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A method is presented for the solution of the complex eigenvalue Schrodinger equation for
predissociation resonances, employing a basis set of complex Gaussians, with centers distributed along
the internuclear axis. Application to the predissociation of the v = 0 level of the 4 2= * state of HeH,
v = 04 level of the 4 2 * state of NeH and all the vibrational levels of he 4 2= * state of NeD have
yielded widths that are in very good agreement with the available experimental values and the recent
observations [ Devynck, Graham, and Peterson, J. Chem. Phys. 91, 6880 (1989)] of the strong
suppression of predissociation in NeD as compared to that of NeH.

INTRODUCTION

The predissociation phenomenon is associated with a
nonstationary molecular state decaying via a nonradiative
transition into a vibrational continuum. The corresponding
intrinsic observables, the energy and the width (lifetime),
are computable from a complex eigenvalue Schrédinger
equation with outgoing-wave boundary conditions that can
be made square-integrable by perturbing the boundary con-
dition in the asymptotic region via the transformation'™

R—p=Re® (1)

The transformation (1) does not, of course, alleviate the
necessity of handling real molecules in terms of advanced
computational methods that treat reliably the electronic
structure problem (potential energy surfaces and wave func-
tions plus coupling) in addition to that of the continuous
spectrum. The present paper presents a method for the study
of predissociation in diatomic molecules and an application
to decaying states of NeH and NeD.

According to the state-specific, complex-eigenvalue
theory (SSCET) of resonances,">**? the important ele-
ment for the analysis and efficient solution of the multiparti-
cle complex-eigenvalue Schridinger equation (CESE) is the
possibility of defining and separately optimizing square-inte-
grable function spaces representing the localized and the
asymptotic components of the resonance. A good choice of
such function spaces allows the reliable computation of the
unshifted real energy and its analytic continuation into the
complex energy plane.’>*

Recently,!® we implemented the SSCET for the study of
polyelectronic predissociating states of diatomic molecules.
In this method the basis set consisted of Gaussian-type orbi-
tals (GTO) of the form

2+ [34,2+ 1\
oo (2
(21 + Dl
. ‘ O<R<w
ioni 4 2i6p2 ’ 2
X (Re®) exp (—4,"R?), 0<6<7/4, (2)
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centered at the origin and all the integrals were evaluated
from zero to infinity. With this type of basis there is the
restriction that at most 14-15 functions may be used since
the numerical accuracy of any double precision computer is
inadequate for the satisfactory orthonormalization of more
than 15 functions. A calculation of the predissociation of the
v = 0level of the 4 22 * state of HeH (Ref. 13) showed that
anumber of 10-12 functions sufficed for stabilization. How-
ever, in general, a numerically imposed limitation of 15 func-
tions is undesirable.

A type of basis set that can avoid such restrictions is the
Distributed Gaussian Type Orbitals'*!” (DGTO) basis set

@;(R) = (2A,-/1T)1/4

Xexp[ —4,(R—R,)?], — w<R< + o,

(3)
where the overlap integrals among these functions may be
controlled from the coefficients 4, 4; of the exponents and
the difference (R; — R;) between the centers of the ith and
Jth function, respectively,

S; = (@:(R)|@;(R))
= [44,4,/(4; + 4,)*]"*
Xexp [ — (4,4,/(4; + 4)))(R, — R;)*].  (4)
Making the simple observation that the complex rotated
functions
¢’_ (Reia) — (2A1/77') 1/4

i0 2 ~ 0 <R<w,
X exp [ —4,(Re” —R}))?], 0<O</4,
(5)

have the same overlap as the unrotated ones,' the consider-
ations regarding the linear dependence problems also hold
for Rotated Distributed Gaussian Type Orbitals (RDGTO)
which are required for the continuum part of the resonance.
Using these RDGTO for a basis set, we have developed a
practical method for the solution of the CESE along the lines

of our previous work.'> We applied this new basis set to the
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predissociation problem of the v = Olevel of the 4 2 * state
by the X 22 * state of HeH as well as of several vibrational
levels of the 4 23 * state of NeH and NeD. Previous calcula-
tions,'®!* based on the golden rule formula, found a very
strong isotope effect in the above systems with a rate of pre-
dissociation in NeH almost two orders of magnitude larger
than in NeD. Recent experimental observations®® are in gen-
eral agreement with the theoretical results.

Itis thus of interest to calculate the predissociation rates
in NeH and NeD by the present new method in order to
make a comparison with the aforementioned findings and
establish its level of efficiency and reliability.

{l. METHOD

The total zeroth-order molecular wave function is writ-
ten as a product of the electronic and the nuclear compo-
nents following the Born—Oppenheimer approximation,

Wz\llelwnu’ (6)

while the total Hamiltonian is expressed as a sum of the
electronic and nuclear Hamiltonian

H=H,+H,_. N

The nuclear part of the wave function is calculated in the
adiabatic potential provided by the solution of the electronic
Schrodinger equation. The interaction between two product
functions of Eq. (6) is given by

My, = (¥, [(Wa|[H™(R) W2} ¥7,), (8)

where the inner integral involving the electronic wave func-
tions must be evaluated for many values of the internuclear
coordinate R. The coupling operator H ™ (R) involves inter-
actions that have not been included in the operator H of Eq.
(7) such as radial coupling, spin-orbit, rotational electronic
coupling, etc.

The resonance wave function is separated into two
parts.2%-12

Y(p) =a(@)¥(p) + b()y(p), %
with
p=Re% 0<6<mu/2,

where ¥, is the initially localized component of the wave
function corresponding to a vibrational level of a bound elec-
tronic state and X is the “scattering” (unbound) part of V.
By rotating the coordinates in the complex plane, the reso-
nance wave function becomes square-integrable. Then, since
W, is also square-integrable, the “scattering” function X ()
can be expanded in a basis of square-integrable functions
with real coordinates!® !>

X(p) = 3¢;(0)@,(R). (10)

The complex coefficients that appear in Egs. (9) and (10)
now can be determined by the solution of the non-Hermitian
matrix eigenvalue problem in the basis of the functions
{¥olp)p: (R)},

HC=12SC, (11)

with S = the overlap matrix and the eigenvalue z corre-
sponding to the resonance,

z=Ey+ A —i(T/2), (12)

where E, is the energy of the vibrational level described by
the W, wave function, A is the energy shift, and I is the total
linewidth of this level due to the interaction [Eq. (8)] of the
vibrational level with the adjacent continuum of a repulsive
electronic state.

Using the identity,’

(Y (p) [H(p)|¥,;(p)) = (¥, (R)|H(R)|¥, (R)), (13)

where W,,¥; are square-integrable functions, and the back
rotation transformation (Refs. 4,10,11) is — — 6, we have
the following expressions for the Hamiltonian matrix ele-
ments.

(a) The first diagonal matrix element involving only W,

Hn = (WO(P) le (P) |\I/0(p)>

= <W0(R)|Hb(R)|\vo(R)) = E,, (14)
where for the calculation of ¥,(R) we employ an expansion
in a basis set of equally distributed real Gaussian functions'*
[Eq. (3)]. The Hamiltonian operator is

2
H,(R) = ——9_
2u dR
where V,, refers to the adiabatic bound potential and u is the
reduced mass of the system. Analytic fits to the calculated
points in a basis set of sin and cos functions are employed for
V, (R). The matrix elements over the basis of DGTO [Eq.
31,

+ V,(R), (15)

Vi=A{@g:(R)|V,(R)|g;(R)), ij=1N, (16)

are evaluated by the Hermite quadrature method.'* Analyt-
ic formulas are employed for the overlap matrix elements

St =(@:(R)|g;(R)) (17)
and also for the nuclear kinetic energy matrix elements

1 92
~ 2u 3R?

(b) The interaction matrix elements between W, and the
continuum functions {g,},

Tf; = <‘Pi(R)

¢j(R)> ij=1N. (18)

H,=H,~ (WO(P)IHint(P)|¢i—1 (R))
= (Y (R)|H™(R)|@;_, (p*)), (19)

where p* is the complex conjugate of p and @(p) has been
defined in Eq. (5). In the present development radial cou-
pling between the adiabatic states will be considered:

int 1 a
H"(R) = #A(R)EE (20)
and
A(R)=<\vé’. i‘%), @1
IR

where b stands for “bound” and r for “repulsive.” Fitting
the A(R) operator in a basis set of Slater-type orbitals
(STO) we obtain
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44,4,

int A i(36/2) N&© 0o
e ZCU((A,.+Aje2"")2) e [Z Cre

ji=1 k=1

2(4,R, + 4,R,¢®) —a

Xp

(R e'®
X R; — -
J (A, + Ajema) 2

where C9 and af are the coefficients of the STO expansion
and the coefficients of the STO exponents, respectively.

(¢) Matrix elements involving the repulsive potential
only,

H;=H;= (¢i_1(R)|Hr(P)|‘Pj— 1 (R))
={(@i_1 (P |H,(R)|@;,_, (p*)), ij#1, (23)

where H,(R) is as H, (R) [Eq. (15)] but with ¥, (R), the
repulsive adiabatic potential, instead of ¥, (R).
So for the kinetic energy we have the analytic expression

. E0S, A4, ( A4,
YT u 4, +4) (4, +4;)

(Ri - Rj )2)’
(24)

where §; is given by Eq. (4), while for the potential energy,
after a fit with STO for the V, (R) operator,

44,4, 1/4 NSTO

() S
(4; + 4;) K=1

2¢°(A,R, + AR) — )

XexP([ c R +4, J). %]
4(A; + 4;)e**

— 4RI+ ARD) 25)
where C} and «}, are the coefficients from the STO fit. The
matrix element of the overlap S in Equation (11) are

S11 = (Wo(R) | Wo(R)) (W5 |¥5) =1, (26)

Si=8 = (‘I/o(R)lfpi_l(R))(\I/gl'W;l) =0, i#l,
(27)

Sy = <¢1—1(R)|¢7j_1(R)><‘P;1|\I’;1>’ ij#1, (28)

where the analytic expression for Eq. (28) is given by Eq.
(4).

From the above development the advantages of the pres-
ent method are evident. We are using a well-established ba-
sis'* to calculate the “bound” part of the resonance wave
function V. Hence, in order to obtain total resonance func-
tion we have to search for a function space appropriate for
the continuum part of the problem only. Knowledge of E,
facilitates this search and makes the final identification of
the proper complex root reliable.

The other advantage of the method is that only the
asymptotic part need be complexified."*'° In this way the
technical problems involved with the rotation of the fitted
potentials and the interaction 4(R) are avoided, making the
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( [2(4,R, + 4,R;e?) — a2 ]?

, — (4,R*+ 4,R?
4(A’_+Aje216) ( + J .I))

)

calculations for a real system straightforward.

The generalization of the method to multi-channel
problems"*'? and for different interaction operators for
various channels, is straightforward, since they can all be
included in the secular equation.

lil. APPLICATIONS

A. Predissociation of the A 23+ state (v=0,/=0) of HeH
by the repulsive ground state X 23+

This problem has been studied by analytic methods with
the use of real'® and complex'? basis sets giving a linewidth
of 4.27 and 2.94 cm ~ ' respectively, while the experimental
value?! is 3.1 4 1.0cm ~'. For the present work, we took the
potential energy curves and coupling matrix element com-
puted earlier.”

For the calculation of ¥, we used 50 equally distributed
GTO from 0.8 to 4.0 bohr with scale factor (Ref. 14) of 0.6,
while for the continuum, 99 RDGTO were used equally dis-
tributed from 1.0 to 5.0 bohr with scale factor of 1.0. We
fitted the repulsive potential and the
(A2 +|d/dR |X*Z* ) operator using 10 STOs and a non-
linear optimization procedure. The calculated energy shift
and half-width for various values of the rotation angle & are
given in Table I. As one can see, the resonance is revealed
immediately even at a rotation angle of 1 °, where a very good
estimate of the final stabilized complex eigenvalue is ob-
tained. As shown in Table I, for a particular choice of ¥, the
stabilization appears for a large number of decimals (e.g.,
values for @ of 3° and 4 °), eight and five decimals for the
energy shift and the width, respectively. The present calcula-
tions yielded a linewidth of 2.34 cm ~! for the v=0,J =0
level of the 423 * state of HeH, which is within the error
limits of the experimental value.?! For rotation angles larger
than 5 ° there is no stabilization.

TABLE 1. Calculated energy shift (A) and half-width (I'/2) in a.u. for five
rotation angles for the v = 0, J = 0 level of the 4 22 + state of HeH.

A rs2
—1° 0.37824145 (- 5)* —0.52671 (—5)
—-2° 0.37758993 (~5) —0.53266 (—5)
-3° 0.37758152 (~95) —0.53268 (—5)
—4° 037758152 (-5) —0.53268 (—5)
—5° 0.377 52891 ( - 5) —0.53239(—35)

* The number enclosed in parentheses indicates the exponent of a multipli-
cative factor of 10.
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TABLE II. Calculated energy shifts in (a.u.X 10~ ) for the six rotation angles for v =0, J = 0 level of the
A3 state of NeH, for different numbers of functions for the expansion of the Gamow continuum function.

[ Number of RDGTO
40 50 60 80 99
—-1° 0.422 025 0.422 020 0.422 019 0.422 020 0.422 020
—2° 0.422 019 0.422 020 0.422 019 0.422 019 0.422 019
—3° 0.422 023 0.422 023 0.422 021 0.422 019 0.422 019
—4° 0.422 038 0.422 059 0.422 048 0.422 019 0.422 019
—5° 0.422 077 0.422 369 0.422 000 0.422 020 0.422 019
—6° 0.422 095 0.422 934 0.356 463 0.422 096 0.422019

B. Predissociation study of the J=0 first five vibrational
levels of the 4 23+ state of NeH by the repulsive ground
state, X 23+

The predissociation of the 4 S * state has been studied
theoretically previously'® by the golden rule method. In this
work, we examined how the complex eigenvalue changed
with the number of the RDGTO functions as well as with the
rotation angle. Electronic potentials and interaction matrix
elements were obtained from Ref. 23. In Table 11, the calcu-
lated energy shifts of the v = 0,J = Olevel of the 4 >Z * state
of NeH are listed for different angles of rotation, from — 1°
to — 6°, and for different numbers (from 40 to 99) of rotat-
ed basis functions. The corresponding half-widths are listed
in Table I1I. For these calculations W, was obtained using 40
DGTO in the region from 1.0to 4.0 a.u. with a scale factor of
0.6. The different number of RDGTO were distributed in the
region 0.7 — 5.0 a.u. and the scale factor was 1.0. From Ta-
bles IT and III we can see that we achieve stable energy shift
and half-width for the » = O level with basis set expansions of
60 functions or more and for the first five degrees of rotation.
The calculated half-width is 0.1417 < 10~ ? a.u., which is in
agreement with the previous theoretical result'® of
0.10Xx 10~ % a.u. The calculated energy shifts and half-
widths for the levels v = 0—4 are listed in Tables IV and V,
respectively. For these calculations 99 RDGTO have been
employed. The half-widths for the 1,2,3, and 4 vibrational
levels are 0.5311x 108, 0.1072X10~7, 0.1725x 107,
and 0.2216 107 a.u., respectively, in good agreement
with the corresponding quantities from the previous work'®
0.34x107%0.67x10%0.22X 10" 7and 0.32 X 10~ " a.u.

TABLE IIL Calculated half-widths in (a.u. X 10~ ®) for the first six rota-
tion angles for v = 0, J = 0 level of the 423 * state of NeH, for different
numbers of functions for the expansion of the Gamow continuum function.

g Number of RDGTO
40 50 60 80 99
—1° —0.1165 - 0.1430 — 0.1406 —0.1410 —0.1417
—2° —0.1367 —0.1419 —0.1417 —0.1417 —0.1417
—3° —0.1273 — 0.1446 —0.1419 —0.1417 —0.1417
—4° —0.0369 —0.1759 —0.1183 —0.1417 —0.1417
—5° 0.6195 — 0.5861 1.5913 —0.1427 —0.1417
—6° 5.3002 - 7.1671 99.944 —0.4139 —0.1408

C. Predissociation of the 4 2> * state of NeD by the
repulsive ground state X 23+

An experimental study®® of the NeH and NeD system
has found that there is a strong suppression of the predisso-
ciation for the 4 2% * state of NeD compared to predissocia-
tion in NeH, much bigger than what would be expected from
the difference in the reduced mass factors. The relevant
numbers calculated in the present work are given in Table
VI. A comparison of the calculated widths for NeH (Table
V) with those of NeD (Table VI) shows that the present
results also find a strong suppression of predissociation in
NeD. The predissociation rates (in s ~') corresponding to
the half-widths of Table VI are, 7.6X10° 5.6Xx 109,
1.5% 107, 3.29x 107, and 5.77 X 107 for the first five vibra-
tional levels, respectively. The corresponding radiative rates
are (Ref. 18) 3.12X 107, 2.51 X107, 2.17x 10, 2.14 X 10,
2.42107, and 3.09x 10”. Thus, for v> 3 predissociation
dominates radiative dissociation, which is in agreement with
the experimental findings®® that predissociation in NeD oc-
curs at high vibrational levels that are scarcely populated,
and thus leads to an observation of an overall low predisso-
ciation peak.

IV. CONCLUSION

We have presented a method for the computation of
predissociating resonances, based on the SSCET."*%-12 The
basis set we use for the real axis calculations is the distributed
Gaussian-type orbitals (DGTO)."* Rotating this basis set
by a few degrees in the complex plane and using a proper
number of RDGTO, reveals the predissociation resonances.
In all the applications, a calculation with a number of 60 or
more RDGTO and a small rotation angle of 2 ° or 3 ° was
enough to give the final result. The precision of the method
for a given fit of the operators and a good description of the
bound part of the resonance eigenfunction is very high (sta-
bilization for a few angles of eight decimals for the energy
shift and five for the half-width) and increases with the num-
ber of RDGTO. Applications to the 423+ states of HeH
and NeH gave results that are in excellent agreement with
the experiment®®?! and previous theoretical work,'>'® while
the calculations on the 4 >Z * state of NeD support the ob-
servation®® of the strong suppression of predissociation in
NeD in relation to the NeH system.
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TABLE 1V. Calculated energy shifts in (a.u.X 10~ *) for the first six rotation angles for /=0 and v = 04

vibrational levels of the 422 * state of NeH.

[ Vibrational level
0 1 2 3 4
—1°  0.42202025 0.919 717 99 1.258 664 05 1.491926 17 1.544 602 32
—2° 042201942 0.919 716 29 1.258 667 85 1.491 929 53 1.544 593 65
—3° 042201942 0.919 716 29 1.258 667 86 1.491 929 54 1.544 593 64
—4° 042201942 0.919716 29 1.258 667 86 1.491 929 52 1.544 593 64
—5° 042201941 0.919 716 31 1.258 667 95 1.491928 11 1.544 597 75
—6° 0.422018 58 0.919 700 17 1.258 705 75 1.491 498 01 1.533 767 06

TABLE V. Calculated half-widths in a.u. for the first seven rotation angles for J = 0 and v = 0—4 vibrational levels of the 42 * state of NeH.

/] Vibrational level
0 1 2 3 4
—-1° —0.141 739( — 8) —0.533375(—28) —0.107543(=7) —0.171861( —7) —0.221929(—-17)
-2° —0.141 665( — 8) —0.531 106( —8) —0.107 186( —7) —0.172543(=17) —0.221629( - 7)
-3 —0.141 666( — 8) —0.531096( — 8) —0.107183(—-17) —0.172539(—-17) —0.221617(=17)
—4° —0.141 668( — 8) —0.531093(—38) —0.107 180( — 7) —0.172533(-7) —0221607(—T7)
—5° —0.141 668( — 8) —0.531129( —8) —0.107152(—=7) —0.172586(—7) —0221827(-T7)
—6° —0.140 760( — 8) —0.490 254( — 8) —0.100833(—=7) —0.181734( -~ 7) —0.296 087( — 6)
-7° 0.262949( —6) 0.139387( — 4) 0.820 168( — 5) — 0.896 865( — 6) —0.101398(—1)

Given its intrinsic structure and the present results, it
appears possible to apply the SSCET to predissociation
problems with many channels'®*? and also to polyatomics
provided a vibrational and fragmentation coordinate analy-
sis is possible. .

TABLE VI. Calculated energy shifts (A) and half-linewidths (I'/2) ina.u.
for all the vibrational levels with J = 0 of the 423 *+ state of NeD.

v Ep A r/2
0 —0922922 0.146 343( — 5) 0.920%x 10~ !
1 —0.914409 0.349 429( — 5) 0.677x107 '
2 —0.906 570 0.499 338( — 5) 0.181x10~°
3 —0.899 185 0.618 772( — 5) 0.39810~°
4 —0892178 0.712 541( — 5) 0.698x10~°
5 —0.885600 0.763 377( — 5) 0.120x10~*
6 —0.879693 0.745 961( — 5) 0.163x10~*
7 —0.874602 0.711961( — 5) 0.199x10*
8 —0.869907 0.729 479( — 5) 0.260x 10~ *
9 —0.865696 0.632 150( — 5) 0.26610~*
10 —0.862332 0.566 760( — 5) 0.285x 103

2 Energy of the vibrational levels with respect to — 128.000 000 hartree.
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