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In view of the possibilities of laser spectroscopy with very short pulses and relatively high frequencies, we
examine aspects of the theory of atom-field interactions that are related to violation of the condition of the
long-wavelength approximationsLWA d according to whichkr!1, wherer is “of the order of atomic dimen-
sions” andk is the magnitude of the wave vector. On- and off-resonance transitions are considered, withkr
being larger than unity due to the large extent of the two wave functions involved in the coupling matrix
element. The implementation of the analysis uses bound-free transition matrix elements with then=50 and 80
hydrogenic functions as initial states and values ofk up to 27 eV, which is sufficient to producekr.1, thereby
rendering the LWA inoperative. In spite of this, it is shown that, for on-resonance transitions, the results from
the use of the well-known multipole operators resulting from the LWAfe.g., theelectric dipole approximation
sEDAdg agree with those from the exact expressions derived here from the application of the multipolar
Hamiltonian. This numerical agreement is proven analytically. As a test of the kind of convergence of the
multipole series expansion for small values ofk and larger, it is shown that the lowest-order ratio of electric
dipole to quadrupole matrix elements decreases rapidly within 1.0 atomic unit above threshold. Finally, it is
shown that off-resonance couplings lead to differences between the full-interaction operator and the EDA
which cannot be neglected. In the extreme case of intrashell couplings for then=50 shell, calculation shows
that the 50p state is coupled to angular momentum states up to,=21, compared to the electric dipole coupling
of D,= ±1.
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I. INTRODUCTION

In two recent publicationsf1,2g, we examined aspects of
the problem of atom-field interactions, as regards the choice
of the coupling operator and its implications when applica-
tion is made to nonperturbative problems involving high-n
Rydberg states. Letl be the wavelength of the radiation and

l̄nn8 the wavelength corresponding to the energy difference
between two Rydberg statesn andn8. One of the conclusions
was that, in situations where off-resonance transitions with

l!l̄nn8 are indirectly participating in the dynamics, theelec-
tric dipole approximationsEDAd, which has been the work-
horse of one-photon and multiphoton spectroscopy, is unre-
liable and in fact must be replaced by the full-interaction
operator. In our work, the full-interaction matrix elements
were computed and analyzed by implementing themultipo-
lar Hamiltonian Hmp, which is related to the better-known
minimal couplingHamiltonianHmc via a gauge transforma-
tion f3–7g. The zeroth-order term of the multipole expansion

of Hmp is the “length” form of the EDA,EW s0d ·rW. HereEW s0d is
the electric field vector without dependence on position. On
the other hand, the zeroth-order term forHmc is the “veloc-

ity” form of the EDA, AW s0d ·pW , whereAW s0d is the vector po-
tential without dependence on position. Our choice to work

with Hmp aimed at establishing a direct correspondence be-
tween the results of the length form of the EDA and the
results from the application of the operator of the full inter-
action. The related argument was that, for problems with
hydrogenic degeneracies such as the one treated inf2g, the
EW s0d ·rW form makes better computational and physical sense

to represent the zeroth-order model than theAW s0d ·pW form,
since for the latter one the coupling matrix elements within
the same hydrogenic shell, which are overwhelmingly domi-
nant in the length form, are zero. The formalism was devel-
oped in such a way as to allow computations with numerical
functions, thereby permitting the treatment of high-n Ryd-
berg states of polyelectronic atoms, regardless of electronic
structure and quantum defects. The accuracy of the first part
of this work f1g was recently confirmed by Parzynski and
Sobczakf8g, who performed certain related integrations ana-
lytically using hydrogenic functions.

The present paper reports additional analysis and results
on the general issue of the possible consequences from the
breakdown of thelong-wavelength approximationsLWA d
which is effected when the radiative coupling matrix ele-
ments are between extended wave functions, for on- and off-
resonance processes.

Specifically, we have examined two issues. The first has
to do with the formal analysis of the matrix elements of the
multipole expansion for atom-field coupling, and the rel-
evance of the LWA. The second concerns the anticipated
reduction of the accuracy of the matrix elements in the low-
order expansion of the LWAsdipole and quadrupole termsd
for high-lying Rydberg states—say, withn<50—which are
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excited and then coupled either directly, on-resonance, to
scattering states, or off-resonance to scattering and Rydberg
states, by relatively large photons—say, optical or higher.
Such situations are relevant to laser spectroscopy with short
pulses which, e.g., engage intermediate states with extended
wave functions in the discrete and continuous spectra, or
excite wave packets in the Rydberg spectrum. In fact, it is the
latter that was investigated inf1,2g searlier work on this
Rydberg wave packet excitation problem is cited inf1,2gd.

II. MULTIPOLE EXPANSION AND THE LONG-
WAVELENGTH APPROXIMATION

It is textbook knowledge that the expression for the full
matter-radiation interaction operator involves the plane-wave
term «̂eikW·rW. Here «̂ is the polarization vector andkW is the
propagation vector. Taking propagation to be along thez
axis, the exponential can be represented by two expansions
with infinite terms. The first is the Taylor series, whose first
three terms are

«̂eikW·rW = «̂F1 + ikW · rW +
1

2
sikW · rWd2 + ¯ G , s1d

and the second is the expansion over the basis set of the
spherical Bessel functions,j,skrd,

«̂eikW·rW = «̂eikr cosu = «̂Fo
,=0

`

s2, + 1di, j,skrdP,scosudG .

s2d

Expansions2d is the appropriate one for transitions between
states of spherical symmetry since it leads directly to the
derivation of the selection rules. By expressingj lskrd in pow-
ers of kr fsee Eq.s10d belowg and the Legendre functions
Plscosud in powers of cosu, expansions2d is transformed
into expansions1d.

In practice, one wants to retain the Legendre polynomials
because, as said, they give rise to selection rules reducing the
infinite summation to a few terms. This is equivalent to writ-
ing the powers of cosu appearing in Eq.s1d in terms of
Legendre polynomials. Thus, the form which is relevant in
practice is a third expansion:

«̂eikW·rW = «̂FP0 + sikrdP1 + sikrd2H1

3
P2+

1

6
P0J + ¯ G .

s18d

Equations18d can also be derived from Eq.s2d by express-
ing j lskrd in powers ofkr and collecting equal powers ofkr.

Although expansionss1d and s18d are formally equal to
expansions2d, this is not true if a finite number of terms is
considered. Such an equality is achieved only after the LWA
is made, which has been the fundamental means of simplifi-
cation and implementation in the theory, leading to the well-
known expressions for the multipolesE1, E2, M1, etc.d, tran-
sition amplitudes, and probabilities.

However, the above is invalidated when the condition for
the LWA, inequalitys3d below, is violated. In such a case, it

is the expansion in terms of Bessel functions that must be
used, something which is not followed in research involving
the theory and computation of radiative transitions.

In the following sections we investigate the degree of pos-
sible deviations between the full expression for each term of
Eq. s2d—we shall call it the “Bessel function matrix ele-
ment” sBFMEd—and the corresponding Eq.s18d that
emerges from the LWA, in cases where the two wave func-
tions of the matrix element are extended, meaning cases
where the LWA is of dubious validityssee belowd.

In other words, suppose one focuses on the second term
of the expansions2d. For ,=1, this is

i3j1skrdP1scosud = i3Ssinskrd
skrd2 −

cosskrd
kr

Dcosu,

which is different from the second term of Eq.s1d, ikr cosu.
Also suppose that physical conditions are such that the LWA,
as is generally statedfsee Eq.s3dg, cannot be justified. What
is the proper choice for the expansion of«̂eikW·rW? Can the use
of expansions18d be justified and under what conditions? To
the best of our knowledge, analysis and quantitative answers
to these questions do not exist in the literature. An amend-
ment to this situation is presented below.

III. LWA AND TRANSITIONS INVOLVING EXTENDED
WAVE FUNCTIONS

The LWA is usually justified by phrases such as “the ra-
diation wavelength is much larger than the atomic dimen-
sions” and is based on the inequality

kr ! 1, condition for the LWA, s3d

where k is the magnitude of the wave vector,k=2p /l
=v /c. The electron coordinater is taken as the measure of
“atomic dimensions.”

When Eq.s3d holds, the first two terms of the expansion
s2d reduce to the first two terms of Eq.s1d or s18d, since the
first terms of the Taylor series expansionfsee Eq.s10dg of
j0skrd and j1skrd are

j0skrd < 1 and j1skrd < kr. s4d

The zeroth-order model that results from Eq.s2d is the EDA,
according to which the vector potential or the fields are in-
dependent of the coordinate, while the first-order gives the
electric quadrupole term,

«̂eikW·rW < «̂f1 + kr cosug. s5d

Expressions5d coincides with the first two terms of the series
s1d.

It is evident that the key “physical” quantity in the above
is the quantitykr. Its value depends on the magnitude ofk or
of r, which are independent quantities. Although the heuristic
notion ofr may be confusing, since the two states entering in
the transition matrix element need not have the same “atomic
dimension,” practically it refers to the less extended state.
The present work has placed its emphasis on ther part—i.e.,
on coupling matrix elements where both states are
extended—rather than on thek part. For highly excited
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Rydberg states withn@,, we take the outer classical turning
point rt<2n2 as the most representative quantity for the no-
tion of “atomic dimensions.” For example, forn=50, rt
=5000 a.u.

It can also be noted that conditions3d does not say any-
thing about possible differences between on- and off-
resonance radiative couplings. This issue is also examined
below. We find that the breakdown of the LWA condition has
more serious implications for the off-resonance case.

The established wisdom on the relative significance of
each of the terms of the LWA expansion, or of their interfer-
ence, has drawn from the physics of the on-resonance inter-
action with the electromagnetic field of states whose wave
functions are relatively compact, such as the various ground
or low-lying states of atoms and molecules. Characteristic
examples are the normal spectroscopic transitions of the dis-
crete spectrum, where both wave functions are compact, and
the subject of the photoelectric effect, where the initial-state
wave function is compact.

For the photoelectric effect, the flexibility as regards the
value of kr is large, due to the possible large range ofk
values. Both partial and total cross sections are measured for
different subshells and for a broad spectrum of photon ener-
gies, from a few eV to keV. As it is evident from the condi-
tion of the LWA, since the normal extent of the initial states
is, say, around 1–5 a.u., whenk is allowed to increase it
eventually causes the breakdown of the EDA, relativistically
or nonrelativistically, and, in fact, reduces the validity of the
truncation of the seriess1d or s2d. For example, if the initial
state is the 1s of hydrogen, thenrt=1.058 Å and the quantity
krt becomes unity when the ionizing radiation hasl
<6.6 Å.

Various aspects of the consequence of thek dependence
of the photoelectric effect have been studied over the years
from the x-ray to the VUV regions, the most recent ones
focusing on the results of interference of the dipole with
terms of the next two orders on the angular distribution of
photoelectrons—e.g.,f9–12g and references therein.

It is noted that, when attention is paid to thek part, situ-
ations of the possible breakdown of the EDA may also arise
for transitions in highly positive ions or for emission of ra-
diation of short wavelength from heavy atoms with holes in
the inner shells.

A different source of possible breakdown of conditions3d
appears in situations where, even for not too short
wavelengths—say, from 8000 Å down to 800 Å—the wave
functions that get involved in the coupling matrix elements
are extended. For example, in hydrogen, for then=50 Ryd-
berg statert=5000 a.u. This means that the quantitykrt is
unity for l<16 600 Å. This was the case that was examined
in f1,2g. The application involved the computation and analy-
sis of time-dependent laser excitation of angular Rydberg
wave packets in highly excited hydrogen, a theme that was
first discussed within the EDA by Corless and Stroudf13g.
Among other things, it was demonstrated that, because of
off-resonance couplings, the EDA loses its validity com-
pletely.

As a test of the impact of the use of extended wave func-
tions on the on-resonance matrix elements of the multipole
expansion, we considered anon-resonancetransition from a

Rydberg state to the continuous spectrum, assuming that the
condition s3d for the LWA is not valid. For example, such a
case may arise in a two-photon ionization of an atom or a
positive ion, using UV or VUV photons, where the first step
reaches a high-lying Rydberg state or wave packet.A priori,
there is no reason for the transition matrix element from the
Rydberg state to the continuous spectrum to be described
accurately by the EDA. For example, consider hydrogen. For
hn<13.574 eV s<913 Åd, Rydberg states of aboutn=50
can be reached. Forrt<2n2=5000 a.u., the productkrt
=s2p /ldrt is about 18, so that conditions3d is violated for
the transition from then=50 state to the continuum, with
hn<13.574 eV.

The numerical application pertained to the ionization ma-
trix elements of the Rydberg state withn in the range of
50—80, for which, whenhn<13.574 eV, the quantitykr is
larger than one for the greater extent of the wave function.
Calculated values for both the dipole and the quadrupole
cases as well as their ratio are shown in Tables Isad andIsbd
for initial Rydberg states 50p and 80p, respectively. It is
noteworthy that the ratio does not vary significantly as the
high principal quantum number of the initial state changes
from 50 to 80.

The results show that the ratio dipole/quadrupole in the
energy range 0–27.148 eV above threshold changes rapidly,
by almost two orders of magnitudessee Fig. 1d. This finding
is in harmony with the logic of the relationss1d ands3d, since
the extent of the initial state is huge and the relative accuracy
of the EDA drops fast with respect to the magnitude ofk.

IV. “BESSEL FUNCTION MATRIX ELEMENT”:
ANALYSIS AND CALCULATIONS

In the theory and calculations that follow, we compare the
“Bessel function matrix element” of each term of Eq.s2d, as

FIG. 1. Ratio of the dipole to quadrupole radial matrix elements
as a function of the energy« in a.u. of the scattering electron. The
dipole radial matrix elements are calculated between the Rydberg
np states and thed states of the continuum. The quadrupole radial
matrix elements are calculated between the Rydbergnp states and
the scatteringf states. Open circles correspond ton=50 and stars to
n=80.
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determined in the framework of the multipolar Hamiltonian,
with the corresponding term of Eq.s18d that is characterized
by the same selection rules. There is a one-to-one correspon-
dence between the first two terms of the expansionss18d and
s18d which are the physically interesting cases of dipole and
quadrupole transitions. It is shown that conditions3d is suf-
ficient but not necessary for the practical validity of each
term of the multipole expansion. In other words, there is
good agreement between the two types of matrix elements
even when conditions3d is not satisfied—up to a reasonable

degree. The consequences of such comparisons depend on
whether the phenomenon involves on- or off-resonance cou-
pling. It is proven analytically and numerically that the off-
resonance case is more intriguing, since such couplings are
large and may have physical repercussions.

In the formulation off1g, where themultipolar Hamil-
tonian f3–7g was adopted, we showed that the electric field
operator can be written in the form

OE = E0stde−ivto
,=1

`

i,+1s2, + 1dF,srdQsu,fd + c . c . , s6d

whereE0std is the amplitude of the electric field and

F,srd =
1

k
E

0

r 1

r8
j,skr8ddr8, s7d

Qsu,fd =Îp
,s, + 1d
2, + 1

sY,
−1 − Y,

1d, s8d

causing transitions withDm= ±1. HereY,
1 is the spherical

harmonic. The integral of Eq.s7d has its origin in the electric

field operator which is given byeo je0
1rW j ·EW TslrW jddl f3–7g.

The l integration allows the writing of expressions that in-
volve an infinite expansion in a compact form. After the
expansion of the electric field operator in spherical waves,
this integral is reexpressed as an integral over the radial vari-
able.

In Eq. s6d, for values ofk→0, only the first terms,=1d
survives.sHere we consider only the electric field.d

The object of the present analysis is the matrix element of
OE, which is evaluated for transitions between hydrogenic
wave functions that, here, are computed via the numerical
solution of the differential equation that they satisfy. For
highly excited Rydberg states as well as for states of the
continuous spectrum, this is a fast and accurate method. Fur-
thermore, it is not restricted to purely hydrogenic atoms and
ions.

In what follows, the case of continuum-continuum cou-
pling matrix elements is excluded. This is a case where,
when stationary energy-normalized scattering states rather
than localized wave packets are considered, the LWA is ob-
viously violated. The EDA result is different, quantitatively
and qualitatively, from that obtained from the full operator,
since the large-r behavior of the EDA operators,rd, is dif-
ferent from that of 3F1 fEqs. s6d and s7dg, which becomes
constantf1g and below. Additional information can be de-
duced from the Appendix.

For the transitions under investigation, we expected that
the results produced by the multipole expansion terms within
the LWA would be inadequate, for reasons that are more
fundamental than the heuristickr argument. These reasons
have to do with the large-r behavior ofF, f1g. It was shown
in f1g that a simple model operator forF1 s,=1d,

TABLE I. The dipole and quadrupole radial matrix elements
knpuoperatoru«,l for various values of the energy« of the con-
tinuum state. The numerical results betweens2,+1dF, and its small
argument limit differ in the sixth decimal place for both the dipole
s,=1d and the quadrupoles,=2d cases. Also listed is the ratio of the
dipole/quadrupole radial matrix elements.sad Initial state with n
=50. sbd Initial state withn=80.

«
sa.u.d

Dipole or 3F1

sa.u.d

Quadrupole
or 5F2

sa.u.d 102 sratiod

sad
0.00 18929.0 −2.53 −74.80

0.02 11.52 4.90310−3 23.50

0.03 5.94 4.37310−3 13.60

0.04 3.68 3.76310−3 9.80

0.05 2.52 3.23310−3 7.80

0.1 0.74 1.74310−3 4.27

0.2 0.20 7.76310−4 2.58

0.3 0.09 4.46310−4 2.00

0.4 0.05 2.92310−4 1.68

0.5 0.03 2.06310−4 1.47

0.6 0.02 1.54310−4 1.33

0.7 1.14310−2 1.19310−4 1.22

0.8 1.08310−2 0.95310−4 1.13

0.9 0.83310−2 0.78310−4 1.06

1.0 0.65310−2 0.65310−4 1.01

sbd
0.00 43578.0 −4.46 −97.70

0.02 5.75 2.44310−3 23.50

0.03 2.95 2.16310−3 13.60

0.04 1.83 1.87310−3 9.75

0.05 1.25 1.61310−3 7.78

0.1 0.37 0.85310−3 4.25

0.2 0.10 0.38310−3 2.60

0.3 4.41310−2 2.20310−4 2.00

0.4 2.42310−2 1.44310−4 1.68

0.5 1.51310−2 1.02310−4 1.48

0.6 1.01310−2 0.76310−4 1.33

0.7 0.72310−2 0.59310−4 1.22

0.8 0.53310−2 0.47310−4 1.14

0.9 0.41310−2 0.38310−4 1.08

1.0 0.32310−2 0.32310−4 1.00
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3F1
model= H r , r ø r0,

r0, r ù r0,
h s9d

wherer0=3p /4k, reproduces the main characteristics of 3F1
sFig. 1 of f1gd and shows that, although the two operators are
almost identical in the regionkr,1, they differ greatly for
larger values since the former reaches a constant value while
the latter increases beyond limit.

Therefore, in this work it came as a surprise to us that the
matrix elementskRydberguoperatorucontinuuml calculated by
employing the operators for dipole or quadrupole interaction
and the corresponding BFMEsi.e., where no LWA is maded
are essentially the same, given the fact that they involve such
extended wave functions. Actually, the plot of the cumulative
integral of the matrix elements as a function ofr, Figs 2sad
and 2sbd, shows that, at places, there are differences of an
order of magnitude. However, for values ofr where the
Rydberg function has become zero, the two results differ
only in the sixth decimal place. This result cannot be
changed by increasing the principal quantum numbern of the
Rydberg state—i.e., by making it more extended. The same
result is true for other values of,.

The very high degree of coincidence of the numerical
results betweens2,+1dF, and its small-argument limit—i.e.,
the LWA—even for cases wherekr is substantially greater
than unity, led us to the hypothesis that it can be explained
analytically using hydrogenic functions. Indeed, the proof is
as follows.

We focus on the analysis of the structure of the function
F,srd, of Eq. s7d. The spherical Bessel function is given by
the ascending series

j,sxd =
x,

s2, + 1d!! S1 −
x2/2

1!s2, + 3d

+
sx2/2d2

2!s2, + 3ds2, + 5d
− ¯ D . s10d

Note that only even powers exist within the parentheses.
Substitution in Eq.s7d gives

s2, + 1dF,srd =
k,−1r,

s2, − 1d!! S1

,
−

k2r2

2s, + 2ds2, + 3d
+ ¯ D .

s11d

The first term of the above expansion is the ordinary multi-
pole operator while the higher terms represent corrections to
it. In order to test their relative importance, we calculate the
first correction to the matrix element of the 2l pole, for a
radiative transition from a bound statey1 to a state of the
continuous spectrum,y2. Pertinent derivations are given in
the Appendix.

We obtain

s2, + 1dky1uF,srduy2l =
k,−1

,s2, − 1d!!
ky1ur,uy2l

3S1 −
,k2

2s, + 2ds2, + 3d
ky1ur,+2uy2l
ky1ur,uy2l

+ ¯ D . s12d

Putting n=,+2 in the relationsA14d of the Appendix, an
expression for the ratio of the matrix elements appearing in
Eq. s12d is obtained. Upon substitution, the result is

s2, + 1dky1uF,srduy2l <
k,−1

,s2, − 1d!!
ky1ur,uy2l

3H1 −
,j2

2s, + 2ds2, + 3dc2

3sA, + B,P,
,−1 + C,R,

,−1 + D,R,
,−2dJ .

s13d

The symbolsP and R are ratios of the integrals and are
defined in Eq.sA15d. They are smaller than unity.

The quantityj is crucial, since it distinguishes between
on- and off-resonance couplings. It is defined by

j ;
v

«2 − «1
. s14d

FIG. 2. sad Cumulative integral I fullsrd
=e0

r y50psxd3F1sxdy«dsxddx, photoelectron energy«=0.5 a.u.sbd Cu-
mulative integralIdipsrd=e0

r y50psxdxy«dsxddx.
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A. On-resonance couplings

For v=«2−«1—i.e., when the photon frequency equals
the energy difference of the two states—j is equal to unity.

The presence ofc2 in the denominator of Eq.s13d renders
the second term small. The first component of the second
term is the only one that depends on the energies—i.e.,

A, =
1

2
s«2 − «1dfs, + 1ds, + 2d + bg − 2«2s, + 1ds, + 2d.

s15d

According to Eq.sA5d, b=,2s,2+1d−,1s,1+1d.
Rydberg initial state.For the dipole-allowed transitions

,=1, the ratios are almost independent of the principal quan-
tum number of the Rydberg state in the test region around
n=50 sthey decrease very slowly with increasingnd, and the
same is true for theA, component since«1, being the energy
of the Rydberg state, is close to zero. The most important
ratio is R1

0 which is equal to 0.2, while the other two are an
order of magnitude smaller. Thus, for«2 equal to 0.5 a.u. and
j=1, the correction to the EDA is of the order of 10−6. It is
stressed that this result is nearly independent of the initial
state.

In other words, for a value ofk of the order of up to tens
of eV, the first term of Eq.s13d dominates regardless of the
value ofkky1ur uy1l, which can be made arbitrarily larger than
unity by starting with a Rydberg state of a sufficiently highn.

Thus, here, the usual LWA argument—namelykr!1,
wherer is “of the order of atomic dimensions”—appears to
be a sufficient but not a necessary condition.

B. Off-resonance couplings

On the other hand, foroff-resonancetransitions,j can be
made quite large. We will consider two examples.

s1d For v=0.5 a.u., the off-resonance transition matrix el-
ement from a highse.g.,n=50d Rydberg state to the states
close to the threshold of the continuous spectrum is substan-
tially different when using the dipole instead of the full op-
eratorsabout 10%d. Specifically, for transitions to the thresh-
old s«2=0d, the value ofj is 2500 and the correction is
approximately 0.07. The ensuing correction in absolute val-
ues is quite important since, in this case, the first term is of
the order of 105. sIt falls quickly as«2 increases.d

Interesting special case.A more drastic case is when there
are intrashell couplingssj=`d, which is the situation that
was encountered in the nonperturbative calculations off2g.
In Fig. 3 we plot the multipolar interaction matrix element as
a function of the angular momentum of the final state, start-
ing from 50p. I.e., we show the slow convergence to zero of
the 50p→50, matrix elements as, increases. It is seen that
the absolute value of the full interaction operator matrix el-
ement is a slowly decreasing function of, and retains a
substantial magnitude for values of, way beyond 1. The
calculation of these matrix elements involves, as, increases,
an increasing number of terms of the expansions6d.

V. SYNOPSIS AND CONCLUSIONS

As laser spectroscopy is enriched with new possible short
pulses, phenomena involving high-lying Rydberg states ei-
ther as initial states in multistep excitation processes or as
intermediates during nonlinear coherent processes with large
photons become feasible. In such cases, both on- and off-
resonance radiative couplings play a role. Since both Ryd-
berg and scattering stationary states are described by ex-
tended wavefunctions, the normal consequences of the long-
wavelength approximation cannot be taken for granted.
For example, previous results from formal analysis and
from the solution of the time-dependent Schrödinger equa-
tion sTDSEd showed significant differences in specific pro-
cesses involving off-resonance couplings between the elec-
tric dipole approximation and the full-interaction multipolar
Hamiltonianf1,2g.

Given the significance of the heuristic quantitykr fsee
condition s3dg, here we focused on ther part—namely, on
amplitudes where both initial- and final-state wave functions
are extended. As a typical example, we chose as initial states
the n=50 andn=80 Rydberg wave functions of hydrogen,
computed numerically. We point out that preparation of such
states as part of a wave packet may affect the physics of a
particular overall process but not the conclusions regarding
the individual matrix elements studied here.

The herein numerical and analytic results lead to the fol-
lowing conclusions.

sid For on-resonance transitions from then=50 and 80
Rydberg statessabout 13.574 eV above the ground stated, to
the continuum, with photoelectron energy up to 1 a.u., the
ratio of the dipole/quadrupole matrix elements in the LWA
drops from approximately 104 at threshold to 1.03102 at
1 a.u. This fast deterioration of the EDA results from the
large extent of the Rydberg wave function and is expected to
be present in coherent or incoherent multistep ionization pro-
cesses where the last step involves a high Rydberg state of an
atom or an ion and is induced by optical, UV, or more ener-
getic photons.

FIG. 3. Absolute value of the multipolar matrix elementftime
factor and complex conjugation as in Eq.s6d are not includedg as a
function of the angular momentum, of the final statesn=50, m
=0d, starting from 50p sm=1d.
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sii d Even when the LWA conditionkr!1 is not satisfied,
the higher-order corrections to each level of the multipole
series of the LWA—i.e., corrections to the dipole, quadru-
pole, etc., matrix elements—are very small for each bound-
free transition, providedj;v / s«2−«1d fEq. s14dg is close to
unity. In other words, for such cases the LWA is a sufficient
but not a necessary condition for the validity of the EDA.

siii d For processes involving off-resonance couplings, the
EDA and higher multipole expressions of the LWA fail more
readily. The largerj is, the greater is the discrepancy be-
tween the EDA and the full interaction. The extreme case
corresponds to intrashell couplings, where«2=«1 sor «2
<«1 for nearly hydrogenic spectrad. For example, for the
case of then=50 hydrogen shell, if we start with 50p, the
matrix element involves not only orbital angular momenta
with D,= ±1, but a series of them, 50p→50,, up to ,=21.
Among various possibilities, such matrix elements are
present in off-resonance couplings which enter in schemes of
Rydberg wave packet production such as those discussed in
f1,2g or in multiphoton transitions in neutral or ionized atoms
where Rydberg and scattering states are involved in higher
orders.

Finally, we note that the analysis herein does not pertain
to continuum-continuum matrix elements, which play an im-
portant role in above threshold ionizationsATI d. Actually, for
continuum-continuum transitions, the magnitude of the EDA
matrix elements differs from the ones obtained with the full
electric field operator, not only quantitatively but also quali-
tatively f1g. On the other hand, the model of classical trajec-
tories and of dipole interaction near the nucleusf14,15g is
considered by many researchers sufficient for the treatment
of phenomena such as ATI and high-order harmonic genera-
tion, suggesting that the relevant physics is taking place near
the nucleus, where the LWA and EDA work. Nevertheless, a
reliable and thorough understanding can come only after ac-
curate solutions of the quantum mechanical TDSE for real
systems, using both the full operator and EDA, are compared
with details of accurate experiments.

APPENDIX

We define

Hi =
d2

dr2 −
l isl i + 1d

r2 +
2Z

r
, i = 1,2, sA1d

so that

Hiyi = − 2«iyi . sA2d

Consider the integral

E
0

`

y1sH1r
n − rnH2dy2dr. sA3d

After rearrangement of the first term insA3d and integration
by parts this is equal to

fny1r
n−1y2 + rnsy1y28 − y18y2dg0

` + 2s«2 − «1dE
0

`

y1r
ny2dr.

sA4d

On the other hand, the commutatorsH1r
n−rnH2d is given by

sH1r
n − rnH2d = fnsn − 1d + bgrn−2 + 2nrn−1 d

dr
, sA5d

whereb= l2sl2+1d− l1sl1+1d.
In the case where one of theyi is a bound function the

quantity inside the square brackets insA4d is zero while for
continuum-continuum transitions it gives rise tod functions;
seef2g. Therefore,

s«2 − «1dky1urnuy2l =
1

2
fnsn − 1d + bgky1urn−2uy2l

+ nky1uQn−1uy2l, sA6d

whereQn=rnd/dr. Similarly, by considering the integral

E
0

`

y1sH1Q
n − QnH2dy2dr, sA7d

we find that, after rearrangement, it is equal to

fny1Q
n−1y2 + sy1Q

ny28 − y18Q
ny2dg0

` + 2s«2 − «1dE
0

`

y1Q
ny2dr,

sA8d

while the commutator is given by

sH1Q
n − QnH2d = fnsn − 1d + bgQn−2 − 4n«2r

n−1

− 2s2n − 1dzrn−2 + 2sn − 1dl2sl2 + 1drn−3.

sA9d

In the case where one of theyi is a bound function, we obtain

s«2 − «1dky1uQnuy2l =
1

2
fnsn − 1d + bgky1uQn−2uy2l

− 2n«2ky1urn−1uy2l

− s2n − 1dzky1urn−2uy2l

+ sn − 1dl2sl2 + 1dky1urn−3uy2l.

sA10d

Combining Eqs.sA6d and sA10d we arrive at the relation

s«2 − «1d2ky1urnuy2l = An−2ky1urn−2uy2l + Bn−2ky1uQn−3uy2l

+ Cn−2ky1urn−3uy2l + Dn−2ky1urn−4uy2l,

sA11d

where

An−2 =
1

2
s«2 − «1dfnsn − 1d + bg − 2«2nsn − 1d sA12d

and
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Bn−2 =
n

2
fsn − 1dsn − 2d + bg, Cn−2 = − ns2n − 3dz,

Dn−2 = nsn − 2dl2sl2 + 1d. sA13d

The transition matrix element of thenth power of r is ex-
pressed, in Eq.sA11d, in terms of similar matrix elements of
lower powers. It is useful to write this equation in terms of
ratios as

s«2 − «1dRn−2
n = An−2 + Bn−2Pn−2

n−3 + Cn−2Rn−2
n−3 + Dn−2Rn−2

n−4,

sA14d

where

Rm
n =

ky1urnuy2l
ky1urmuy2l

, Pm
n =

ky1uQnuy2l
ky1urmuy2l

. sA15d

For m.n, the ratios are expected to be smaller than unity
and calculations show this to be a fact.
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