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Rotationally inelastic cross sections for the LiH-He collision system are computed classically
using a previously derived ab initio potential energy surface [D. M. Silver, J. Chem. Phys. 72, 6445
(1980)]. The LiH is in its ground vibronic state and is initially taken to be in its j = 1 rotational
state. The He is in its ground electronic state. The system is treated as an atom-rigid rotor
interaction. The results are compared with previously computed cross sections derived from the
same ab initio potential energy surface using the coupled states approximation for quantum
mechanical scattering [E. F. Jendrek and M. H. Alexander, J. Chem. Phys. 72, 6452 (1980)]. The
theoretical total cross sections are averaged over a temperature distribution and are then
compared with experimental measurements of corresponding cross sections for a rotationally
resolved LiH beam ( j = 1) incident on a He gas target in thermal equilibrium at room temperature
[P. ). Dagdigian and B. E. Wilcomb, J. Chem. Phys. 72, 6462 (1980)]. The agreement between
classical, quantum and experimental results is discussed.

I. INTRODUCTION

This paper is part of a collaborative effort to investigate
rotationally inelastic collisions between LiH and a He atom.
In a previous publication' (paper I), an ab initio potential
energy surface was determined using the diagrammatic
many body perturbation theory through third order in the
correlation energy. Both He and LiH were assumed to be in
their ground electronic and vibronic states, respectively. The
LiH was treated as a rigid rotor with bond length equal to the
equilibrium distance of the ground vibronic state of the LiH
molecule. The calculated ab initio points on the LiH-He in-
teraction potential were fit to an analytic form. The overall
accuracy of the final interaction potential is assumed to be
within ~ 1 mhartree. In a second publication® (paper II),
integral cross sections for rotational energy transfer in LiH
(in its ground vibronic state) due to collision with He (in its
ground electronic state) were obtained using several quan-
tum mechanical procedures and two potential energy sur-
faces. For the present purposes, the relevant aspect of that
work involved the use of the quantum mechanical coupled
states approximation and the interaction potential described
in paper L. The relative kinetic energy distribution was taken
to be a combination of the Maxwell distribution of the He
target gas and the monoenergetic distribution {nearly a §
function) of the LiH incident beam (see below). Three rela-
tive kinetic energies from the combined distribution were
judiciously selected so as to imitate the results of a random
sampling of the combined distribution with reasonable accu-
racy. Computations were carried out for three initial rota-
tional states of LiH ( j = 0,1,2) at each of these energies. The
energy values of the combined distributions were assumed to
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be low enough so that only the rotational states of LiH could
be excited during the collision. A third publication® (paper
III) presented experimentally determined state resolved
cross sections for the rotationally inelastic scattering of a
nearly monoenergetic supersonic beam of LiH impinging on
a He target gas at room temperature having a Maxwell dis-
tribution in the kinetic energy. The bulk of He and LiH were
in their ground electronic and vibronic states, respectively.
The LiH in the beam was rotationally state resolved atj = 1
by directing the beam through a quadrupole electric field
before its incidence on the He gas. The experimental and
quantal cross sections are in reasonable agreement.’

In the present work the quasiclassical trajectory meth-
od is applied to the LiH-He system in an effort to examine
the validity of the classical approach vis-a-vis the experimen-
tal and accurate (coupled states) quantal results. Since in
both the quantal and the classical computations the same
accurate ab initio potential is employed, the advantages and
limitations of the classical approach per se as well as the
contributions of the quantum effects can be evaluated.

1. CLASSICAL MECHANICAL APPROACH

A. Formulation of the problem
The state to state cross sections for the system
LiH(j = 1) + He—LiH(j ') + He

are computed classically by integrating the canonical equa-
tions of motion over the potential energy surface obtained in
paper L. An energy contour diagram of the surface appears in
Fig. 1 and a projected view is provided in Fig. 2. The use of
this surface is of course tantamount to fixing the vibronic
and electronic states of the fragments to be the ground states.
In particular, the LiH molecule is a rigid rotor with R = R,
for the vibrational state v = 0 of the ground electronic state.
The computations are carried out at the three energies used
in paper II but only for the initial rotational state used in
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FIG. 1. Equipotential energy contour diagram of the analytic representa-
tion of the rigid rotor LiH-He interaction surface as a function of the dis-
tance (expressed in bohr) of the helium atom from the "LiH center of mass.
Successive contours differ by a factor of {10 in energy (expressed in mhar-
tree). The circle of radius 3 bohr, drawn around the ’LiH center of mass,
illustrates the anisotropy of the surface.

paper III, namely, j = 1. The cross sections for each “final
state” and for each energy are obtained by binning the trajec-
tories and are compared to the corresponding quantal cross
sections given in paper II.

For a meaningful comparison with the experimental
cross sections the collision energy of each trajectory must be
drawn from a distribution similar to the experimental distri-
bution; and enough trajectories must be generated to allow
for a statistically valid comparison. However, it is expected
that the cross sections computed on the basis of such a sam-
pling would not be much different than the cross sections

LiH center
of mass

LiH center
of mass

Energy

FIG. 2. Projected view of the LiH~He interaction surface truncated at the
0.5 eV energy contour level. The contour levels are the same as those in Fig.
L
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computed by using a few energies judiciously selected. This
is the approach followed here and in paper II. One of the
selected energies is the “average” of the relative energy dis-
tribution curve; the other two are selected equidistant from
the average on either side of it. Then, the distribution weight-
ed averages of the individual cross sections over these three
energies yield the cross sections to be compared with the
experimental cross sections obtained in paper ITI. We use the
averaging method employed in paper II.

B. Cross section

The total energy of the LiIH-He collision system is given
by

E=E, +V+Eg +e, (1)

where E, E,, V, E,, and € are the total, the relative kinetic,
the interaction potential, the LiH rotational, and the LiH
zero vibrational energies, respectively. For a given E (small
enough to avoid any vibronic energy changes during colli-
sion), the rotationally inelastic cross section o, (E)for the
transition from the initial rotational state j to the final rota-

tional state j ' of LiH is given by
benax
aj_,j,(E)=21rf b-P _, (bE)b. (2)
(V]
P, ,;.(b,E)is the transition probability as a function of E and
of the impact parameter b; b_,, is that b for which P (b
> b, ,E ) = 0 for all practical purposes.

In principle, if P, ,;.(b,E ) were a known function of b,
then Eq. (2) could be integrated by a standard Monte Carlo
integration* with » as the variable of integration and
y=>b-P_,(bE)as the integrand. Since the maximum val-
Ue Of Y iS Yrmax = Omax * [Prsj' (0 )] max = Drmax and its mini-
mum value is zero, the range of both b and y is (0,b,,,).
Following the standard Monte Carlo integration procedure,
a pair of random numbers (x,,x,) is drawn from a uniform
distribution in the interval {0,b,,,, ), and the number N;.(E)
of points lying on or below y, after a total of N draws, are
counted. The dependence of N;.(E) onj ' and E follows, of
course, from the dependence of y on these parameters. Then,
for large N (ideally o) the ratio N,.(E)/N is equal to the
ratio of the area under the curve of y over the total area
Vimax * Dmax = b2, covered by the random pair (x, X,). Since
the area under the curve of y is equal to the integral in Eq. (2)
the above procedure yields

GerlE)_ y, (MAED)

Nooo N

b2,
For sufficiently large N (depending on the desired accuracy)
the above relation gives

0 (E)=2mb2, [N, (E)/N] . (3)

Now, since the functional dependence of P . (b,E)onbis
not known a priori, N,.(E ) is found by computing a number
of trajectories V at one of the total energies E and counting
the number of trajectories resulting in a j’ final rotational
state. Details on the trajectory computation are provided in
the next section.

Since the above method assumes that P, ,.(b,E)is con-
tinuous and yet it is obtained in discrete steps, quite a large
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number N of trajectories must be computed to obtain reason-
able accuracy. However, the amount of computation can be
reduced drastically if Eq. (2) is expressed as the Riemann
sum

AE)=27 Z b, .

i=1

where the interval (0,b,,,, ) has been divided into # subinter-
vals 4b; = b, | — b,. These subintervals need not be equal
to each other. Nonetheless, if # is large enough they may be
chosensothat4b, = b_, /n. Pursuing this option we substi-
tute 45, in the above equation to obtain

2T/' bmax z b, A (b,,E) (4)

At this point there are two options one can choose from,
depending on whether an accurate profile of P, ;.(b,E) as a
function of b is desired or not. If a profile is desired, a large
enough number N (b;) of trajectories (depending on the re-
quired accuracy) is computed for each b; at the selected total
energy E and the number of trajectories N;.(b;,E ) resulting
in aj ' final rotational state is counted. Then, the transition
probability at each b, is taken to be

P ;. (b,E)=N, (b,E)/N(b,).
Substituting this in Eq. (4) gives
2 by &
— > [b:i- Ny (bLE)/N(b;)] -

i=1

Pj—’j'(bi’E) 'Abi s

J—’l

oy (E) =

0 (E) =

The total number of trajectories required in this approach is
N=23X7_, N(b,)=n - N(b;) and is still quite large if reasona-
ble accuracy is expected. However, it has the added advan-
tage over the method associated with Eq. (2) of providing an
accurate profile of P, ;.(b,E ). On the other hand, if such a
profile is not desxred one may assign one b; in each subinter-
val and then compute a single trajectory with this b,. Under
these conditions, P, ;.(b;,E) = §;.;~, for all b, and E, and
the number N of trajectories is equal to the number 7 of the
subintervals of the Riemann sum. j “(/) is a running index
representing the final rotational state obtained with the tra-
jectory associated with b,. Upon substitution in Eq. (4) one
obtains a running index representing the final rotational
state obtained with the trajectory associated with b;,. Upon
substitution in Eq. (4) one obtains

N
RALEY > by s (3)

i=1

O (E) -

where the E dependence enters indirectly via the proportion
of trajectories resulting in a j ' final state at each E. This
method requires the least amount of computation for com-
parable accuracy with the previous two methods.>” Since
the trajectories are classical, a quantization scheme must be
employed in conjunction with Eq. (5) in order to achieve
cross sections for integer rotational statesj ’.

The velocity averaged cross sections are the weighted
sums of the individual cross sections and they are given by
the equation
j—»j (E k) ’ (5,)

zgk

k=1
where the subscript k differentiates between the three total

energies. The weights g, are normalized (i.e., 2} _, g, = 1)
and they are functions of the He-LiH relative velocity, the
LiH beam velocity, the temperature of the He gas, and the
mass of the He atom. Their functional form is derived in
paper II. Here, the relative velocities are obtained from the
energies [see Eq. (6) in the following section], the beam veloc-
ity is ¥, ~4.6 A/dps (paper III), and the temperature of the
He gasis T=298.3 K.

C. Initial conditions

As stated in the previous section, in order to evaluate
Eq. (5), a number of trajectories must be computed and the
trajectories resulting in the desired final state must be count-
ed. The computation of a trajectory is done by integrating
the canonical equations of motion over the potential energy
surface. The integration yields the final value of the angular
momentum of LiH, and from the quantal relationship of
J'?*=j'(j' + 1)h? the final rotational statej  is obtained by
appropriate quantization (see the following sections).

There are certain initial conditions that must be set pri-
or to carrying out each integration. These conditions depend
on the coordinate system in use and they are tied to its orien-
tation, which is essentially defined by them. La Budde and
Bernstein® refer the position coordinates of all particles to a
single Cartesian coordinate system; they introduce the rigid-
ity of the rotor as a nonholonomic constraint via a Lagrange
multiplier.® Here, however, we adopt the system of Chap-
man and Green.® The coordinates of relative motion (x, y, z)
of the LiH-He system are referred to a Cartesian system
centered at the center of mass of LiH. The coordinates of
angular motion of LiH are the Euler angles 8,¢ referred to
the same Cartesian coordinate system. The interatomic dis-
tance r of LiH is held constant, thus introducing the rigidity
of the rotor and eliminating one coordinate at the same time.
In this system, the LiH is considered motionless while the He
is moving relative to it. The coordinates of relative motion
are identical to the coordinates of He and the LiH-He separ-
ation is R = (x> + y* + z%)"/2. The orientation of the Carte-
sian coordinate system is such that the He initially (meaning
at the beginning of integration) moves in the yz plane with an
initial velocity vector parallel to the z axis. The integration
starts at a LiH-He separation R, large enough so that the
potential is virtually zero for R>R,, It is at such separations
that the values of the canonical coordinates and the orienta-
tions of the momenta vectors may be known (initialized) with
certainty since now the equations of motion depend only on
the kinetic part of the Hamiltonian (see the following sec-
tion). Since the potential never becomes zero, the value of R,
is selected by a couple of trial runs, and it is a trade off
between cost and accuracy. Here, R, = 15 A has been select-
ed for which ¥ < 10~ 2 ergs(~ 10~ '* hartree). The same R,
is used for each trajectory since there is nothing to be gained
by varying it. In keeping with the chosen orientation of the
Cartesian coordinate system, the canonical coordinates of
motion of He are initialized as follows:

%=0, yo=5b, z,=(R} —b?%"?,
P =0’ P =O’ on=_.u'007

X0 Yo
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where b is chosen randomly (see below), i is the LiH-He
reduced mass, and v, is the initial velocity of He. v, is ob-
tained from Eq. (1) by setting ¥ = Oand E, = B, - j(j + 1)#?
with B, = 1/(2u’r?) where r, is the LiH equilibrium distance
used in paper I, ' is the LiH reduced mass, andj = 1. Substi-
tuting these values in Eq. (1) gives

vo= [2(E —e—2B,#)/u]"?. (6)
The canonical coordinates of LiH are initialized as follows:

P %o =J.f,

P, = s jj + 1)#(sin® 6, — cos® 70)]'/*/sin 6,

=5-.2"2.%.(sin® 6, — j2/4)"/*/sin 6, ,

where 7, is the initial angle between the angular momentum
vector and the z axis, j, is the quantum number of the z
projection of the angular momentum vector, j = 1 so that
cos o =4, /[ j(j+ 1)]"*h =j,/(V2), and s is the sign of
P, . Theinitial values ,, ¢, of the Euler angles as well asj, , s,
and b are selected by random sampling from a uniform dis-
tribution between appropriate limits. Note that the initiali-
zation of P, and P, is guided by quantal considerations (i.e.,
quasiclassical approach) as is the random initialization of j,
and € described in the next paragraph.

In this paper, 6,, ¢, (the initial values of 8, ¢ ), b, j,, and s
are considered random variables uniformly distributed with-
in their respective ranges. This corresponds to the random-
ness of these variables in an experimental setup. In the case
of the coordinates of He, this randomness enters the picture
indirectly through the orientation of the LiH-centered Car-
tesian coordinate system relative to a space fixed coordinate
system. For each trajectory, the LiH centered coordinate
system is rotated relative to the space fixed coordinate sys-
tem so as to keep constant the initial values of the He coordi-
nates. Returning now to the initializations, the range of j, is
taken to be the subset of integers ( — 1,0,1) in order to mimic
the quantized nature of j,. The range of s is the subset
( — 1,1). The random sampling of j, and s from their respec-
tive intervals is done here indirectly by subdividing the range
of a uniform random number generator into three and two
equal regions, respectively. Then a random number is drawn
and, depending on which of the equal regions it belongs to,
an integer is assigned toj, and s from their respective ranges.
The initialization of @ is tied to the initial value of j, through
the angle 7, Since cos7n,=j,/v2 (for j=1) and j,

= — 1,0,1 it follows that 7, = 7/2, /4, 37/4, respective-
ly. Since the angular momentum vector of LiH is perpendic-
ular to its plane of rotation, it is obvious that if 5, = 7/2, the
range of 6, is (0,7) while if 7, = 7/4, 37/4 the range of 8, is
(m/4, 37/4). Accordingly, cos 8, is sampled from the inter-
val{ — 1,1)if p, = /2, and from the interval ( — 1/v2, 1/V2)
if 9o = 7/4 or 37/4. The reason for sampling cos 6, rather
than 6, is the same as that given by other authors.>~” Finally
# and b are initialized by sampling their respective ranges,
namely, (0,27) and (0,b,,,,, ). All the above samplings are done
by using a uniform random number generator.

D. Canonical equations of motion

The canonical equations of motion can be easily derived
once the Hamiltonian of the system is known.® Such a set of
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equations is given by Chapman and Green.® These equations
are reproduced here in order to establish the notation and to
correct a typographical error® in the equation for P,. Let &
be the angle between r and R; M;;, My, and M, be the
atomic masses of Li, H, and He, respectively; C,,,, be the
conversion constant between atomic mass units and the mini
cgs mass units used here (see below and Table I); and let L,
and P, be the Laguerre and Legendre polynomials, respec-
tively. Then, the canonical equations of motion are given by
the following relations:

_ My -my
—(mLi +mH)‘
_ (my +my)-my,
B my +my + My,
B, =1/2-p'-r2),
R’=x*+y"+2,
cosa=(x-sinf-cos¢d +y-sinf-sing +z-cosd)/R,

Imax 2

ViRcosa)= Y ¥ A, -Li[ey(R —a)]

’

y7’ C,

amu ?

- C,

amu

I=0k=1
-exp[ —a;(R —a)/2] - Pjcos ), (7)
H=L(Pi+P§+P§)+Be( é+i)
2u sin? 6
+ V(R,cos a), (8)
x=P/u, y=P/u, z=P,/u, (9a)
6=2-B,-P,, $=2.B,.P,/sin’0, (9b)
Px=-—iv—i~ v (sinﬁ-cos:ﬁ_x-cosa), (9¢)
R R Jdcosa R R?

dv y 7 (sin&-sin¢_y-cosa

, (9d
’ R R Jdcosa R R? ) (5d)

b=t i B (cwa_zoma) gy
R R Jdcosa\ R R?

. 2-B,.P}-cosf v

P, = ey " oo [cos@-(x-cos¢
+y-sing)—z-sin@)/R, (9f)

P, = L [sinf-(x-sing —y-cosg)]/R. (%)
dcosa

TABLE I. Units and physical constants.

Units Physical constants
Mini
cgs cgs Symbol Values
€ 0.086 4 eV*
Mass 1 ppg 1072 ¢ #  1.054 592 cperg dps
h 6.626 196 cperg dps
Length 1A 10~%cm Ve  1.594900 A®
(3.013 925 bohr)
Time 1dps 10-"s my,  7.016 amu®
Energy 1lcperg 10~ '"ergs my 1007 825 amu®
my,  4.002 6 amu®

*1eV = 160.219 177 cpergs, 1 hartree = 4359.828 cpergs.
®1 A =1.889 727 bohr.
°1 amu = 1.660 531 ppg ('C base).
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The meanings of the various potential constants in Eq. (7) are
fully discussed in Ref. 1. The evaluation of the derivatives
Av/3R and dv/d cos a is straightforward and will not be
shown here.

E. Computation of trajectories

The numerical integration of the canonical equations of
motion [Egs. (9)] is accomplished by using a Runge-Kutta—
Gill integrator® with variable step. Each integration yields a
particular trajectory with characteristics depending on the
initial conditions selected for that trajectory. Each integra-
tion starts at R, and it is carried out to a post collision dis-
tance equal (or nearly equal) to R,,. Before the main body of
the computations was executed, a few trajectories were run
and the total energy E and the total angular momentum M
were monitored throughout the trajectory to make sure they
were conserved. The following equations were used for this
purpose (J and L are the molecular and transiational angular
momenta, respectively):

J?=P3 4 P3/sin*0,
E—e=(P}+P2+P}/2u+B,-J*+V(Rcosa),
L,=y-P,—2z.-P,,

L,=z-P,—x-P,,

L,=x-P,—y-P,,
L*=L:2+L:+LZ,
M=J+L,

M?=][L,—P,-sing — P, cos@-cos¢/sin 6 ]*
+ [L, + P, cos¢ — P, -cos 8 -sin ¢ /sin 6 ]?

+ [Lz + P, ¢ ]2 .
The initial step size of the integrator and the requested accu-
racy were set so that E — € and M were kept constant to ten
significant digits in the mini cgs units shown in Table I. Also,
these trial trajectories were back integrated to check the con-
sistency of the algorithm.

After the internal accuracy parameters were set and the
program was thoroughly checked for consistency and accu-
racy, three batches of about 1150 trajectories each were run.
Each batch was run at one of the total energies used in paper
I1, namely, E = 0.2921, 0.3921, and 0.4921 eV. The trajec-
tories at £ = 0.3921 eV were run first, in small batches of
100-500 trajectories each until the computed cross section
did not change appreciably with additional trajectories. The
same number of trajectories that accomplished this at
E =0.3921 eV was then used at the other two energies. At
each of these energies, the trajectories were run in two
batches of about 500 trajectories. This was mainly a safety
precaution to minimize costs in case of an error or a comput-
er failure. As it turned out, the uniform random number
generator we were using was somewhat biased and generated
more numbers in some regions of its range than in others. To
partially rectify this, enough additional trajectories, about
10% of the total number of trajectories, were run in the less
populated regions to make the total interval (0,b,y,,, ) as uni-
form as possible. The effect of this rectification on the final
cross sections was negligible. Therefore, no such rectifica-

A. Metropoulos and D. M. Silver: Collisions of LiH with He

tion for the other random variables was attempted. Note,
however, that the distribution of j, and s was not affected by
the small bias of the generator, because of the way these
variables were sampled. The exact number of trajectories
including rectification was as follows: 1164 trajectories at
E =0.2921eV, 1178 trajectories at £ = 0.3921 eV, and 1141
trajectories at £ = 0.4921 eV. All computations were per-
formed in FORTRAN on the IBM-3033 MP computer of the
JHU/APL computing center. An average of about 4 s com-
puting time was required for each trajectory excluding all
subsequent computations and data manipulation. This rela-
tively long computing time is attributed to the modularity of
our program and to the Runge-Kutta—Gill integrator,
which may loop in a particular region of the trajectory, each
time halving the step size until the desired accuracy is
achieved. Up to twenty such iterations at a particular point,
starting from the initial step size, are allowed, after which
further computation of this trajectory is abandoned. About
1% of the trajectories were lost for this reason. No doubling
of the initial step size was allowed even if the potential was
smooth enough to permit it. However, fractional values of
the initial step size were allowed to increase with each iter-
ation up to the initial value, if the potential was smooth
enough for the computations to be within the desired accura-
cy.

The system of units used here is shown in Table I and it
is the same as that used by LaBudde and Bernstein.® The unit
prefixes d, c, p stand for deci- , centi- , pico-, respectively; for
instance, a dps (decipicosecond) is equivalent to
107! . 1072 = 10~ '3 5. Table I also shows the values of the
physical constants used here as well as some energy related
parameters. The accuracy of the numbers is not necessarily
the one implied by the number of digits. Nonetheless, all of
these digits were retained in our program. The values of the
coefficients of the potential are given in I. The value of 7,
used here and in I is taken from a paper by Pearson and
Gordy.'®

F. Quantization of final /

Each trajectory results in a particular final angular mo-
mentum of LiH. In order to obtain cross sections, these mo-
menta must be quantized, i.e., rotational quantum numbers
must be extracted for each of the classical rotational angular
momenta. This is done here by solving the quantal relation
J2=j'{j. + 1)- h*forj., with J equal to the obtained clas-
sical angular momentum, and then quantizingj,/. The quan-
tization of j/ is performed using two different binning algor-
ithms, and two slightly different results are obtained.

Letj ' represent the quantizedj, . Then, according to the
first algorithm, ifj/ <0.5, thenj ' = 0, and the corresponding
b is added to the sum in Eq. (5) for j'=0; if
k — 0.5 <j’<k + 0.5, thenj ' = k, and the corresponding b
is added to the sum in Eq. (5) forj ' = k. For lack of a better
name, this method is called the direct binning method. Ac-
cording to the second algorithm, the sums in Eq. (5) for two
consecutive j ' are incremented by a proper fraction Q;. of &
(the b associated with the trajectory resulting inj,) in propor-
tion to how close to eachj' =k — 1, k (k=1,2,3,...)j. is;
where (kK — 1<j/<k). BEach Q. is computed as follows:
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Qk—l =1- (jc’ - [jc’])l Qk =jc, - [jc’]’ where [jc’] is
the integer part of j. Accordingly, b-Q, _, and b - Q, are
added to the sums in Eq. (5)forj' =k — 1 andj' =k, re-
spectively. For instance, ifj/ = 2.3 (2 <j/ < 3), it follows that
Q, = 0.7, @, = 0.3; then the sums in Eq. (5) forj ' = 2,3 are
incremented by 0.7b and 0.3b, respectively. This method is

14 . o Classical =
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FIG. 3. Integral cross sections for rotational energy exchange as function of
final rotational quantum number using the direct binning method. Error
bounds on the classical results indicate 90% confidence limits. The relative
kinetic energy is (A) 0.2057 eV, (B) 0.3057 ¢V, (C) 0.4057 eV.
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called the proportional binning method. Notice that accord-
ing to this algorithm a specific j ' cannot be assigned to each
trajectory. Equation (5) is now slightly modified in order to
incorporate formally the above binning procedures, it be-
comes

16 T T T T T T T T T
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for classical
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FIG. 4. Integral cross sections for rotational energy exchange as function of
final rotational quantum number using the proportional binning method.
Error bounds on the classical results indicate 90% confidence limits. The
relative kinetic energy is (A) 0.2057 eV, {B) 0.3057 eV, (C} 0.4057 eV.
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2# : bmax N R .
O (B) = = 3 by Oy (087519
or
277. ‘ bmax Al -
iy () = —5— -2'1 by - Q1) (10)

where the subscript j ' of b, is a reminder that only &°’s of
trajectories resulting in a j ' final state are included in the
sum. If the direct binning method is used, Q;. = 1 for every
J '. If the proportional binning method is used, Q. is comput-
ed as above. Figures 3 and 4 show the resulting cross sections

computed according to the direct and the proportional
methods, respectively, as functions of j’; these results are
also tabulated in Table II (the indicated error bounds are
dealt with in the following section). For comparison, the cor-
responding quantal cross sections (from paper II) vs j’ are
also plotted in Figs. 3 and 4. Notice that the proportional
binning method gives somewhat better cross sections (mean-
ing smoother graphs) for all but j ' = 0. This j ' being the
lower limit accumulates a disproportioned number of frac-
tional b’s.

The velocity averaged classical cross sections, obtained
from the individual cross sections for each energy E (com-

TABLE II. Quantal and classical cross sections as functions of final J and total energy.

Direct binning

Proportional binning

Total Final J Quantum CS Classical CS Error
energy (eV) (A% (A% (A%
0.2921 0 4.32 n 1.07
1 49.30 43.28 347
2 12.72 11.81 1.78
3 6.49 6.67 1.27
4 5.75 5.63 1.10
B 5.41 4.68 0.96
6 5.36 4.90 0.96
7 4.47 5.26 0.94
8 2.93 4.08 0.79
9 1.60 311 0.70
10 1.00 1.53 0.50
11 0.64 0.99 0.37
12 0.38 0.57 0.26
13 0.19 0.10 0.11
0.3921 0 4.08 4.15 1.11
1 45.50 43.33 343
2 10.61 10.28 1.66
3 5.96 6.35 1.23
4 4.93 6.63 1.18
5 4.31 3.80 0.89
6 3.23 3.4 0.78
7 2.83 3.44 0.80
8 3.59 3.24 0.73
9 3.51 2.74 0.66
10 2.66 1.7 0.51
11 1.75 2.27 0.60
12 1.09 1.89 0.55
13 0.92 1.13 043
14 0.39 0.47 0.25
15 0.30 0.41 0.23
16 0.14 0.09 0.09
0.4921 0 4.05 3.25 0.99
1 43.10 44.67 3.51
2 9.99 8.72 1.58
3 5.67 5.02 1.11
4 4.37 3.82 0.92
5 3.60 3.66 0.87
6 2.76 3.98 0.91
7 2.73 4.34 0.90
8 2.45 3.55 0.82
9 1.84 1.95 0.57
10 2.32 1.77 0.54
11 2.71 1.78 0.53
12 2.11 2.46 0.62
13 1.32 1.58 0.50
14 0.74 1.46 0.46
15 0.46 1.38 0.47
16 0.33 0.70 0.33
17 0.20 0.11 0.13
18 0.14 0.16 0.14
19 0.08 0.01 0.02

Classical CS Error
(A% (A%
6.45 0.93

38.43 2.91
13.24 1.43
6.89 1.03
5.78 0.89
5.08 0.81
4.86 0.75
5.28 0.75
4.05 0.63
3.04 0.56
1.64 0.39
0.92 0.30
0.52 0.20
0.12 0.10
6.31 0.89
39.42 2.93
11.87 1.28
6.81 1.00
6.07 0.94
4.12 0.74
3.52 0.64
3.45 0.63
3.09 0.57
2.71 0.54
1.83 0.42
2.13 0.47
1.89 0.47
1.19 0.37
0.51 0.20
0.35 0.18
0.09 0.08
5.42 0.80
40.86 3.05
10.42 1.27
4.84 0.89
3.78 0.71
3.82 0.69
4.17 0.73
4.03 0.69
3.36 0.63
2.46 0.52
1.68 0.40
1.70 0.40
2.24 0.48
1.74 0.42
1.53 0.38
1.25 0.37
0.73 0.29
0.19 0.11
0.14 0.11
0.02 0.02
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puted by both the direct and the proportional binning meth-
ods) are shown in Fig. 5 as functions of j '. The velocity aver-
aged quantal cross sections (recomputed from paper II), as
well as the experimental cross sections (from paper 111), are
also shown in Fig. 5 as functions of j . The same results are
tabulated in Table III.

G. Accuracy of the computations

For the purpose of estimating the errors introduced by
the Monte Carlo calculations, the previously derived cross
section equations are recast in a form more appropriate for
error analysis. Let us define the following functions:

Sl bE)=2m-b-P_ .(bE),

@(J b E)=2m by + by - Q- (11)
where P, ;.(b,E) is taken to be the correct mathematical
expression for the transition probability. Then, Eq. (2) may
be recast in the following form:

bmlx

.1
csm;. = Slj'b,E)db,
(o]

16 u 1 T | 1 T T |

14 o Classical —
4 Quantum
o Experimental

12— ® Upper/lower experimental —
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12 ® Upper/lower experimental .

Proportional binning.

Cross section (A2)
[--]
T

LY ™

0 2 4 6 8 10 12 14 16 18 20
Final J

FIG. 5. Experimental and velocity averaged quantal and classical integral
cross sections for rotational energy exchange as function of final rotational
quantum number: (A) direct binning method, and (B) proportional binning
method.
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where csm;. represents the mathematical expectation of
f(j',b,E)with respect to b. This expectation is also the math-
ematical cross section forj '. Similarly, Eq. (10) may be recast
in the following form:

N
esa; = > $(j'b,E)N, (12)
i=1
where csa;. represents the arithmetic mean of ¢ (j',b,,E)
with respect to b,, and it is approximately equal to the math-
ematical expectation csm;.. It is also the approximate cross
section for j . The quantity

€. = |csa;. — csm;. |

is the error of the Monte Carlo computation of the cross
section forj .

The distribution of csa;. may be approximated by a
Gaussian (normal) distribution.'' Let ;. be the standard de-
viation of ¢ (j ',b;,E ) and a be the probability that ¢;. will be
at most equal to an upper limit €, (€;- <e, with probability ).
Then, it can be shown*®"'"'? that the error in the computa-
tion of csa;. (under the assumption of a normal distribution)
is given by the following inequality:

<2y -5 N (13)

with probability (confidence level) . The number z, is
usually found from tables of z, vs a (see, e.g., the Appendix
of Ref. 11). The values of z,, depend to a large extent on the
degrees of freedom involved in the computation. However,
as the number of the degrees of freedom v increases, z,, ra-
pidly reaches a value which changes very little with further
increases of v. Here v = N — 1, where N is the number of
computed trajectories for a particular total energy E. Since
N is of the order of 1000, the upper limit may be used. A
confidence level of 90% (z, = 1.645) has been used in this
paper for the estimation of ;.. The estimate of s;. also in-
volves the degrees of freedom, and it is given by

N 2 5 172
igl [¢ (Jj ,b,-,E)——csaj,]/v] )

Then, from Eqs. (11) and (12), and the approximation
v =N — 1 =N for large N, the above equation reduces to its
final form:

8 =2 + by [._1(b2 —b2 )] (14)

The error bounds obtained by combining Egs. (13) and ( 14)
are given in Table II for the various cases and are shown as
error bars in Figs. 3 and 4.

For the velocity-averaged cross sections, the standard
deviation, denoted by 5, is computed from Eq. (5) which is
recast here in the following form:

- 3
csa =3 g -csa,
k=1

where the subscript £ differentiates between the three total
energies. Let 5;. be the standard deviation of csa and N, be
the number of trajectories (observations) at the & th total en-

ergy (k =1, 2 or 3). Then assuming zero covariance, §;., is
given by““)’“ 13
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TABLE II1. Experimental and velocity averaged quantal and classical cross sections.

Direct binning Proportional binning
Final J Quant. CS  Exp. CS Exp. Err. Class. CS  Class. Err.  Class. CS  Class. Err.
0 4.12 3.50 0.60 3.7 0.63 5.99 0.51
1 45.33 43.85 2.08 39.78 1.78
2 10.80 8.70 1.40 9.98 0.98 11.58 0.78
3 5.95 5.40 0.90 5.89 0.71 6.05 0.57
4 4.88 3.90 0.60 5.32 0.64 5.11 0.51
5 4.26 2.80 0.50 3.93 0.53 4.20 0.44
6 3.48 2.60 0.30 3.95 0.51 4.05 0.41
7 3.13 220 0.30 4.17 0.52 4.05 0.40
8 3.01 1.80 0.40 3.54 0.46 3.39 0.36
9 2.46 1.80 0.30 2.50 0.38 2.68 0.32
10 2.19 1.30 0.30 1.70 0.31 1.73 0.25
11 1.90 1.30 0.30 1.18 0.33 1.71 0.25
12 1.35 1.20 0.30 1.84 0.33 1.75 0.27
13 0.93 0.80 0.20 1.10 0.26 1.19 0.22
14 0.45 0.60 0.20 0.76 0.21 0.81 0.17
15 0.30 0.50 0.20 0.71 0.21 0.63 0.16
16 0.19 0.0 0.0 0.31 0.13 0.32 0.12
17 0.08 0.0 0.0 0.04 0.05 0.08 0.04
18 0.06 0.0 0.0 0.06 0.06 0.06 0.04
19 0.03 0.0 0.0 0.01 0.01 0.01 0.01

_ 3 172
sj'= zgk°sij'/Nk] ’

k=1
where each s,;. is given by Eq. (14) evaluated at the & th total
energy. The error €;. of the velocity-averaged cross section
for j ' for a confidence level a is given by

€.<2, *5;.
with z, obtained as before. These errors (for 90% confidence
level) are given in Table III.

1ll. DISCUSSION

The dynamical model used in this work is that of an
atom-rigid rotor. Hence there is no possibility of simulating
vibrational excitation. This is reasonable in light of the ex-
perimental observations>'* that include only rotational en-
ergy exchange. Collisional vibrational excitation would re-
quire energies much higher than the threshold for this
process. '’

In some previous work, the classical collision mecha-
nism between an atom and diatom has been discussed in
terms of the time variation of the projection of the torque
vector along a unique direction.'® Individual trajectories for
He-LiH (rigid rotor) collisions have been examined to iden-
tify characteristics of the rotational energy transfer pro-
cess.'” Again torque was found useful for understanding ro-
tational transitions and for defining an interaction time.

The need for a realistic potential between the atom and
diatom has been illustrated.'® Using a point particle and an
off-center spherical shell as a model of the He-LiH system
produced cross sections for rotational energy exchange that
differ drastically both in magnitude and their j ' dependence
from the experimental and quantal results.

In the present work, we have computed quasiclassically
the rotationally inelastic integral state-to-state cross sections
(o;_; ) for the LiH-He system at three different total ener-
gies using the interaction potential of paper I' and Figs. 1
and 2. These energies have been judiciously selected so as to

closely simulate the corresponding experimental distribu-
tion.? For each energy, two sets of cross sections have been
computed using two different methods of quantizing J (the
so-called direct and proportional binning methods) and each
set has been compared to the corresponding coupled states
(cs) results.” Two sets of energy-averaged cross sections have
also been computed (one for each quantization method) and
they have been compared to the experimental® as well as to
the energy averaged cs cross sections.>

A direct comparison between the quasiclassical and
quantal results in Table IT and Figs. 3 and 4 shows that for
some values of j ' the quantal cross sections lie outside the
range of the quasiclassical error limits. First, the error limits
indicated represent a 90% confidence level on the statistical
averaging process. These limits would change if more trajec-
tories were computed and if a different confidence level were
chosen. Second, the quantal calculations incorporate certain
inherent approximations whose effects are not indicated by
“error” bars. If it were possible to place such limits on the
quantal calculations, then there might be complete overiap
between the ranges of the quantal and quasiclassical error
limits. For these reasons it is not clear whether or not the
small differences between the calculations are significant.

A noticeable feature of both the quasiclassical and
quantal cross sections in Figs. 3 and 4 is the undulatory be-
havior rather than a monotonic decrease as a function of j '.
This structure is reminiscent of the “rotational rainbow”
structure in differential rotationally inelastic cross sections
first described in classical trajectory studies of Li*-CO colli-
sions.® Some experimental evidence for rotational rainbows
in differential cross sections has been reported.? It has been
also seen in earlier calculations of integral rotationally in-
elastic cross sections for other atom-molecule systems.?!
Here in Fig. 5, it is interesting to observe that the undula-
tions are strongly damped in the energy-averaged quantal
calculation, but much less well damped by the energy aver-
aging in the quasiclassical case. Therefore the structure re-
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mains prominent in the quasiclassical cross sections in Fig.
5.

The energy-averaged quasiclassical cross sections com-
pare very well to the corresponding quantal results, even
better than the agreement between the single energy results.
This is probably due to the averaging process which has
brought three times as many trajectories into the energy-
averaged calculation. The agreement between the quasiclas-
sical energy-averaged and experimental cross sections is
about as good as that between the cs energy averaged and
experimental cross sections. Thus, we conclude that for the
present system the quasiclassical method proves to be an
acceptable approximation for the computation of integral
cross sections.
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