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We present results for the partial and total widths, with interchannel and intrachannel coupling in-
cluded, of the 1s(nl)?2S resonances of He ™, n =3 and 4. These are obtained by solving the correspond-
ing state-specific complex eigenvalue Schrodinger equations and subsequently using simple formulas. A
number of conclusions are drawn as to the wave-function characteristics and the distribution of the au-
toionization rates. The computations include the self-consistent interactions between the core and the
valence electrons, localized valence correlations, and interactions among all the open channels with heli-
um 1sNI*'L, 1=0,1,2 cores. These prototypical calculations can be carried out in larger systems as
well, since the structure of the theory is such that it allows the quantitative treatments of multichannel
dynamics in arbitrary polyelectronic atoms. For the total widths, comparison is made with a previous

19-state R-matrix calculation and with measurements.

PACS number(s): 32.70.Jz, 31.50.+w, 32.80.Dz

I. INTRODUCTION

The inner-shell-excited series of 2S of He ™, whose as-
signment is a linear combination of 1s(nl)?
configurations, constitutes a two-electron ionization
ladder, (TEIL), as deduced from first-principles computa-
tions of their energies and wave functions [1,2]. Compar-
ison with the electron scattering resonance data of Buck-
man et al. [3,4] verified that what was seen experimental-
ly indeed corresponds to a series of doubly excited states
with strong localization properties of the two valence
electrons at equal distances from the nucleus and at an
angle tending to 180° as the two-electron threshold is ap-
proached [1,2,5]. Such an identification had previously
[3] been based on the good fitting of the observed energies
to a Rydberg-like formula [6].

The fact that theory has been able to interpret the He ™
experimental resonance spectrum in terms of the special
class of Wannier TEIL states is indeed satisfactory.
However, what is most challenging is the problem of ob-
taining reliably the characteristics of their decay dynam-
ics. Here, no experimental data exist. How is energy
redistributed and with what probability? More
specifically, how can we compute the partial widths of
the multitude of open channels available for decay, ac-
counting for electronic structure, for interelectronic in-
teractions, and for interchannel coupling?

It has been the objective of the present work to provide
quantitative answers to such questions and to compare
them with those pertaining to the H™ TEIL states of 'S
symmetry [7,8]. The interesting difference between H™
and He™ is the additional complexity due to the core
electrons present in the closed and open channels of the
He™ 2S resonances. Our earlier application to the H™ 'S
TEIL [7,8] showed how partial widths with interchannel
coupling can be obtained in a simple way and led to a
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quantitative interpretation of the bulk of the decay dy-
namics of the TEIL resonances. Similar calculations
have recently also been accomplished for the H™ 'P’
TEIL states [9], revealing a number of interesting proper-
ties common to both symmetries. One of these is the
dominance of the nearest open channel, something which
was first shown for the 'S states [7] and also confirmed re-
cently by Sadeghpour, Greene, and Canagnero [10] for
H™ 'P° resonances via eigenchannel R-matrix theory.

The part of the He™ TEIL spectrum which was con-
sidered in this study is shown in Fig. 1. The theory and
computational methods for obtaining the correlated wave
functions and the partial and total widths are discussed in
the next two sections while Sec. IV contains our results
and conclusions.
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FIG. 1. Calculated positions of the n =3 and He™ 2S TEIL
states, in relation to the He thresholds into which they decay.
The He 152 ground state is outside the scale.
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II. BASIC FEATURES
OF THE STATE-SPECIFIC THEORY
FOR THE COMPUTATION
OF CORRELATED WAVE FUNCTIONS
OF RESONANCES IN POLYELECTRONIC ATOMS

The reality of the electronic structure dependence of
electron correlation in highly excited states, such as
valence-excited autoionizing states or inner-hole Auger
states, and the fact that these states decay into many
open channels of the same symmetry, lead to one of the
most demanding problems in the theory of atomic and
molecular properties, i.e., the computation of partial
widths of transitions to many interacting continua.

The theory and method of computation which are fol-
lowed here solve this problem by diagonalizing suitably
constructed non-Hermitian matrices with square-
integrable function spaces and by subsequently using sim-
ple but rigorous formulas.

Specifically, for an isolated resonance we start with the
complex eigenvalue Schrodinger equation (CESE)

(H—2zy)¥=0, (1a)
—g_ 1
20=E—-T, (1b)

where V¥ satisfies unnormalizable asymptotic boundary
conditions whose form depends on the potential ([11,12]
and references therein). Projection of ¥ onto ®,, the por-
tion representing the interelectronic interactions contrib-
uting to the localization of the resonance [see Egs.
(1)-(30) of Ref. [13]], gives rise to a real eigenvalue
many-electron problem under square-integrability bound-
ary conditions,

(Ho_Eo)\Ilozo > (2)

where H, is the projected effective Hamiltonian
H,=QHQ, Q=V¥,)(¥, Note that no projection onto
exact target states is required—as it is in the Feshbach
formalism and its implementation on two-electron reso-
nances [14]. Rather, the effort is concentrated on obtain-
ing localized zero-order and correlation functions which,
by construction or core orbital orthogonalities, exclude
open channels and lower states of the same symmetry.
The difference

X, =V—¥, 3)

is the asymptotic correlation representing particle emis-
sion. The function space is a symmetry-adapted product
of electronic-structure-dependent cores with channel-
dependent “Gamow orbitals ” [15,11,16], which are made
square integrable via the transformation p=re® [12,17].
The form and computation of ¥, and of X,, depend
crucially on the concept and reliable representation of a
realistic zeroth-order vector which is optimized for the
state of interest. Starting with the calculations of Ref.
[13], where the analytic Hartree-Fock (HF) method of
Roothaan was applied, it has been demonstrated in work
from this institute [1,2,5,7,18,19] that for such highly ex-
cited states, HF or multiconfiguration Hartree-Fock
(MCHF) solutions can indeed be obtained numerically or

CHRYSOS, ASPROMALLIS, KOMNINOS, AND NICOLAIDES 46

analytically and that these represent optimal zeroth-order
descriptions accounting for the major characteristics of
the concerted electronic motion.

This approach secures the following.

(i) In contradistinction to diagonalization methods of
Hermitian or non-Hermitian Hamiltonians with fixed
basis sets, which have been applied extensively to two-
electron systems, arbitrary electronic structures of sys-
tems with any number of electrons can be treated. Re-
views of the state-specific methods which are applicable
to excited states are given in Refs. [20,21].

(ii) Rather than searching for roots of diagonalized ma-
trices satisfying various resonance conditions, the basic
desideratum is convergence to a specific, electronic-
structure-dependent square-integrable solution, express-
ing the localization of the resonance state. In this regard,
the correspondence is made between the existence of the
proper HF or MCHEF zeroth-order solution satisfying the
virial theorem, the physically imposed radial nodes
(applicable to atoms and diatomics) and structure-
dependent orthogonality constraints, and the existence of
the localized wave function ¥, embedded in the continu-
ous spectrum.

(iii) Even in zeroth-order, the major features of the
TEIL and other multiply excited states emerge clearly
and quantitatively. (See Refs. [1,2,5,18] for doubly excit-
ed states and Refs. [22-24] for triply excited states.)

(iv) Given the orbital structure of the zeroth-order ap-
proximation to W, many-electron analysis of ¥, and of
X,; leads naturally to the concepts of localized and
asymptotic correlation functions [15,11,16] which are as-
sociated with physically transparent contributions to the
real energy of Eq. (1b) and to the partial widths making
up T of Eq. (1b) [25].

ITII. APPLICATION TO THE COMPUTATION
OF THE PARTIAL WIDTHS
OF THE He™ 2S TEIL RESONANCES

The localization and spectral properties of the He™ 2§
TEIL resonances have been demonstrated in previous
work [1,2]. Their main features are revealed by their
MCHF wave functions for each level of excitation, n,
which have the structure

(I)K,ICHF=2a1u,‘1 , I=0,l,...,n_1 , (4)
!

where u,;=1snl?. The valence orbitals are computed
while they are kept orthogonal to the HF orbitals of the
triplet core states of He*. The coefficients a; for n =3-9
are shown in Table I. They are large and positive, con-
tributing to constructive interference of many strongly
mixed spherical harmonics which localizes the electrons
on the Wannier ridge. A point to note is that as n in-
creases, the major configuration ceases to be the 1sns®
and is replacd by 1snp? at n =8.

Given the very good results obtained earlier for the H™
IS TEIL states [7] and the similarity of their structures to
those of the He™ 2S TEIL states [1], in this work we
chose
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TABLE I. Expansion coefficients of the ®}ycyr of the He™ %S resonances n =3-9.

Configuration n=3 n=4 n=S5 n=6 n=17 n=38 n=9
1s(ns)? 0.849 0.793 0.739 0.696 0.655 0.612 0.579
1s(np)? 0.525 0.591 0.631 0.646 0.657 0.653 0.649
1s(nd)? 0.054 0.144 0.227 0.297 0.351 0.397 0.429
1s(nf)? 0.031 0.064 0.100 0.129 0.192 0.226
1s(ng)? 0.004 0.008 0.010 0.065 0.089
1s(nh)? 0.001 0.001 0.021 0.032
1s(ni)? 0.001 0.003 0.007
1s (nk)? 0.001 0.002
1s (nl)? 0.001
W= ®Y ur (5a) ple %, p=re’®, 6<0, @)
E§=E}ycur - (5b)  well-defined regions of stability of the width versus a,6
. . L . and basis-set size were obtained. The optimum values
The asymptotic correlation function is written as Gops Oop and the size of the function space for each n,
X%(e)=3 Xﬁ (E) (6a) are shown in Table II. Having' thus optimized th.e func-
N tion space, the all-order partial complex energies are
N<n given by
n—1N—=1 1 .
=3 3 3 chis ViSegMtS(E) (6b) zN,I,S=5N,I,S_L,yN,I,S
N=11=05=0 2
where V,{;;S='[1le]25+‘LI and each open channel is _ CNis (Drie H| VS0 g MH5) | ®)
uniquely specified by a triple (N,/,S) for a given reso- cYcur

nance n. The Gamow orbitals gV'*S(E) have been con-
structed by using different orthogonal basis sets {v;l], of
properly chosen complexified Slater-type functions (see
below), with ten and eight basis functions for the n =3
and 4 He™ resonances, respectively (Tables II-IV).
These have been kept orthogonal to the orbitals of the He
triplet states lying below, while they were not made or-
thogonal to the valence orbitals. This nonorthogonality
gives rise to non-negligible terms of the form
(nl|v1)I(nl,NI) and {nl|v;l)R*1s,nl;1s,NI) in the
matrix elements of the He™ TEIL resonances, where [
and R* denote one-body and two-body integrals, respec-
tively.

In order to decrease the error propagation during the
sequential orthogonalizations of the v;/ to one another
and to the core orbitals of the lower thresholds, we ap-
plied the Gramm-Schmidt method analytically. The
symmetry-adapted three-electron channel functions were
formed by coupling the Gamow orbitals g™*S, with the
corresponding neutral helium parental states 1sN/ 2 *1L.

By making several trials for various values of the non-
linear parameters a and 6 of the complexified radial parts
of the Slater-type functions

where ¢y ;s and cycyr are the mixing coefficients with
interchannel coupling, 8™"5 is the partial energy shift,
and y™%S is the partial width. The total width of each
TEIL state is then the sum of the partial widths

r'=3y¥=33 3%, ©)
N N I S

We note that, because of its smallness, the partial
width to the 1s? threshold was computed separately, by
the golden rule formula and a numerical HF scattering
function.

IV. RESULTS AND CONCLUSIONS

The results of our calculations permit the following ob-
servations, in conjunction with our previous results on
H™ [7].

(i) For each TEIL resonance, as we move from an
open-channel manifold N to another, the manifold contri-

TABLE II. Number of configurations used to describe the function spaces ®ycyr and X, number
of rotated Slater-type orbital (STO) functions used per open channel, and optimum values of the non-
linear parameters «, 6 in each complexified Slater-type orbital, v;l.

n DlcHF Xz No. STO per orbital Aot Oopt
3 3 50 10 0.5 —30°
4 4 88 8 0.2 —30°
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TABLE III. Closed- and open-channel configurations parti-
cipating in each of the function spaces ®}cyr and X3, for n =3
and 4. As regards the orbitals describing the free electron, they
have been constructed by using for each of the states n =3 and
4 a different orthogonal basis set {v;/}, of properly chosen
complexified Slater-type functions, with ten and eight basis
function, respectively.

n Phcur X
(15)? v;s
3 1s(3s)? (1525)'S v;s
1s(3p)? (1525)3S v;s
1s(3d)? (1s2p)'P° v;p
(1s2p)’P° v;p
4 (15)? v;s
(1525)'S v;s
(1525)’S v;s
15 (4s)? (1s2p)'P° v;p
1s(4p)? (1s2p)’P° v;p
1s(4d)? (1s35)'S v;s
1s(4f)? (1535)°S v;s

(1s3p)'P° v;p
(1s3p)*P° v;p
(1s3d)'D v;d
(1s3d)’D v,d

bution to the total width changes by an order of magni-
tude (Tables VI and VII). As N decreases, the contribu-
tion becomes less important. The largest contribution
comes from the closest to the resonance open-channel

TABLE 1IV. Energies (in eV from the double ionization
threshold) of the He™ S and H™ 'S TEIL states n =3 and 4.
For He ™, the energy of the 1s He™ state has been subtracted.

n=3 n=4
He™ H™ He™ H™
State-specific theory
2.108* 1.867° 1.153* 1.074°
2.156°¢ 1.885°¢ 1.180° 1.088°¢
Other methods
2.149¢ 1.882°¢ 1.154¢ 1.085°¢
1.882f 1.0798
1.878"
1.878 1.078
Experiment
2.137% 1.153%
2.138 1.143

“Present work.
®Reference [7].
‘Reference [1].
dReference [32].
‘Reference [26].
fReference [27].
EReference [28].
"Reference [29].
iReference [30].
iReference [31].
kReference [4].

manifold, N =n —1, exceeding by far that of the others.
This phenomenon was first noticed in the 'S and 'P°
TEIL resonances of H™ [7,9]. It is attributed to the rap-
idly increasing overlaps of the valence orbitals with the
NI orbitals of the He thresholds, 1sNI, as N increases
from N =1 to N =n —1. The rapid increase comes from
the N2 dependence of the average radius of the NI orbital.

(ii) For the He™ 2S TEIL states n <7, the nearest
group of open channels corresponds to the helium thresh-
olds N=n—1. However, a drastic change occurs at
n =8. The energy of this state, —2.010 56 a.u., is found
to be slightly lower than most of the helium thresholds
N =7. Thus, for He™ 2S TEIL states n > 8, most of the
He channels N =n —1 are no longer open, and therefore
they start contributing to the localized component of the
total wave function. This phenomenon is expected to be-
come more pronounced for higher #n, since an increasing
number of channels gradually close. The same situation
has already been observed for the TEIL states of H™
[7,9]. Itis still an open question whether and to what ex-
tent the new closed channels contribute additively to the
width of the resonance, which is otherwise expected to
decrease rapidly as soon as the most significant open
channels close.

(iii) When compared with the total widths of the H™ 'S
TEIL states [7], the total widths of the He™ %S TEIL res-
onances are larger. This is mainly due to the doubling of
the number of the open channels in the latter case. (The
effective nuclear charge is practically the same in both
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FIG. 2. Plot of the convergence of the autoionization half
width (a.u.) of the n =3 S TEIL state of He ™, as a function of
the number of asymptotic correlation vectors used in the calcu-
lation. The first plateau represents a stable result reached as
soon as all the p-type asymptotic functions have been included
[20 functions: (1s2p)'P v;p, (1s2p)°P v;p, i=1,...,10]. The
second plateau gives the half width of the resonance, and is
reached as soon as all the s-type asymptotic vectors have also
been added [30 functions: (1s2s)'S v;s, (1525)’S v;s, (1s)? u;s,
i=1,...,10]. The presence of the (1s)? es channel does not
affect at all the results which are obtained by the inclusion of all
the N =2 asymptotic channels.
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TABLE V. Total autoionization widths (in meV) of the He™ 2S and H™ 'S TEIL states n =3 and 4.
The results correspond to the lowest root of each manifold. Our results show a slight decreae of the to-
tal width from n =3 to 4 for both the H™ 'S and He™ 2S TEIL states. On the contrary, the R-matrix
results of Ref. [32] show a fivefold increase, while the experimental values (Ref. [31]) for the two states
are almost equal. Our result for the width of the He™ n =4 TEIL state is in agreement with the experi-
mental value, while that of the n =3 state shows a discrepancy of 40%.

n=3 n=4
State-specific complex eigenvalue theory
This work He™ 60 He™ 50
Ref. [7] H™ 41 H™ 26
Other methods
H™ H™
Ref. [30] 41 30
Ref. [29] 39
Ref. [28] 26
Ref. [32] He™ 26 He~ 154
Experiment
Ref. [31] He™ 36 He™ 50

systems, while the energy spectra tend to the same values
as n increases [1].)

(iv) Despite the opening of more channels, in compar-
ison with H™, the tendency of the width to decrease as
the level of excitation increases is similar to that of H™
(Table V). This is attributed to the gradually decreasing
overlaps of the 1s(n/)? localized configurations with the
various ‘“‘asymptotic” configurations, 1s(n—1)ly;l
Indeed, the valence electrons are localized mainly in re-
gions approximately proportional to n2, while the Ryd-
berg electrons of the remaining atom, for the closest to
the resonance manifold, are mainly localized in radii ap-
proximately proportional to (n —1)? and, therefore, the
overlapping areas tend to decrease with increasing n.

(v) The various thresholds associated with each open-
channel manifold are not degenerate any longer, as they
were for H™ (Fig. 1). Now, their contribution to the
width also depends on their distance from the corre-
sponding TEIL state.

TABLE VI. Percentage of the total width of the (1sNI) 3L &/
partial autoionization widths of the TEIL states » =3 and 4 of
He™ 2S. The contribution of each channel manifold, N, to the
total width increases with increasing N, for any level of excita-
tion, n. The p waves contribute the most.

Channels n=3 n=4
(1s)%s 1.6% 0.3%
(1525)3S es 5.8% 0.1%
(1525)'S es 2.7% 1.1%
(152p)*P° ¢p 57.7% 1.7%
(1s2p)'P° gp 32.3% 3.9%
(1535)3S es 4.1%
(1535)'S es 4.1%
(1s3p)*P° ¢p 57.3%
(1s3p)'P° ¢p 27.4%
(1s3d)°D &d too small
(1s3d)'D ed too small

(vi) Concerning the different parental terms within the
mostly significant open-channel manifold, N=n —1, the
triplets contribute to the total width almost twice as
much as the singlets do (Table VI). This is due to the
symmetry structure of the autoionization interaction ma-
trix element.

(vii) From all the possible angular momentum channels
within the channel manifold, N =n —1, the largest con-
tribution comes from the p waves, while that of the d
waves is negligible (Table VI).

(viii) As the number of open-channel configurations,
(1sN1)3S*IL .1, increases, the following result is ob-
served. Each time the function space (1sNI) 21/ {,1},
is saturated for every specific n, N, and /, a stable plateau
is formed, which is associated with the partial width of
the corresponding channel (Fig. 2). For example, consid-
er the TEIL state at n =3. Having computed the local-
ized ¥g, we sequentially add sets of ten functions each
(Table III) of (152p)’P v;p, (152p)'P v;p, (1525)’S u;s,
(1s2s)'S  v;s, (1s)> ;s channel configurations,
i=1,2,...,10, thus obtaining different plateaus (Fig. 2).
For the formation of each plateau, only part of the in-
terthreshold channel coupling is taken into account, in
terms of the corresponding configurations. Therefore the
plateaus shown in Fig. 2 offer a picture of the partial de-
cay rates. When all the channel configurations are
present, the distribution is stabilized at the total width of
the state.

(ix) Finally, for the case of total widths, comparison is
possible with the measurements of Brunt, King, and
Read [31] and the large, 19-state R-matrix scattering cal-

TABLE VII. Partial widths to the (1s)? channel (in a.u.) of
the TEIL state » =3 and 4 of He ™ 2S, obtained from the golden
rule formula and numerical Hartree-Fock scattering functions.

n=4
4.60Xx10°°

n=3

3.58X10°°




5794

culations of Fon et al. [32]. The absolute numbers are
shown in Table V. We note that there is a qualitative
difference. Whereas the R-matrix calculations show an
increase of the total width as we go from the n =3 to the
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n=4 TEIL state [the ratio being I'(n=4)/
I'(n =3)=5.92], the present CESE theory predicts a
slight reduction [I'(n =4)/I'(n =3)=0.83], in agree-
ment with the trend found for the 'S TEIL states of H™.
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