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Partial and total widths of the resonances of the H S two-electron ionization iadder
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We have obtained the partial and total widths for autoionization of the H S two-electron ion-
ization ladder for n =3-7, which leads to the Wannier state at E =0. The theory starts from first
principles by identifying and computing the appropriate localized, correlated wave functions on the
real energy axis and then incorporating the effects of the multichannel continuum by solving state-
specific, complex-eigenvalue non-Hermitian matrix equations. The outgoing channel-dependent
Gamow orbitals are expanded in terms of Slater-type orbitals with coordinate complex scaling. The
partial widths are obtained from an equation involving the complex mixing coeScients of the reso-
nance wave function and the corresponding off-diagonal matrix element for each open channel. We
find that by far the largest partial width is that which comes from the nearest threshold while within
this hydrogenic threshold there is strong mixing of the angular momentum channels and a decay
rate distribution which depends on the excitation energy.

I. INTRODUCTION

The first-principles quantum-mechanical treatment of
multiply excited states (MES) has been one of the chal-
lenging problems of atomic physics. Of special interest
are those classes of doubly and triply excited states (DES
and TES) whose wave functions exhibit localization on
the two-electron Wannier ridge' and on a three-electron
hyperridge. The method of identification and systematic
computation of correlated wave functions and properties
of such states in terms of combinations of suitably chosen
orbitals and ¹lectron function spaces has been present-
ed in a series of publications from this institute. Ac-
cording to this theory, the state of interest has the lowest
energy within each intrashe11 manifold and the corre-
sponding root is optimized in a state-specific manner. Its
computational implementation is based on the theory of
autoionizing states which introduced and justified the
use of Hartree-Fock (HF) or multiconfigurational HF
(MCHF) zeroth-order functions for the treatment of
MES in combination with structure-dependent one-
electron projection operators.

The class of DES whose wave functions satisfy the
Wannier condition ~r, = ~rz~, 8,2=m. as n becomes large,
and constitute the two-electron ionization ladder (TEIL),
lie in the continua of many channels, into which they au-
toionize. What are their decay probabilities and how do
they distribute themselves over the various thresholds?
The present work offers answers to these questions for the
first time.

In particular, we have computed the partial and total
widths for the 'S TEIL multichannel resonances of H
which start just below the hydrogen n = 3 threshold and
go up to the n =7 threshold. The calculation of partial
widths of these highly excited states has become possible
by applying the complex-eigenvalue multichannel theory
to the correlated wave functions of the TEIL states.

Given the hydrogenic thresholds of the open channels

for the H TEIL states, we have computed two kinds of
partial widths. The first is with respect to each hydro-
genic threshold with index m, channel mixing included.
For example, the H TEIL state of the n =4 manifold
decays into the m =1, 2, and 3 available hydrogenic
thresholds. We have found that the major contribution is
due to the nearest one, while there is relatively weak cou-
pling between channels of different thresholds. The
second type of partial widths corresponds to each indivi-
dual angular momentum l for each m, with inter- and
intrathreshold channel mixing included. For example,
for the threshold m =3, the available orbital angular mo-
menta which can couple with the free electron to give a
'S overall symmetry are s,p, and d. We have found that
there is a distribution of rates over the 1-channels and
strong mixing among l-channels of the same threshold.

II. PREVIOUS RESULTS ON WIDTHS
OF DOUBLY EXCITED STATES OF H

In spite of much theoretical work on DES of H since
the early sixties' ' and a variety of experimental obser-
vations, ' information on partial widths of the class of
highly excited states connected with the Wannier ridge
has not been available until now, due to the formal and
computational complexity of the problem. On the other
hand, quantitative knowledge in this area would increase
substantially the level at which the physics of these states
is understood. For example, the total inelastic cross sec-
tion at the vicinity of a DES is determined almost ex-
clusively by resonant scattering. Therefore it is propor-
tional to the partial widths of the DES with respect to the
incident channel. In turn, this partial width is propor-
tional to the normalization of the wave function
representing the DES. The latter is provided to a good
approximation by WKB wave functions of the Wannier
type for energies below the ionization threshold. There
have been three proposals regarding this semiclasical
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Configurations

33
64
85
96
91

Size
of STO basis

10
10
8

6
4

&opt

0.5
0.5
0.5
0.1

0.1

—30
—20'
—30'
—30'
—20'

TABLE I. Number of configurations used to describe the
function ++X„,number of rotated Slater-type functions per
channel, and optimum values of the nonlinear parameters of
each Slater-type orbital (STO).

gan, and McDowell;" and Pathak, Kingston, and Ber-
rington' using scattering-type methods for resonances
below the n =4 threshold. These investigations aimed at
the computation of a large number of resonances and
have not isolated the TEIL states. However, following
the analysis and computations of Ref. 2, we have
identified them as being those corresponding to the
lowest energy of each manifold.

III. PRESENT THEORY AND CALCULATIONS

The present calculations were done as follows. The
wave function for each 'S TEIL state of H is written as

wave function normalization ¹
Rau" conjectured an

energy dependence of N -E XE ' . From a semiclas-
sical theory for negative energies, Macek and Feagin'
obtained N —E XE" . More recently, Kom-
ninos's' semiclassical analysis of the TEIL states yielded
N -E XE ', in agreement with Rau. Thus it is im-
portant to examine further the energy dependence of the
partial widths by a method that is not of the WKB type,
i.e., via the use of fully quantum-mechanical calculations
of correlated wave functions. Table VIII contains the
partial width to the 1s channel, obtained by us just for
this case from the first-order golden rule formula and a
numerical Hartree-Fock scattering orbital. This type of
computation is justified by the fact that this partial width
is very small and the interthreshold coupling is very weak
(see Sec. IV). The results yield an energy dependence E~,
p =3.4+0.2, which is close to the value 3.127 obtained
by Komninos. '

On the other hand, the total widths have been comput-
ed as part of a series of studies on DES by Ho' and by
Ho and Callaway' using the complex coordinate rotation
(CCR) method for resonances below the n =6 threshold
and by Morgan, McDowell, and Callaway Hata, Mor-

0 "(E)=0 0+X,",(E),
E,"=&+OIHI+o&,

(la)

(lb)

where Vo represents the localized component and X„(E)
the asymptotic one representing the open channels. The
subshell cluster expansion of 4"(E) (Ref. 19) leads to the
possibility of identifying and computing the partial
widths to all orders.

In the present case of the 'S TEIL states, the index n
represents the principal quantum numbers of the two
electrons, n, =n2=n, which characterize the choice of
the configurations comprising the zeroth-order MCHF
vector. The choice of such a zeroth-order vector assures
the incorporation, in a self-consistent manner, of a large
part of the long-range interelectronic correlation and of
angular correlation. Given the fact that for each n the
MCHF manifold contains n configurations (e.g. , for
n =4,4s, 4p, 4d, 4f ) and n solutions, the root which
corresponds to the TEIL state and which, therefore, is
optimized, is that with the lowest energy. '

Previous experience with state-specific calculations of a
variety of autoionizing states and with TEIL
states ' reveals that, in most cases, MCHF solutions con-

TABLE II. Energies (in a.u. from the double ionization threshold) of the H 'S TEIL states n =3-9.
n =3 n=5 n=6 n=9

0.068 63 0.039 48 0.025 59
Present work

0.017 91 0.013 25

0.069 27 0.039 97 0.025 95
Previous work'

0.018 14 0.01344 0.010 35 0.008 23

0.069 16
0.069 15'

0.069 01'
0.069 01

0.039 89

0.039 64

0.039 61'

0.025 92

0.0257

Others
0.018 18

0.01800

0.01346 0.010 36 0.008 22

'State-specific theory (SST). The open channels have been projected out. Reference 4.
Reference 23.

'Reference 24.
Reference 15.

'Reference 25.
Reference 18.
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TABLE III. Total autoionization widths (in a.u. ) of the H S TEIL states n =3—7. The results cor-

respond to the lowest root of each manifold.

n —3

0.001 51

n=4

0.000 95

n=5

Present work
0.000 71 0.000 48

n =7

0.000 36

0.001 51
0.001 43'

0.000 95'
O.OO1 1Ob

Others
0 000 70' 0.00046'

'Reference 15.
Reference 18.

'Reference 25.

stitute very good descriptions of the high-lying states.
Thus, for reasons of economy, in this work we chose

+0 +MCHF ~

+0 EMCHF ~

(2a)

(2b)

especially since we aimed at establishing valid trends as a
function of n and orbital angular momentum rather than
extremely accurate total and partial widths. Neverthe-
less, we were pleasantly surprised to discover that the re-
sults on total widths which follow from the approxima-
tion (2) and the method described below are in excellent
agreement with those from the very extensive CCR com-
putations of Ho' and Ho and Callaway' (see Table III).

The asymptotic correlation function is written as a sum
of the open-channel functions

X,",(E)=+X„(E)

= g [4;,„(N —1)g™(E)],
rn, j

where l denote the open channel. The exact asymptotic
form of X„(E)on resonance emerges from the formalism
of configuration interaction in the continuum. '

Regarding the computational steps, %0 and 4;,'"„(N —1)

are computed on the real coordinate axis. For the
mpresent study of H, P0 is obtained as 4McHF and 4;,„

are the exact hydrogenic functions for each m threshold
I

below the energy Eo. The Gamow orbitals g (E) are
regularized via coordinate complex scaling. Certain
simplifications that involve the diagonal and off-diagonal
matrix elements of the complex energy matrix reduce the
size of the computations drastically. ' According to
these, only the Gamow orbital is subjected to coordinate
rotation and is expressed in terms of a state- and
channel-specific Slater basis set with coordinates
p=re

The determination of the total and partial widths is
done in two steps. The first is diagonalizing the total
complex Hamiltonian matrix containing the matrix ele-
ments

'mz—:6 ——y'"
2

CI
( @MCHFlHlX™

MCHF

(4a)

EMCHF~ ( @MCHFl+lXas

(x.,"IHI~"„,&, (x™1~ix™&,

and the second is searching for the region in the parame-
ter space where the imaginary part of the complex energy
is independent of 9.

Having thus optimized the function space, the all-order
partial complex eigenvalues are given by

TABLE IV. Partial autoionization widths (in a.u. ) with respect to each group m of open channels.
The greatest contribution comes from the nearest group m = n —1. As the level of excitation increases,
the interthreshold channel coupling becomes weaker. However, as it can be seen from Table VII, the
intrathreshold channel coupling is very strong.

n —1

n —1

dodec

recoup

0.00 154
0.00 147

0.000 95
0.000 90

0.000 67
0.000 65

n=6

0.000 43
0.000 41

n =7

0.000 31
0.000 29

n 2
n 2

Idee

3 coup

0.000 09
0.000 04

0.00009
0.00006

O.OO0O6

0.000 06
0.000 06
0.000 06

0.00005
0.00005

n 3
n 3

Ydec

recoup

0.00001
0.00000

0.000 01
0.000 00

0.000 01
0.000 01

0.00001
0.00001
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where c& and CMcH„are the mixing coeScients with in-
1

terchannel coupling, 5 is the partial energy shift, and
m

y is the partial width. The total width of each TEIL
state is then the sum of the partial widths

m I

IV. RESULTS

0.00-

-0.0&-

0
-092-

C%

Hydrogenic T EIL
threshotdl g tatty

Table I contains the technical information pertaining
to the calculations. The resulting energies and total
widths are given in Tables II and III, respectively. Fig-
ure 1 shows how stabilization of the width is established
as a function of the number of the available
configurations corresponding to each threshold m. Sud-
den jumps occur as each threshold opens and contributes
with new orbital momenta. In the limit, all possible mo-
menta are included and the stabilized eigenvalue yields
the total resonance width of the TEIL state.

Table III shows that the lifetime of the TEIL states in-
creases with increasing energy. Furthermore, it is clear
from Tables III and IV that the largest contribution by
far to the total width comes from the nearest threshold
m =n —1. The partial widths of the lower channels are
orders of magnitude smaller, the difference caused mainly
by the rapidly changing electronic wave functions with
consequent changes in the overlap between initial and
final states in the region where the mechanism of autoion-
ization occurs.

For the TEIL states n ~7, the closest group of open
channels corresponds to the hydrogenic threshold
(n —l). However, a drastic change occurs at n =8 (see
Fig. 2). The (negative) energy of this state (see Table II)

O

X ~ HS aassR ~ ~ 5 ~ % ~ E ~

O
C)

0

0 ag0 WSR~s s ERROR ~

O

p

4- O
P cD

00
0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
number of conf t.gur ot. i.ons i.ncLuded

FICx. 1. Plot of the convergence of autoionization half-width
(in a.u. ) of the n =6 'S TEIL state of H, as a function of the
number of asymptotic correlation vectors. Each jump
represents a stabilized result with respect to the sum of orbital
momenta which can couple to the core of the channels below.
The final jump includes Gamow orbitals with s, p, d, f, and g
angular momenta.

-0.03-

- 0.04-

FIG. 2. Energy-level diagram of the H S TEIL states
(n =4-9). Starting with the state n =8, the energies fall below
the hydrogenic thresholds with quantum number n —1.

TABLE V. Partial widths to the 1s channel (in a.u. ), of the
TEIL states n =4—7 of H 'S. The results are obtained from
the golden rule formula and numerical Hartree-Fock scattering
functions.

1.31x10 '
n=5

2.26 x 10-'
n=6

6.58x10 '
n =7

2.94x 10-'

turns out to be slightly lower than the one corresponding
to the hydrogenic threshold with principal quantum
number 7. Thus, for TEIL states n ) 8, the channels
(n —I ) are no longer open, and therefore they start con-
tributing to the localized component of the total wave
function. This phenomenon is expected to become more
pronounced for higher n, since an increasing number of
channels gradually close. It is still an open question,
however, whether and to what extent the new closed
channels contribute additively to the width of the reso-
nance, which is otherwise expected to decrease rapidly as
soon as the most significant open channels close.

In Table IV we present the results from our study of
the all-order interchannel coupling. The upper row in
Table IV contains the results of computations where
there is no coupling among channels of different thresh-
olds. The resulting decoupled partial widths are desig-
nated by yd„. The lower row (y„„)contains the results
with the aforementioned coupling included, as obtained
from the diagonalization of the total complex eigenvalue
Hamiltonian matrix and Eqs. (4). The conclusion is that
the major contribution comes from the nearest threshold
and that its contribution is basically unaltered by mixing
of channels belonging to different thresholds. This
finding justifies the computations of Table V for the 1s
threshold, which were done with the golden rule and high
numerical accuracy in order to obtain reliably very small
widths.

Finally, the theory allows the computation and analysis
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TABLE VI. Partial-width analysis within the threshold m =n —1. Results are given in a.u. and as a
percentage of the total widths of Table III. As the level of excitation increases, the distribution moves
towards higher momenta in a manner similar to that of the weights of the bound configurations. More-
over, as it can be seen from the last row, for higher n states the contribution of the lower thresholds be-
comes more ixnportant.

(n —1)sos

(n —1)pep

(n —1)dad

(n —1)fef

(n —1)gag

y„„~=+(n—1)lel
I

n =3

0.001 12
74.55%
0.000 35

23.12%

0.001 47

97.67%

n=4

0.00046
48.44%%uo

0.00041
42.75%
0.00003
2.93%

0.000 90

94.12%

0.000 25
36.06%%uo

0.000 32
45.39%
0.00007
9.91%
0.00000
0.34%

0.000 65

91.70%

n=6

0.000 13
27.33%
0.000 20

41.31%
0.00008

15.92%
0.00000
1.65%
0.00000
0.01%
0.00041

86.22%%uo

0.00008
22.90%
0.000 13

36.96%%uo

0.00006
17.95%
0.000 01
3.60%
0.00000
0.25%
0.000 29

81.66%

TABLE VII. Partial-width analysis within the threshold m =n —1, with the intrathreshold channel
mixing neglected. The sum of the partial widths exceeds substantially the total width of the state.

(n —1)sos
(n —1)p&p
(n —1)dad
(n —l)fef
( n —1)gag
y„,=g(n —1)!el

I

n =3

0.001 31
0.000 41

0.001 72

n=4

0.000 70
0.000 62
0.O0006

0.001 38

n=5

0.000 49
0.000 51
0.000 12
0.000 01

0.001 13

n=6

0.000 39
0.000 38
0.000 17
0.000 02
0.000 00
0.000 96

TABLE VIII. Percentage of the total width of the partial autoionizing widths of the TEIL state
n =6 (in a.u. ), with respect to each threshold m =n —1 of open channels. As i increases, the distribu-
tion moves towards lower momenta.

n=6

(n —i )sos
(n —i )pep
(n —i)dad
(n —i)fef
(n —i)gag

27.33%%uo

41.31%%uo

15.92%%uo

1.65%
0.01%%uo

E =2

4.43%%uo

6.35%%uo

1.16%%uo

0.00%

1 =3

0.75%
0.78%%uo

0.01%

i=4
0.14%
0.03%

y„„~=+(n i)lel—
I

0.00041

86.22%

0.00006

11.94%

0.00001

1.54%

0.00000

0.17%
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of the distribution of decay rates within each threshold
n, as a function of the angular momentum l . In other
words, the dynamics of decay of, say, the n =3 'S TEIL
state to the m =2, I =0, l channels can be determined ab-
solutely. Tables VI and VII contain our results for the
decay to the nearest threshold, with and without inter-
channel mixing, respectively. Two findings are particu-
larly interesting: first, that there is a distribution of prob-
ability over the I channels with a clear energy (n) depen-
dence; second, that interchannel mixing is very strong for
channels of the same threshold. This is concluded from
the fact that the sum of the partial widths of Table VII
referring to a given state exceeds by far the total widths
of the state. As a last piece of information, Table VIII
contains the partial width analysis for the state n =6
with respect to all the lower thresholds.

V. SYNOPSIS

We have presented reliable results for the partial and
total widths of the class of highly excited 'S resonances in
H which lead to the Wannier state at threshold. ' Our
approach employed state-specific wave functions with an-
gular and long-range radial correlations and account-
ed for interthreshold as well as intrathreshold channel
mixing in the continuous spectrum via the complex-
eigenvalue polyelectronic theory. The established trends
for the widths of these resonances are the total width de-
creases with increasing excitation, the nearest threshold
yields the largest partial width by an order of magnitude,
and within that hydrogenic threshold there is strong I-
channel mixing and a decay rate distribution which is
dependent on the excitation energy.
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