. The first is the area of KAM tori, for the frequency region to which we limited our study and
which has survived deformed from the unperturbed dynamsheds light on the dependenceRyf, on the laser frequency.
ics, and the second is the stability region surrounding th&Ve will explain and quantify these effects as well as their
main resonance 1:1 between the field and the internal dypossible relation to the photodissociation rate in the follow-
namics. By increasing the frequency towarfgs the reso- ing.
nance region is lowered in energy and is enlarged, while the
KAM tori area gradually disappears. These changes in the
structure of phase space and their effect on the initial state
are depicted in Fig. 1, which shows the energy range of the
KAM tori (gray region and the resonant totlight gray re- In accordance with relevant literatuf@2,23, we con-
gion) for the whole interval of interest of the rescaled fre- sider that a trajectory escapes from the bound part of the
quencyw = f/fy. The dotted curve at the center of the reso-potential leading to dissociation of the molecule when the
nance region represents the frequency dependence of thempensated energy of the molecule becomes greater than
energy of the stable periodic orbit of the resonance, wheregs. The compensated energy is defined by
the dashed curve is the line of the initial vibrational state at
energyEy. By inspecting also the inset in Fig. 1, we can 1 = 2
separate the dissociation behavior into three frequency re- EC:ﬁ p— —Ae*fr4(1—4§r4)sin(wt) +Vy(r)
gimes. w
In the first regime p<w,=0.82), part of the initial state ®)
remains trapped in KAM tori and, consequently, the classical
photodissociation probabilit .4, the percentage of the tran- and it is used because it removes the oscillations of the real
siently chaotic and finally dissociating trajectories, is lessenergy caused by the oscillations of the time-dependent field.
than 1. As frequency increases, this part becomes gradualljherefore, it helps us to determine the time at which the
smaller since the KAM area is shrinking more and more, ancffect of the molecular potential vanishes. After this time,
consequentlyP 4 increases too. Aw=w,; we pass to the the molecular bond can be considered broken and hence the
second regime. Here the whole classical state can escapedtapsed time is in fact the photodissociation tiffig of
infinity in the limit of infinite time (no overlap takes plage the particular trajectory. ObvioushR.y depends on th&

IIl. FRACTAL SINGULARITIES
AND DISSOCIATION RATE
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FIG. 2. The time-delay function§4( ) of the initial state withE=E for increasing values of the rescaled frequeacyObserve the
changes in the magnitude of the dissociating part of the initial $¢htéig. 1) and also the modifications in the fractal set of singularities.

of the trajectories that comprise the initial state. Followingof the set of these singularities is described by the uncer-
our previous worK3], we calculateR.4 by applying the form tainty dimensiord [24,25. In the case of nonhyperbolic dy-
namics, it has been propos¢#] and numerically verified
10 . [2—4] that the exact value af is always equal to 1. Obvi-
Rcdzﬁz (T4, (6)  ously, this quantity is irrelevant to our problem since it can-
=1 not describe the effect of the movement and deformation of

(i) : : o . . the regular regions on the set of singularities, which deter-
whereTy is the photodissociation time of thén trajectory mines the behavior of the photodissociation rate. Neverthe-

and the summation is taken over all transiently chaotic anghss it is worth noting thatl converges to its exact value 1
finally dissociating trajectories of the initial state. Remem—omy when it is computed for successively smaller scales

bering that the dissociation process is in fact a half-scatteringyat is d—1 ase—0 [2,3]. For a specific limited range of
process, it seems natural to use as a probe the influence gfalese, the computed is actually an approximation from
the aforementioned changes in phase space on the featuresgfiow to the exact value. This approximatedeffiective un-

the time-delay functior 4(6) of the initial state. This func-  certainty dimension g is shown to be an important quantity
tion is characterized by a fractal set of singularities as wefor our problem. We have calculateld; for —12<log; ()

can see in Fig. 2, which shows th&y(#) for w <-4 as a function of the rescaled laser frequencin the
=0.73,0.81,0.89,0.97. The transition from KAM to resonantinteresting region and the results are shown in Figful
stabilization may also be detected here«wAt0.73 and 0.81, circles.

the central part of the initial state does not dissociate because We realize thatl is sensitive to the observed changes in
of the presence of KAM tori, whereas at=0.97 the non- the set of singularities caused by the increase in frequency
dissociating part of the initial statd>1) is due to the and therefore it can be considered as a good descriptor of the
overlapping with the resonant tori. Apart from this, one canmodifications of the chaotic invariant set triggered mainly by
also observe some modifications in the structure of the set ahe energy descent of the resonant region. Despite the pres-
singularities that have to influence the dissociation dynamicsence of some fluctuationd.s increases with increasing fre-
How can we quantify these changes? Usually, the fractalitquency. A qualitative explanation of this fact is given below.
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the nonhyperbolic character of the dynamics. The sticking
trajectories actually come from the intersections of these
0961 1 stable manifolds with the line of initial conditions. It is ob-
0944 o, 1% vious that the influence of the nonhyperbolicity of the dy-
052, / K’/ ] namics on the initial state depends on the strength of the
:/ sticking effects of the stable regions as well as on their rela-

1
=3

0.98+

d 0.6

-~

= 0.901 o~ n/a— _'043 tive position with respect to the line of the initial state. It is
.85 / /:/ ’ worth stressing that, the strength of these effects depends not
056 /0\ 7045/': doa only on the external parameters of the dynamics but also on
1 o ot ] the type of the stable region. Specifically, in our system and

for the particular range of the laser frequency, the stickiness
_ _ ‘ _ . , effects around the tori of the main resonance are more pro-
070 075 080 085 09 095 10 105 nounced than those of the KAM tori because of the richer
structure of cantori and secondary resonances that develop
FIG. 3. The effective fractal dimensiaty (full circles) and the  along its borders. Additionally, the enlargement of the stable
percentage of the singular initial conditiond,, vs rescaled fre- region is expected to amplify these effects further. Therefore,
quencyw._Notice their sensitivity tav despite the nonhyperbolicity gg regards the nonhyperbolicity of the dynamics, the incre-
of dynamics. ment of the frequency causes two effects. First, due to the
Apart fromdgg, the structural changes of stability regions gnlargement .Of the resohant region, the chaotic i_nvz_ariant _set
also have an effect on the relative “size” of the fractal set of'> ennched with the manifolds of the unstable perlod|c orbits
singularities compared with the dissociating part of the initial®f the high-order resonance zones, and hence its nonhyper-
state. We can quantify this relative “size” by the percentageP®!ic character becomes more pronounced. Second, this in-
of the uncertain pointgsingular initial conditions A () ~ ¢f€asing nonhype.rbollc_lty of .the_ chaotic invariant set be-
for a particular sufficiently small value of. Apparently, COmes more prominent in the initial state as the stable area of'
Nyf(&)=Nyf(e)/N, where Ny(e) is the number of the the main resonance comes nearer. These effects are quanti-
e-uncertain points and\,. is the number of the transiently fied by the increment ofler and.Vp.
chaotic trajectories. Figure 3 shows the dependence of The above procedure seems to be, in some sense, the non-
Niyp(e= 10" %) on the rescaled frequenay (open squargs  hyperbolic analog othe phenomenon of crisis and enhance-
We observe that the behavior of the percentaggw;e) is ~ ment of hyperbolic chaotic scatteringvhich is observed
roughly similar to that ofd.g. It increases with frequency. When two isolated chaotic invariant sets become heteroclini-
Our calculations showed that this behavior is independent ofally tangent to each other leading to an increment of the
the specific value o. uncertainty dimension of the set of singularities as well as to
Thus, we conclude that the movement and deformation o proliferation of them in the scattering function, the latter
the stability regions in phase space influences the structure lled “enhancement of hyperbolic chaotic scattefing
the set of singularities in time-delay functions and this effecf7,8]. In the case of the nonhyperbolic dynamics of our sys-
can be quantified by the effective fractal dimensiyy and  tem, we _rogghly_ have a heteroclinic intersecti_on of _the non-
the percentage of the singulariti#,. In particular, because hyperbolic invariant set of the u_nstable penodlg o_rb|ts _of the
of the weaker stickiness effects around KAM tori, it is S€condary resonance zones with the hyperbolic invariant set
mainly the energy descent and the enlargement of the res#ing in the chaotic region. In accordance with the hyper-
nant region that makes the fractal set of singularities densdiolic case, we have found an increment of the effective frac-
at small scales and more extended in the initial state. tal dimensionde and a proliferation of the singularities in
A qualitative explanation of this behavior may be the fol- the time-delay function expressed by the increment/gf.
lowing. It is well known that the singularities in the scatter- ~ Since the uncertain initial conditions are in fact intersec-
ing functions fall on the intersections of the line of initial tions with the stable manifold of the chaotic invariant set,
conditions with the closure of the stable manifold of thethey will give trajectories acquiring a long dissociation time
unstable periodic orbits embedded in the nonattracting chalq. Therefore, a connection betwedg; and A, describ-
otic invariant set whose existence marks the chaotic scatteing the fractal set of singularities, arf, is expected to
ing. If there were no stable regions in phase space, then trexist. In order to check the validity of this expectation, we
escape dynamics would be hyperbolic and the uncertain dicalculateR 4 by the formula(3) for the frequency region we
mension would be lower than 1. The presence of the stabilityised in previous calculations. Figure 4 shdg as a func-
regions is associated with the appearance of stickiness effedion of de¢ (a) and N, (b). We observe that, despite some
[10], according to which some chaotic orbits “stick” to the fluctuations, an exponential relation can clearly be extracted.
borders of these regions for some long time interval, leading\t present, the exact form is not relevant. The important fact
to a power law behavior of the survival probability. Theseis that the increment of and \V,, is undoubtedly associ-
effects are due to the cantori and the zones of high-ordeated with exponential reduction &4. Hence, we can think
resonances that appear on the borders of stable regions. Thethe d and NV, as the quantities connecting the changes
manifolds of the unstable periodic orbits of these zones conin the structure of the stable regions in phase space with the
tribute to the formation of the chaotic invariant set providing observable photodissociation rate.

-
o84 @B

0.82
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] @ ] (®) ability on the laser frequency. It was indicated that a transi-
tion from KAM to resonance stabilization occurs as the laser
frequencyf increases towards the harmonic frequency of the
potentialf,, and that at the edge of this transition the pho-
todissociation maximizes. An interesting issue for future
study is the quantum mechanical implications of these two
different stabilization mechanisms and, in particular, the
quantum aspects of the stickiness effects associated with the
resonance stability islands.

The second and more important question had to do with
the influence of the above phase space changes on the disso-
ciation dynamics and rate. This question was investigated
using as a probe the changes in the structure of the fractal set
of singularities in the time-delay functions of the initial clas-
sical state. We proposed two quantities that can describe
080 085 090 095 10 .02 0002 04 0608 1.0 12 these changes, namely, the effective fractal dimension and

d ' the percentage of the singular trajectories, and showed that
they relate to the classical dissociation rate. The findings

FIG. 4. The exponential dependence of the classical photodissgoncerning the last question may be considered as a first step
ciation rateR.q on the effective fractal dimensiahy (a) and onthe  towards a deeper understanding of the core problem in non-
percentage of the singular initial conditiong,, (b). hyperbolic scattering, that is, the influence of the character-
istics of the stable regions on scattering dynamics. The sec-
ond step would be to confirm the generic character of our
results by investigating other nonhyperbolic scattering or

In this paper, we investigated the classical photodissocighalf-scattering systems. Furthermore, additional analysis in-
tion of a Morse diatomic molecule by using the tools of thevolving in a quantitative way the properties of the nonattract-
theory of chaotic scattering. In particular, two questions wereéng chaotic set and their relation to the dissociation rate
addressed. The first referred to the dependence of the phaseuld hopefully provide the theoretical background of our
space stable regions and hence the photodissociation prokesults.
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