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A rigorous evaluation of the time evolution amplitude G(¢) for an isolated autoionizing

state has yielded the result

IG(t)lz - e'n/“+ﬁ2/1r2(4E2+I‘2)t2,

t >

where E is the energy above the ionization threshold and I" the width, For states with
lifetimes in the region 10°%~10"!! gec near the ionization threshold, the nonexponential
decay corrections are sufficiently large to suggest that perhaps it is possible to test the
validity of the fundamental exponential “ law” within the realm of atomic physics.

Resonance peaks observed in a variety of parti-
cle-atom or photon-atom scattering can be treat-
ed from a time-dependent point of view as being
caused by nonstationary (autoionizing) states
which decay into an electronic continuum.!™® This
approach assumes the creation of an initially com-
pletely localized state at ¢ =0 (provided that AE
>T', where AE is the width of the excitation wave
packet and T" the decay width) which mathemati-
cally can be described by a square integrable N-
electron wave function which is a solution of the
Schrodinger equation in the continuum under im-
posed boundary conditions of square integrability.
The important observed parameters then emerge
naturally from the time evolution of this state.

The emphasis on the time dependence of these
phenomena has led us to the following question:
How do atomic systems evolve in time if they are
assumed to be in a given nonstationary state at
t=0? As we will show below, it turns out that,
for certain relativistically (mainly) autoionizing
states, the corrections to the well-accepted ex-
ponential law which characterizes dissipative
processes of isolated systems might be large
enough to be observable.

Currently, there is considerable interest in
measuring widths of autoionizing (Auger) states
decaying via relativistic or Coulomb interac-
tions.* The experiments required to test the pos-
sible existence of the herein-derived nonexponen-
tial decays (NED) are of the intensity-vs-time
measurement type.

We consider an isolated resonance. Our main
physical arguments on the properties of autoioniz-
ing states, considered as decaying states, follow
Refs. 1 and 2. A formal and general theory of
decay processes has been given in the book of
Goldberger and Watson.® At¢=0, the atom is as-
sumed to be at a localized state |¥,). Of course,

the time £ =0 cannot be defined exactly experimen-
tally because of the finite time of excitation. How-
ever, this fact simplifies the final result of the
decay analysis—at least in the ideal case. Be-
cause of the long-lived character of the excited
states which might show NED and in accordance
with the motion of decay, this Letter does not
consider the effect of the preparation step on the
time evolution of the autoionizig states, i.e., they
are treated as though they forgot from whence
they came.)

We are interested in the properties of the am-
plitude

G(t)=<\110| e-(i/h)mi‘l’o>, (1)

which is proportional to the number of atoms still
in the original state after time . As is well
known,® G (¢) can be written as

1 ; -G
G(t)= '2?; $ (‘l‘olR (z)I\I/O)e G/n)zt g, , (2)
where for ¢ >0, the contour reduces to a line par-

allel to the real axis with Imz >0. R(z) is the re-
solvent operator defined as

R(z)=1/(z - H). (3)
Let

R(z)=1/(z =H,), (4)
where

H =(H - V)¥,=E j¥,. (5)
Then

R(2)=R,(z) +R,(2)VR () +R,(2)VR ((2) VR (2).

(6)
From Eq. (8), it follows that

IR (2| )=6e)=[2 ~E,-A ()], M
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where
A(2)=( | VR V] ¥ ). (8)

A(z) can be called the “self-energy” of the auto-
ionizing state. Therefore, it is seen that the
time evolution amplitude depends on (a) the prop-
erties of G%(z) and (b) the contour of integration
imposed by the physics of autoionization.

We consider (a) first: The analytic properties
of G%(z) on the various Riemann sheets depend on
the solution of the transcendental equation

z—-E,-A(z)=0. 9)

Incidentally, if ImA(z)=0 for some real z, either
because of symmetry or accidentally, then a
“bound state in the continuum” (BSC) appears
since the resolvent has a pole on the real axis.
(This is a case of a point spectrum superimposed
on the continuous spectrum. A condition for this
to occur is for the resolvent to be unbounded and
defined on a set which is not dense in Hilbert
space.®)

Unfortunately, it is not easy to understand the
analytic properties of A(z) completely. However,
in accordance with the physics of autoionization
(e.g., for autoionizing states decaying relativis-
tically, experimental evidence suggests that nar-
row widths are energy independent), we will as-
sume that in the vicinity of E,, A(z) is analytic
and essentially energy independent. Thus we
take

AR)=AE)=A(E,) - (/2)T(E,). (10)
Therefore, G%z) has a pole at
Z2,=E,+A([E,). (11)

The negative imaginary part guarantees conver-
gence of the integral of Eq. (2) in accordance with
the notion of decay. The Green function G%(z) has
a cut on the real axis above the ionization thresh-
old but is analytic everywhere else on the physi-
cal sheet. Thus, the pole must be on the second
Riemann sheet, just below the real axis, in or-
der to have physical significance. In this work
we have assumed that it is this pole that is re-
sponsible for the observable behavior of G (¢).
Thus we take

analytic 1

W |RE +10)|¥,) (12)

———
continuation 2z =24 | tmz<o*

Now we consider (b), the path of integration.
Using the complete states of H, Eq. (1) can be
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written as
G(t)=20.expl (- i/M)E ]| (¥ | ¥ )P
+f,°:dE exp[—- (i/MEL]| (¥ ¥ E)P, (13)

where, in general, (¥ ¥ )# ¥ T (E)#0, (F(E)
x| (E))=8(E —E'). I, is the first ionization
threshold and ¥, is embedded in the correspond-
ing continuum. Expression (13) includes adjoint
(time-reversed) states.

The asymmetry of the integral in (13) and the
reality of the function g(E)= ¥ ¥ (E))|? for E>I,
are sufficient to prove that G(¢) cannot decay ex-
ponentially at all times.* It has also guided us
in the choice of the contour since energy restric-
tions do not allow decay in the region Rez < I,.
Thus, the contour of integration is chosen as
shown in Fig. 1, where the pole is depicted on
the second Riemann sheet.

Using Egs. (2) and (12) we consider the line in-
tegral on the real axis:

_1 [ exp[(=i/n)et]
G(t)_-Z’lT—i ¢ z -2z, dz

= expl (= i/Megt] =505 Loy oy - (14)

As z =, [c, vanishes and the remaining right-
hand side integral can be identified with the inte-
gral 5.1.28 in the National Bureau of Standards
tables of mathematical functions.”

Thus,

G(t)=expl(-i/k)z,t] [1 —% Ei((- i/ﬁ)zot)} s
(15)
where Ei() is the exponential integral.

Equation (15) is valid for all {. For t—«~ we use
the lowest-order asymptotic expansion for Ei(x)

First (physical)
Riemann sheet

Second
Riemann sheet

FIG. 1. Integration path for evaluating the amplitude
G(t) [Eq. (14)]. The pole z, is put on the second Riemann
sheet.
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and obtain for the decay rate IG (t)?

|G @)= @Mt 4 s
2(4E

PAEE IO (16)

In deriving Eq. (16), the oscillatory terms have
been dropped because at the observation point an
averaging must take place since, because of the
finite time of excitation (which, however, is still
smaller than 7Z/T’), the instant =0 is not well
defined.

For an isolated resonance, Eq. (16) represents
a rigorous replacement of the exponential “law”
for large ¢. The physical approximation employed
was Eq. (12) and the physical origin of the devia-
tion is the existence of the lower bound on the en-
ergy spectrum.

The analytic expression (16) allows one to eval-
uate trivially the magnitude of NED given a pair
E and I'. In order to calculate |G (¢)]? for all ¢t and
a large number of values of E and I', we have
derived an alternative expression by breaking the
line integral [c, into its real and imaginary parts
and integrating each piece numerically. The re-
sult is

2
6@ =e=me [ 14 2l a7
where
_ o wdwe"wx
Ia—]:_llz w2+R2 ? (18)
_ © dwe"w¥
LER | P RE (19)

R=E/T and X =T't/%, the number of lifetimes.

The NED corrections represent a slowing down
of the rate of outgoing electrons as can be seen
from Eq. (16) and Fig. 2, where a range of R val-
ues has been selected to represent nonrelativis-
tically allowed and forbidden decays. Obviously
R must remain large enough so that the concept
of an initially localized and isolated autoionizing
state remains valid. It should be noted that in
the limit ¢ ~~ expression (17) also reduces to
Eq. (16) (the proof is given in Ref. 3).

Although only a few atomic spectra are known
accurately above the ionization threshold, there

is sufficient evidence for metastable states which :

can decay via spin-orbit or spin-spin interactions
(C'~10""-10"!* eV) and are very close (E ~10"1-
1072 eV) to the ionization threshold (e.g., in OT,
Cul, MolI, SnI, SbI). In general, such situations
will arise when a Rydberg series crosses the
threshold of a different (nonrelativistic) symme-
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FIG. 2. Plot of

2
In|G@®)*= x+1n[:1+ -“—-’-——b————(x R) +1,(x, ):,
47
[see Eq. (17)]. x=It/% =number of lifetimes. R=E/T'.

The straight line is the exponential law. NED is larger
for small R.

try. The choice, of course, of relativistically
decaying states facilitates a measurement of in-
tensity as a function of time with existing devices
because of their long lifetimes.

Orders of magnitude of NED can easily be read
off Fig. 2. As an example, we use the following
extreme case: For E=10"3eV and I'=10"°
NED is 20% of the magnitude of the exponential
term after about 18 lifetimes. If 10'® atoms can
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be excited to that state, then after 18 to 28 life-
times the number of excited atoms is between 107
and 10°, a number which in principle can produce
a detectable signal. (We point out, however, that
detection of emitted electrons of very low ener-
gies is by no means a trivial experimental proce-
dure.)

We close by bringing to attention the fact that
our NED formula is different from the ones found
in the work of Goldberger and Watson.*® Our ap-
proach consists of taking G%z)=1/(z —z,) with 0
<Rez <» and Imz <0, the emphasis essentially
being on the fact that the integration over the en-
ergy axis must start from I, (and not from — )
and on the expectation that for autoionizing states
and especially those decaying via relativistic in-
teractions, the observable time evolution is due
to the behavior of G%z) around E , only.

In conclusion, the theoretical predictions de-
rived above suggest that there is a class of auto-
ionizing states for which NED effects might not
be prohibitively small for observation. Thus,
they provide a unique opportunity to test in atom-
ic physics the validity of a fundamental “law” of
nature. A theory and application of the physical

and mathematical properties of autoionizing
states and their electronic structure is presented
in a longer paper.?
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The long-range parts of the 4,C IZU' * excimer potentials of the He, molecule have
been accurately dtermined from high-resolution differential-cross-section measure-
ments at the relative kinetic energy range from 18 to 140 meV. The barrier height of
the intermediate maximum of the 4 'Z,* potentials is 47*? meV at an internuclear dis-
tance of 3.14+ 0.05 A. The long-range parts of the potential from the recent ab initio cal-
culation by Guberman and Goddard is always 5 to 20 meV higher than the potential deter-

mined from our experiments.

The lowest electronically excited or excimer
states of the rare-gas diatomic molecules have
recently been studied very intensively because of
the possibility of building tunable uv lasers., The
simplest case is the excimer states of the He,
molecule, from which lasing has not been ob-
served so far, but which are of considerable the-
oretical and practical interest,?

We have studied the long-range parts of the
A'Z,"and C'Z," helium excimer potentials ina
crossed-atomic-beam experiment., The experi-
mental details have been described earlier.®”°
Briefly, helium atoms of a supersonic beam of
variable kinetic energy (16-250 meV) and very
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good velocity resolution (1 to 8%) is excited by
coaxial electron impact to the two metastable
states (1s2s, 2!S and 23S). The singlet state can
be quenched optically. This beam is crossed at
a right angle with a beam of ground-state He
atoms, and the angular distribution of the excited
helium (He*) atoms is measured.

Figure 1 shows the experimental results for
six different kinetic energies., The scattered flux
of He(2'S) atoms is plotted against the lab scat-
tering angle. The center-of-mass (c.m.) scatter-
ing angle is obtained by multiplying the lab angle
by a factor of 2, All data points are normalized
with the reading of a stationary monitor detector,



