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Analytic approach to the equation of Esbjerg and Ndrskov
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The equation of Esbjerb and Nrskov, E(z} ae~{z), is obtained analytically as the leading term of a

functional E[p(z)] which relates the interaction energy E(z) between a helium atom at position z from a

metal surface ~ith the electron density p{z) of the unperturbed metal. It is sho~n that O,,ff does not

depend strongly on p{z), but on the metal substrate. Furthermore, jeff depends strongly on the approxi-
mation employed in evaluating the overlap integrals between the 1s helium state and the one-electron states
of the metal substrates. Results for the interaction of helium with Li(001), Na{001), and K(001} semi-
infinite metals are also presented.

In a recent work' (to be denoted by I), we have shown
that the equation of Esbjerg and Nbrskov, 2

E-o'effPO .
which relates the energy change E upon embedding a He
atom into a metallic jellium of free-electron density po, ap-
pears as the leading term in a series representation of a
functional E-E(ps). The proportionality constant rz, ri was
found to depend on the parameters of the 1s-electron orbital
qr, (r) of the free He atom. In the particular case for which

r r 3/4

q(r)- ~ e s'

we have shown that within the coupled Hartree-Fock (CHF)
approximation

' 1/2' t & 3/2
2p 2m'

jeff 6g

tegrals S,&.

%e start from the expression for the repulsive interaction
E,(.", (z&) a He atom is subjected to at position z& from a
metal surface and which is due to the orthogonalization pro-
cess described by Eq. (4):

Er'e'p' (») -X [es"'- Veri(zi) —e. I IS.s(zi) I' . (5)

where V,ir(z) and es ' are the single-electron potential and
eigenvalues of the electrons of the unperturbed metal,
respectively. It is assumed that the metal occupies the nega-
tive z space and is approximated according to a method
described elsewhere. ' The ei'," term of E,",,' (z&) appears in
the corresponding expression arrived at by Harris and
I.iebsch6 and is included here for later discussion. It is not-
ed that

~here ~, is the eigenvalue of the 1s state of the He atom.
The contribution to e,ff which comes from the e, term has
its origin in the assumption that the single-electron wave
functions of the metal, Ik&, in the presence of the He atom,
are obtained from the unperturbed ones, lko&, by ortho-
gonalizing the latter to the qr, (r) electron state of the un-
perturbed He atom, i.e.,

where S,s- (a lko). [We are going to use, equivalently, the
symbols lk) and Ia& for qrq(r) and %', (r), respectively. ]
The other contribution to u, ff, given by the second term of
Eq. (3), has its origin in the exchange-energy contribution
to the interaction between the He atom and the metal.

In the present work, we shall present a similar attempt to
express rz, ii by an equation analogous to Eq. (3) in the case
of a He atom interacting with a metal surface. This attempt
aims at the investigation of the inhomogeneity effects of the
electron density on a,ff. It will be shown that o.,ff can be
expressed (as in I) in terms of the characteristics of the ls-
electron state of the He atom. Also, in the present case,
the explicit dependence of n, ff on the characteristics of the
metal substrate will be derived. Furthermore, it will be
shown that the substrate dependence of o,,ff is very sensitive
to the approximation employed in evaluating the overlap in-

where 0 is the volume of the system and k= (ks, q).
In the following we will express X&IS,s(z~) I in terms of

the free-electron density p(z) of the unperturbed metal. In
establishing this relationship, two approximations will be
discussed.

In the first approximation (which we will improve subse-
quently), it is assumed that gr(z) is constant over the range
of the He atom at z, ', i.e., gs(z) = (s(z;). Within this ap-
proximation, it can be easily found that

X IS.s(z;) I'

1

2p 2m
rrz p

' 3/2 —(k -q )/2'„,dq I,(;)I'(1-.

~here ~kq - ~~ is the Fermi energy of the metal.
If the exponent P is not too small, then the exponential

in the integrand of Eq. (g) can be approximated by the first

where ( V,ii( —~)& denotes the average value of V,ir(z) far
from the surface inside the metal. In the case of the semi-
infinite metal

' 1/2

q, (r) = e " 'g, (z),
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two terms of the corresponding Taylor series, and then
' 3/2

Ig, (z, ) (2(k,' —q') aq

3/2

= 2— p(z) (9)

This result indicates that the effect of the surface is to re-
place the s, term of Eq. (3) by the coordinate dependent
term,

of helium (instead of using one GTO) Eq. (11) becomes

N.
&a,'fi'(z;) = (22r )"'[—e, —V,ff(z;) —p l g

;J (PPJ)"'
(12)

where N 0' are the coefficients of the GTO's. These are
determined by solving the Hartree-Fock equation for the
free He atom.

In order to improve the approximation g, (z) =(~(z;)
which was employed in deriving Eq. (12), we take

& (zi ) = ~ + V Ir(zi) —( V fr( (10)
(z —z;)'

(,(z) -(,(z;) + (z —z;)g,'(z, ) + ' (,"(z;) (13)
2

The derivation of Eqs. (9) and (10) was based on the as-
sumption that the kinetic energy term k'/2, due to ai, ', can
be neglected. This assumption, although it was proved
satisfactory in the embedding problem, ' cannot be ignored
here. Retaining the k2/2 term of eqfo', it can be shown that
the ( V,ff( —ee)) term on the right-hand side (RHS) of Eq.
(10) will be replaced by the work function Ip of the metal
substrate.

Thus, within the approximation g, (z) = g, (zi), the con-
tribution Se,ff, which is due to the orthogonalization pro-
cedure given by Eq. (4), is

3/2

(1)( )
22r (11)[ —a, —V,ff(z;) —@]

It is noted that in the absence of the work-function term
from the RHS of Eq. (10), a case which refers to the CHF
approximation' of the He-metal interaction, the repulsive
interaction E,",,' has the same functional relationship
E, & E,~& [p(zi)] for every metal, when V,ff(zi) is approx-
imated within the local electron density approximation. On
the other hand, if Ip is retained, it is clear that E,",,' (z, ) will

be higher for a metal with a low work function than for a
metal with a higher one. This is contrary to the expected
result6 and, as will be shown later, is due to the approxima-
tion g, (z) = Ie, (z;).

The approximation made in going from Eq. (S) to Eq. (9)
can be considered valid for all practical purposes as the
Gaussian-type orbitals (GTO) which describe the ls state of
the He atom are not too diffusive. In the case where a
linear combination of GTO's is used to describe the 1s state

over the range of the He atom. Equation (13) is then used
to determine S,II(zi) and subsequently the sum

X„~S,II(z;)~'. The term of $4(z) which corresponds to its
first derivative does not contribute to S,q(z;). Including the
term proportional to the second derivative of ge(z), Eq. (9)
becomes

'3/2 'I

X(S,g(z;))2- 2—

where

~e(zi) ( Velf( ~)) + Tq Veff(z')

E, (z;)
p ~ (14)

(15)

In the process of deriving Eq. (14), the Tq2 term of the

RHS of Eq. (15) is replaced by its average value over the
[O,kF] interval.

As E~ (zi) is negative, Eq. (14) indicates that by including
second-order corrections to the eigenfunctions g, (z ), the
repulsive interaction between the He atom and the metal
appears stronger than without these corrections. Further-
more, Eqs. (11), (14), and (15) predict that the repulsive
interaction E(z;) is stronger the higher the work function of
the metal is (in the small-overlap region). This conclusion
is reversed as V,ff(z;) tends to Ci. It is understood that this
comparison refers to the case where a He atom probes the
same electron density in different metals and under the ap-

proximation T (q') = eF. More accurately, (q') = e~/5

over the Fermi sphere. This latter approximation is used in
our numerical results.

In the case ~here a linear combination of GTO's is used
to describe W, (r), Eq. (14) takes the following form:

X~S „(z)~2 (2~)3/2X J (z) 1+ e e

k /J (PIPJ), 4PIP J 2PIP J
(16)

Finally, following the same procedure as in I and using the expression found for the exchange interaction between a He
atom and a metal surface, we find the exchange-energy contribution to o.,ff. This is given approximately by the expression
found in the case of He embedding (paper I), multiplied by the factor which appears within the large parentheses on the
RHS of Eq. (16).

Thus we are able to write down an analytic expression for the coordinate-dependent constant a,ff(z;) which generalizes the
constant of the equation of Esbjerb and Nerskov:

a,ff(z;) X Nif 'NJ
25/2

(p p )1/4(p + p )1/2
(P, +PJ)E, (z;)

2P PJ
(17)

In Fig. 1 we indicate the variation of a,ff(z) given by Eq. (17) as a function of p(z) for the cases of He interacting with the
metals Li(001), Na(001), and K(001). The computed value of e, is —0.91S a.u. We used the self-consistently obtained
values for V,ff(z) and p(z) of Ref. 7. The work function Ip is 3.56, 3.08, and 2.59 eV for Li(001), Na(001), and K(001)
semi-infinite metals, respectively. In the present calculations we made the approximation q'= (q') = eF/5 for the q' term
on the RHS of Eq. (15). If E~(zI) were put identically equal to zero in Eq. (7) [i.e., employing the approximation
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FIG. 1. The functional aetr(zl aea[p(z)) as given by Eq. (17)
(solid curves) for the cases of He interacting with the semi-infinite
metals Li(001), Na(001), and K(001). The 1s.electron state of the
free He atom is calculated within the Hartree-Fock approximation

by expanding it in seven GTO's. For the metal substrates we use
the self-consistently obtained values of p(z) and V,~(z) of Ref. 7.
The dashed curves correspond to the case of the CHF approxima-
tion (Ref. 3), i.e., for the case e, (z)-», + V,~(z).

g~(z) =(~(zi)], E(z) will appear (not shown here) stronger
the lower the work function of the metal substrate is. How-
ever, the approximation given by Eq. (13) reverses this
trend. This is sho~n in Fig. 1, where the solid curves
represent Eq. (17) with a, (z,) given by the second factor of
the RHS of Eq. (11), and the dashed curves indicate the
CHF iimit [i.e., the case where eqlcl is set equal to zero in
the RHS of Eq. (5)].

In Fig. 2 we indicate the variation of the repulsive interac-
tion E(z) - a,tr(z) p(z) as a function of p(z). lt is observed

FIG. 2. The variation of the repulsive interaction E (z)
a,g(z) p(z) as a function of the free-electron density p(z). Solid

(dashed) lines correspond to solid (dashed) curves of Fig. 1.

that in either case, that of neglecting the work function
from a, (z&) (dashed curves), or that of retaining the work-
function term (solid curves), the interaction E(z) exhibits a

strong substrate dependence. The density dependence of
E(z) is approximated by the linear relationship given by the
generalized equation of Esbjerg and Nerskov, i.e., Eq. (1).
Thus, we can say that our results support the applicability of
the generalized equation of Esbjerg and Norskov in the case
of the interaction of helium with metal surfaces. The non-
linear [in p(z)] terms of E [p(z) 1, although they contribute
significantly to the interaction E(z), do not affect the linear
relationship given by Eq. (1). This behavior is due to a mu-
tual cancellation between the nonlinear terms associated
with Sa,'g (zl ) given by Eq. (12) and with E~ (zi ) given by
Eq. (15).
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