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We performed total-energy calculations by the scalar-relativistic augmented-plane-wave method in the
local-density and muffin-tin approximations for all 3d, 4d, and 5d transition metals in the fcc and bcc
structures. These calculations predict the correct equilibrium structure and give good agreement with

experiment and other calculations for lattice constants and bulk moduli.

I. INTRODUCTION

The relative stability of crystal structures in the transi-
tion metals has been explained by Pettifor' using a model
characterized by only two d-resonance parameters, from
which the densities of states were obtained in a hybrid
nearly-free-electron and tight-binding scheme. The sim-

ple approach of Pettifor worked surprisingly well consid-
ering that it was based on differences of the total one-
electron band-structure energies neglecting contributions
to the total energy from the electrostatic double counting
and the exchange and correlation terms. Subsequently,
Andersen and co-workers ' and Heine demonstrated the
cancellation of the double counting and exchange-
correlation terms provided that the electron potential is
frozen from one structure to the other. This approach,
referred to as Andersen's force theorem, was taken by
Skriver, who used the linear muffin-tin orbital (LMTO)
method to calculate the relative stability of all elements.
Skriver went beyond the essentially canonical approxima-
tion employed by Pettifor including hybridization with sp
bands. Skriver performed a self-consistent (SC) calcula-
tion for each element in the fcc structure, and then used
the SC fcc potential to calculate the sum of one-electron
energies for the bcc structure. The resulting difference of
the band structure energies gave him the correct ordering
of total energies between different structures for all ele-
ments except Au.

In the present paper we present systematic calculations
of the total energy of all the 3d, 4d, and 5d transition
metals as well as the alkaline earth elements. Our calcu-

lations were performed by the semirelativistic
augmented-plane-wave (APW) method in the muffin-tin

approximation; they were done fully self-consistently for
both the fcc and bcc structures without using the frozen
potential procedure employed by Skriver. In this sense
our calculations are similar to those of Davenport, Wat-
son, and Weinert, who studied the Sd series by the linear
augmented Slater-type-orbital method. Our results for
the lattice parameters and bulk moduli agree with those
of Moruzzi, Janak, and Williams with small differences
due to neglect of relativistic effects in the latter calcula-
tions.

This article is organized as follows. Section II de-
scribes the method of calculation and the approxima-
tions. Section III contains our results in comparison with
values from the experiment and previous calculations. In
Sec. IV we discuss trends in the band structure, and in
Sec. V we summarize the results.

II. METHOD OF CALCULATION
AND APPROXIMATIONS

The total energy was calculated from the expression of
Janak, which is valid within the muffin-tin (MT) approx-
imation and needs the crystal potential, the charge densi-
ty, and the eigenvalue sum as input. These were calculat-
ed self-consistently with the symmetrized APW method
using the MT approximation, which is accurate' for cu-
bic materials. The crystal potential was calculated on a
doubling linear mesh consisting of 730 points inside the
MT radius. We have found that an integration with a
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smaller number of points leads to errors in the total ener-

gy of 1 —8 mRy depending on the atomic number. For
example, for Ca the errors are about 1 mRy, but for Cd
they are about 8 mRy. The logarithmic derivatives were
calculated on a mesh of at least 500 points per Ry to en-
sure good eigenvalue convergence.

To determine the charge density and the potential self-
consistently we treated the highest p, s, and d orbitals as
band levels, but the stability of the structure was un-
changed if we used only s and d orbitals as bands. All
other states were treated as core levels because they form
essentially flat bands. The core levels were calculated by
a fully relativistic atomiclike calculation in each iteration.
The band states were calculated self-consistently in the
semi-relativistic approximation (the spin-orbit coupling
is neglected) initially on an equally spaced mesh of 20k
points in the irreducible zone for the fcc, and 14k points
for the bcc structure. However, to achieve satisfactory
convergence it was necessary to use 89-k point sampling
for the fcc and 55k-point for the bcc structures. The er-
rors in the total energy which could arise by using small-
er k-point sampling were 1 —8 mRy for bcc and 0.2 —3
mRy for the fcc structure.

A convergence in the energy levels of 0.5 mRy assured
a convergence in the total energy of less than 0.05 mRy.
In a11 our calculations the exchange potential was treated
in the exchange and correlation formalism of Hedin and
Lundqvist, ' which is accurate for ground-state proper-
ties. To find the equilibrium lattice constants we calcu-
lated the total energy at various lattice constants, and
determined the minimum by fitting the results with a par-
abolic or cubic least-squares fit, with rms errors less than
0.2 mRy, as proposed by Birch. '

III. COMPARISON WITH EXPERIMENT
AND OTHER CALCULATIONS

Comparing our results with experiment' we find a
nearly perfect agreement especially for the 4d metals
where magnetic behavior is absent. ' ' As is usually the
case in the local-density approximation (LDA), our pre-
dicted lattice constants are slightly less than the experi-
mental values and the bulk moduli are overestimated.
For the 3d and 4d elements where we can make direct
comparison with experiment we find that the calculated
lattice constants are 2—5% smaller and that the bulk
moduli are 10-15% larger than experiment. For the 5d
elements our calculated values are in much better agree-
ment with experiment. The percentage errors are within
1% and 6%o for the equilibrium volume and bulk
modulus, respectively. For the alkaline-earth metals we
find the largest discrepancies with experiment similar to
the findings of other calculations. This is probably due to
the fact that these metals undergo a semimetallic phase
transition under pressure, ' which makes non-mu%n-tin
corrections become important. Such corrections may
also improve the results for the more open bcc struc-
ture. "

Our results are presented in Tables I—III. We note
from these tables that along each d row of the periodic
table the unit cell volume (or the lattice constant) de-
creases with the atomic number Z until the eighth
column (Fe, Ru, Os) and then increases toward the end of
the row. Conversely, the bulk modulus Bo reaches a
maximum at the eighth column where the lattice con-
stant is at a minimum. These results of the variation in

ao and Bo with Z reflect the fact that the filling of the d

TABLE I. Bulk moduli (Bo), equilibrium total energy (E„,), volume per atom ( Vo), and the total
energy difference (hE ) between bcc and fcc for 3d metals.

System hE (mRy)
Vo (a.u. ')

theor. expt.
Bo (Mbar)

theor. expt.

fcc Ca
bcc Ca
fcc Sc
bcc Sc
fcc Ti
bcc Ti
fcc V
bcc V
fcc Cr
bcc Cr
fcc Mn
bcc Mn
fcc Fe
bcc Fe
fcc Co
bcc Co
fcc Ni
bcc Ni
fcc Cu
bcc Cu
fcc Zn
bcc Zn

—1357.5271
—1357.5245
—1524.9902
—1524.9863
—1703.9688
—1703.9670
—1894.7593
—1894.7870
—2097.6747
—2097.7043
—2313.0172
—2313.0088
—2541.0881
—2541.0596
—2782.2037
—2782. 1804
—3036.6908
—3036.6830
—3304.8630
—3304.8574
—3586.7807
—3586.7716

2.6

3.9

1.8

—27.7

—29.6

8.4

28.5

23.3

7.8

5.6

9.1

248.36
250.25
150.26
153.08
108.04
107.54
87.92
84.63
75.83
74.06
68.87
69.16
65.55
67.13
65.73
65.93
68.24
68.77
74.29
76.07
99.90
94.33

293.5

93.7

81.0

79.5

73.9

79.7

0.156
0.202
0.541
0.597
1.260
1.257
2.081
2.230
2.651
3.056
3.351
3.219
3.387
3.114
2.487
3.539
2.736
2.340
1.424
3.121
0.919
0.789

0.152

1.619

1.903

1.683

1.863

1.309
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TABLE II. Bulk moduli (Bp), equilibrium total energy (E„,), volume per atom ( Vp), and the total
energy difference (AE) between bcc and fcc for 4d metals.

System E... (Ry) hE (mRy)
Vp (a.u. )

theor. expt.
Bp (Mbar)

theo r. expt.

fcc Sr
bcc Sr
fcc Y
bcc Y
fcc Zr
bcc Zr
fcc Nb
bcc Nb
fcc Mo
bcc Mo
fcc Tc
bcc Tc
fcc Ru
bcc Ru
fcc Rh
bcc Rh
fcc Pd
bcc Pd
fcc Ag
bcc Ag
fcc Cd
bcc Cd

—6 352.1717
—6 352.1697
—6 763.6492
—6 763.6428
—7 190.3942
—7 190.3931
—7 632.6227
—7 632.6503
—8 090.5781
—8 090.6084
—8 564.4862
—8 564.4698
—9 054.5830
—9 054.5384
—9 561.1185
—9 561.0855

—10084.3720
—10084.3624
—10624.6357
—10624.6261
—11 181.7601
—11 181.7526

2.0

6.4

—27.6

—30.3

16.4

44.6

33.0

9.6

9.6

7.5

317.72
320.19
197.54
201.95
146.47
144.04
120.81
116.94
104.42
102.89
94.50
95.40
90.18
92.70
90.85
93.41
97.21
98.00

110.85
112.03
138.75
141.36

380.2

121.4

105.2

92.9

99.5

115.1

0.158
0.126
0.526
0.476
1.047
1.013
1.798
1.948
2.564
2.881
2.996
3.188
3.548
3.290
3.116
2.785
2.011
1.936
1.131
1.268
0.568
0.562

0.116

1.702

2.725

2.705

1.808

1.007

TABLE III. Bulk moduli (Bp), equilibrium total energy (E„,), volume per atom ( Vp), and the total
energy difference (hE) between bcc and fcc for 5d metals.

System Etot «y) hE (mRy)
Vp

theor.
(a.u. )

expt.
Bp (Mbar)

theor. expt.

fcc Ba
bcc Ba
fcc La
bcc La
fcc Hf
bcc Hf
fcc Ta
bcc Ta
fcc W
bcc W
fcc Re
bcc Re
fcc Os
bcc Os
fcc Ir
bcc Ir
fcc Pt
bcc Pt
fcc Au
bcc Au
fcc Hg
bcc Hg
fcc Tl
bcc Tl
fcc Pb
bcc Pb

—16265.8802
—16265.8818
—16982.1384
—16982.1332
—30 177.1439
—30 177.1435
—31 233.3125
—31 233.3382
—32 312.9492
—32 312.9878
—33 416.3614
—33 416.3427
—34 543.8631
—34 543.8039
—35 695.7968
—35 695.7460
—36 872.5535
—36 872.5385
—38 074.5208
—38 074.5122
—39 301.8945
—39 301.8903
—40 554.9373
—40 554.9311
—41 833.9446
—41 833.9420

—1.6

5.2

0.4

—25.7

—38.6

18.7

59.2

50.8

17.7

8.6

4.2

6.2

2.6

376.6
373.5
233.4
240.4
143.9
143.3
123.2
120.6
109.9
107.1
100.1

100.5
94.7
98.2
96.9
99.3

102.6
103.9
113.7
116.4
149.3
159.1
184.4
189.4
219.0
210.6

426.7

121.0

107.0

95.5

101.9

114.5

204.7

0.071
0.111
0.312
0.307
1.434
1.247
2.482
2.008
2.794
3.256
3.533
3.743
4.419
3.783
3.763
3.481
3.335
2.721
1.689
1.763
0.805
0.374
0.766
0.339
0.503
0.477

0.103

2.001

3.232

3.550

2.783

1.732

0.430
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band increases the strength of the d electron binding,
which reaches its maximum at the middle of the d series.
For the stable structures, a comparison with the results of
Moruzzi, Janak, and Williams shows that the equilibri-
um volume and the bulk modulus are in good agreement.
Small differences exist, however, which bring the calcula-
tions of Moruzzi, Janak, and Williams to a slightly
better agreement with experiment. The latter calcula-
tions were done also in the muffin-tin approximation by
the Korringa-Kohn-Rostoker (KKR) method, but includ-
ed no relativistic effects. Since the APW and KKR
methods are considered equivalent and since we have
checked the differences in k-point samplings between
Moruzzi, Janak, and Williams and our calculations, it is
clear that the main source of discrepancies is the fact that
our calculations include relativistic effects. The worsen-
ing of the agreement with experiment when relativistic
corrections are included is an unexpected result that has
also been found in the calculations of Elsasser et al. ,

'

who attribute it to a cancellation of errors.
The structural energy difference b E = E„,(fcc)

—E„,(bcc) also shown in Tables I—III has, with the ex-
ception of Fe, the correct sign predicting the stable struc-
ture between fcc and bcc, in agreement with experiment.
We are not going to deal with the hcp structure in this
paper. Fe was treated here with a paramagnetic calcula-
tion, but even the spin-polarized ca1culation does not pro-
duce the correct ground-state energy in the LDA. Our
equilibrium volumes and bulk moduli for bcc Sc, Ti, Mn,
Co, and Ni are again in accord with the values found by
Moruzzi and Marcus. '

The most complete study to date of the stability of the
crystal structures across the periodic table was given by
Skriver using the LMTO method. Skriver based his ap-
proach on the findings of Pettifor and Andersen's force
theorem, which lead to a cancellation of the double-
counting term in the total energy and eliminates the core
levels to a second-order approximation in the charge den-
sity. He also argues that the electrostatic term is in the
range of 0.05 —0.5 mRy and may be neglected. Therefore
AE involves only the sums of the valence one-electron en-
ergies. Using this methodology, Skriver calculated AE
from the expression

is clear that we agree on the sign of hE. A comparison
with Miedema and Niessen's analysis shows that the
theory still overestimates the "experimental" results. In
the 5d series our results shown in Table III are also in
good agreement with those of Skriver, especially for those
elements in the middle of the series that have large AE
values. It should be noted, however, that we get the
correct structure, with hE = 8.6 mRy even for Au, where
Skriver's calculation failed. Our results for the 5d ele-
ments are also in agreement with the work of Davenport,
Watson, and Weinert, who used the augmented-Slater-
type-orbital method. Again, a detailed comparison of the
AE values is not available with the results of Davenport,
Watson, and Weinert, but from their graph of hE versus
element one observes the same trends.

In the process of the present study we have discovered
the following prescription to obtain essentially the same
results for AE. This is done by performing only the fcc
calculations self-consistently. Then for the bcc calcula-
tions we use the self-consistent fcc charge density to con-
struct a bcc potential for a lattice constant corresponding
to equal fcc and bcc volumes. This potential is used to
perform only one iteration with the APW program. The
resulting total energy agrees with that of the fully self-
consistent bcc calculation to an accuracy of approximate-
ly 0.5 mRy. We applied this procedure to Al, V, and Co
with equal success. Our prescription appears to be simi-
lar to Skriver's approach and is in the same spirit as the
Harris approximation.

The relative stability of the elements described by the
quantity AE is of great importance in the construction of
phase diagrams. Miedema and Niessen ' as well as Kauf-
man and Bernstein have utilized experimental data to
obtain estimates of AE. These results are smaller than
the theoretical AE by factors as large as 3. The source of
this discrepancy is not understood at present. On the
theoretical side the muffin-tin approximation employed in
this work cannot account for the error. Calculations that
have removed this approximation, such as that of Jansen
and Freeman for W and of Singh and Papaconstanto-
poulos" for Zn, show very small effect on AE.

IV. TRENDS IN THE BAND STRUCTURE

b,E = f E Nb„(E)dE —f E N„„(E)dE

and correctly predicted the crystal structure of all transi-
tion metals except Au. However, Skriver's results, as
well as those of Pettifor, are a factor of 3 —5 larger than
the enthalpy differences obtained by Miedema and
Niessen ' analyzing experimental phase diagrams.

In this work we have not employed any of the cancella-
tion arguments of Pettifor and Skriver. We have sub-
tracted total energies of the fcc and bcc structures retain-
ing all terms in the total-energy expression. In all cases
including Au our results give the correct crystal struc-
ture. Since Skriver did not tabulate his results for AE, we
can only compare with a graph shown in his paper for the
4d elements. For those elements like Nb, Mo, Ru, and
Rh that have large hE the agreement is very good. For
elements with small AE the comparison is not easy, but it

In Tables IV —VI we list characteristic energies for the
I

&
state, the bottom and top of the d bands, and the Fer-

mi energy Ez. In our notation Ed& denotes the bottom of
the d bands and corresponds to the state X, or L

&
for the

fcc metals and the state N, or H, 2 for the bcc metals.

Ed, denotes the top of the d bands and corresponds to the
states 8", and X3 for fcc and bcc, respectively. It can be
seen from Tables IV —VI that the d-band width AEd in-

creases across each row for both fcc and bcc structures,
up to a maximum in the (V,Nb, Ta) column and then de-
creases slowly as the d band fills up. Looking at a given
column in the Periodic Table we note that AEd increases
from the 3d to the 5d metals. Also from Tables IV —VI
we can form the difference EF—E(I, ), which is a mea-
sure of the occupied valence bands. This quantity in-
creases across the different rows and reaches a maximum
in the (Co,Rh, Ir) column. It is worth noting that the oc-
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TABLE IV. Theoretical energies for the I
&

state, the bottom (Ed&), the top (Ed, ), and the width

(AEd ) of the d band, and the Fermi energy (EF ) for the 3d metals.

System

fcc Ca
bcc Ca
fcc Sc
bcc Sc
fcc Ti
bcc Ti
fcc V
bcc V
fcc Cr
bcc Cr
fcc Mn
bcc Mn
fcc Fe
bcc Fe
fcc Co
bcc Co
fcc Ni
bcc Ni
fcc Cu
bcc Cu
fcc Zn
bcc Zn

I l (Ry)

0.085
0.040
0.094
0.128

0.172
0.207
0.232
0.275
0.209
0.261
0.196
0.236
0.174
0.172
0.073
0.116
0.006
0.010

—0.071
—0.057
—0.214
—0.176

Edb (Ry)

0.244
0.285
0.347
0.383
0.404
0.454
0.451
0.509
0.440
0.505
0.443
0.503
0.445
0.472
0.382
0.439
0.337
0.347
0.268
0.269

—0.040
0.006

Ed, (Ry)

0.650
0.730
0.812
0.882

0.932
0.996
1.207
1.101
0.989
1.076
0.983
1.076
0.973
0.978
0.820
0.900
0.712
0.715
0.568
0.566
0.125
0.151

EEd (Ry)

0.406
0.445
0.465
0.499
0.528
0.542
0.576
0.592
0.549
0.571
0.540
0.549
0.528
0.506
0.438
0.461
0.375
0.368
0.300
0.297
0.125
0.145

EF (Ry)

0.313
0.382
0.488
0.554

0.628
0.678
0.751
0.815
0.770
0.878
0.828
0.903
0.867
0.868
0.773
0.825
0.695
0.710
0.664
0.670
0.636
0.684

cupied bandwidth is the largest for the 5d series where
the state I, is pulled down more than in the 3d and 4d
rows due to a strong relativistic effect on the s-like I,
state. In Tables VII and VIII we show the position and
width of the occupied 3p and 4p bands for the fcc struc-
ture. In the bcc structure these widths are of similar size.
These bands are deep in energy and very narrow. As we
move across the rows we note that the p bands lie deeper

in energy, starting, for example, with 1.65 Ry below EF
for Ca and going to 6.0 Ry below EF for Zn. On the oth-
er hand, the p-band width increases from Ca (Sr) to
Cr(Mo) near the center of the series and then decreases
rapidly toward Zn (Cd). This behavior seems to correlate
with the variation of the lattice constant. For the Sd ele-
ments, we did not treat the Sp levels as bands but as core
levels. This was done in order to handle these levels fully

TABLE V. Theoretical energies for the I
&

state, the bottom (Edb), the top (Ed, ), and the width
(EEd ) of the d band, and the Fermi energy (EF) for the 4d metals.

System

fcc Sr
bcc Sr
fcc Y
bcc Y
fcc Zr
bcc Zr
fcc Nb
bcc Nb
fcc Mo
bcc Mo
fcc Tc
bcc Tc
fcc Ru
bcc Ru
fcc Rh
bcc Rh
fcc Pd
bcc Pd
fcc Ag
bcc Ag
fcc Cd
bcc Cd

I l (Ry)

0.012
0.033
0.144
0.092
0.187
0.188
0.267
0.285
0.191
0.264
0.194
0.214
0.191
0.185
0.083
0.103
0.012
0.028

—0.088
—0.060
—0.202
—0.193

Edb (Ry)

0.210
0.235
0.326
0.296
0.340
0.369
0.371
0.408
0.305
0.374
0.293
0.330
0.276
0.299
0.198
0.234
0.135
0.162
0.010
0.048

—0.245
—0.255

Ed, (Ry)

0.704
0.767
1.010
0.899
1.072
1.083
1.185
1.242
1.015
1.167
1.005
1.054
0.973
0.974
0.759
0.798
0.589
0.610
0.306
0.370

—0.113
—0.132

AEd (Ry)

0.494
0.532
0.684
0.603
0.732
0.714
0.814
0.834
0.710
0.793
0.712
0.724
0.697
0.675
0.561
0.564
0.454
0.447
0.296
0.322
0.132
0.123

EF (Ry)

0.295
0.330
0.506
0.469
0.608
0.625
0.740
0.795
0.684
0.835
0.751
0.808
0.795
0.789
0.681
0.679
0.565
0.561
0.490
0.550
0.502
0.474
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TABLE VI. Theoretical energies for the I
&

state, the bottom (Edb), the top (Ed, ), and the width

(EEd ) of the d band, and the Fermi energy (EF ) for the 5d metals.

System

fcc Ba
bcc Ba
fcc La
bcc La
fcc Hf
bcc Hf
fcc Ta
bcc Ta
fcc W
bcc W
fcc Re
bcc Re
fcc Os
bcc Os
fcc Ir
bcc Ir
fcc Pt
bcc Pt
fcc Au
bcc Au
fcc Hg
bcc Hg
fcc Tl
bcc Tl

r, (Ry)

0.074
0.089
0.210
0.208
0.063
0.081
0.081
0.118
0.068
0.108
0.059
0.088
0.020
0.043

—0.050
—0.030
—0.115
—0.088
—0.196
—0.175
—0.302
—0.294
—0.395
—0.358

E» (Ry)

0.202
0.223
0.273
0.291
0.331
0.351
0.330
0.376
0.307
0.355
0.281
0.323
0.239
0.277
0.1712
0.202
0.106
0.134
0.002
0.025

—0.199
—0.208
—0.504
—0.493

Edt

0.686
0.740
0.961
0.983
1.143
1.202
1.193
1.288
1.163
1.256
1.136
1.208
1.043
1.089
0.865
0.904
0.687
0.734
0.435
0.460
0.002

—0.030
—0.423
—0.419

AEd (Ry)

0.484
0.517
0.688
0.692
0.813
0.851
0.863
0.913
0.857
0.901
0.854
0.881
0.804
0.812
0.693
0.701
0.581
0.600
0.423
0.435
0.202
0.179
0.081
0.074

EF (Ry)

0.282
0.296
0.448
0.449
0.659
0.639
0.690
0.749
0.735
0.843
0.800
0.889
0.813
0.854
0.754
0.742
0.646
0.643
0.533
0.550
0.416
0.376
0.345
0.440

TABLE VII. The bottom (Eb), the top (E, ), and the bandwidth (dE) of the 3p band for the fcc 3d
metals in the equilibrium lattice constant (ao).

Element

Ca
Sc
T1
V
Cr
Mn
Fe
CQ

Ni
CU

Zn

ao (a.u. )

10.02
8.42
7.57
7.04
6.73
6.51
6.39
6.40
6.49
6.68
7.28

Eb (Ry)

—1.338
—1.544
—1.782
—2.044
—2.362
—2.698
—3.069
—3.489
—3.950
—4.471
—5.316

E, (Ry)

—1.322
—1.501
—1.717
—1.967
—2.287
—2.630
—3.014
—3.451
—3.928
—4.461
—5.314

dE (Ry)

0.016
0.043
0.065
0.077
0.075
0.068
0.055
0.037
0.022
0.010
0.002

TABLE VIII. The bottom (Eb ), the top (E, ), and the bandwidth (dE) of the 4p band for the fcc 4d
metals in the equilibrium lattice constant (ao).

Element

Sr
Y
ZI
Nb
Mo
TG

Ru
Rh
Pd
Ag
Cd

ao (a.u. )

10.860
9.235
8.385
7.825
7.480
7.235
7.110
7.150
7.305
7.615
8.240

Eb (Ry)

—1.049
—1.210
—1.409
—1.620
—1.870
—2.136
—2.424
—2.755
—3.115
—3.559
—4.222

E, (Ry)

—1.024
—1.150
—1.322
—1.515
—1.764
—2.035
—2.340
—2.698
—3.082
—3.545
—4.219

dE (Ry)

0.025
0.050
0.087
0.105
0.106
0.101
0.084
0.057
0.033
0.014
0.003
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FIG. 1. Density of states at the Fermi level as a function of
valence electrons for the fcc metals.

FIG. 2. Density of states at the Fermi level as a function of
valence electrons for the bcc metals.

relativistically including the spin-orbit interaction.
In Figs. 1 and 2 we present the density of states, N(E~)

at EF, as a function of valence electrons Z. In the fcc
structure (Fig. 1) N(EF) is fairly constant across each
rom but abruptly increases to a maximum for Z =10,
which corresponds to the (Ni, Pd, Pt) column. It is
significant to note that Ni and Pd have the highest
N(EF) from all the fcc metals, consistent with the oc-
currence of magnetism in Ni and often speculated mag-
netic instability in Pd. In the bcc structure (Fig. 2) we
observe a wider variation of N(EF), with a pronounced
minimum at Z =6 (Cr,Mo, W) and a rapid increase for
larger Z reaching a maximum at Z =9 (Co,Rh, Ir). Iridi-
um, which appears to have a very large N(EF ) in the bcc
structure, is stable in the fcc structure, as our total-
energy calculations confirm. However, it may be that Ir
is a good candidate for synthesis in the bcc structure and
for either superconductivity or magnetism. Finally, we
point out the also very large N(EF) of bcc La, which is
consistent with the findings of Lu, Singh, and
Krakauer 25

V. SUMMARY

We presented a systematic study of the crystal struc-
ture stability between fcc and bcc for all the 3d, 4d, and
Sd metals including the alkaline-earth elements. Our re-
sults predict the correct crystal structure for all elements
except for Fe in agreement with previous works. Equilib-
rium lattice parameters and bulk moduli have the usual,
in the LDA, small discrepancies from experiment with
the 5d series giving the best agreement. We also present-
ed a compendium of characteristic bandwidths and Fermi
level values of density of states across the Periodic Table.
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