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We performed total-energy calculations by the scalar-relativistic augmented-plane-wave method in the
local-density and muffin-tin approximations for all 3d, 4d, and 5d transition metals in the fcc and bee
structures. These calculations predict the correct equilibrium structure and give good agreement with
experiment and other calculations for lattice constants and bulk moduli.

I. INTRODUCTION

The relative stability of crystal structures in the transi-
tion metals has been explained by Pettifor! using a model
characterized by only two d-resonance parameters, from
which the densities of states were obtained in a hybrid
nearly-free-electron and tight-binding scheme. The sim-
ple approach of Pettifor worked surprisingly well consid-
ering that it was based on differences of the total one-
electron band-structure energies neglecting contributions
to the total energy from the electrostatic double counting
and the exchange and correlation terms. Subsequently,
Andersen and co-workers?* and Heine* demonstrated the
cancellation of the double counting and exchange-
correlation terms provided that the electron potential is
frozen from one structure to the other. This approach,
referred to as Andersen’s force theorem, was taken by
Skriver,’ who used the linear muffin-tin orbital (LMTO)
method to calculate the relative stability of all elements.
Skriver went beyond the essentially canonical approxima-
tion employed by Pettifor including hybridization with sp
bands. Skriver performed a self-consistent (SC) calcula-
tion for each element in the fcc structure, and then used
the SC fcc potential to calculate the sum of one-electron
energies for the bee structure. The resulting difference of
the band structure energies gave him the correct ordering
of total energies between different structures for all ele-
ments except Au.

In the present paper we present systematic calculations
of the total energy of all the 3d, 4d, and 5d transition
metals as well as the alkaline earth elements. Our calcu-
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lations were performed by the semirelativistic
augmented-plane-wave (APW) method in the muffin-tin
approximation; they were done fully self-consistently for
both the fcc and bcec structures without using the frozen
potential procedure employed by Skriver. In this sense
our calculations are similar to those of Davenport, Wat-
son, and Weinert,® who studied the 5d series by the linear
augmented Slater-type-orbital method. Our results for
the lattice parameters and bulk moduli agree with those
of Moruzzi, Janak, and Williams’ with small differences
due to neglect of relativistic effects in the latter calcula-
tions.

This article is organized as follows. Section II de-
scribes the method of calculation and the approxima-
tions. Section III contains our results in comparison with
values from the experiment and previous calculations. In
Sec. IV we discuss trends in the band structure, and in
Sec. V we summarize the results.

II. METHOD OF CALCULATION
AND APPROXIMATIONS

The total energy was calculated from the expression of
Janak,® which is valid within the muffin-tin (MT) approx-
imation and needs the crystal potential, the charge densi-
ty, and the eigenvalue sum as input. These were calculat-
ed self-consistently with the symmetrized APW method’®
using the MT approximation, which is accurate!® for cu-
bic materials. The crystal potential was calculated on a
doubling linear mesh consisting of 730 points inside the
MT radius. We have found that an integration with a
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smaller number of points leads to errors in the total ener-
gy of 1-8 mRy depending on the atomic number. For
example, for Ca the errors are about 1 mRy, but for Cd
they are about 8 mRy. The logarithmic derivatives were
calculated on a mesh of at least 500 points per Ry to en-
sure good eigenvalue convergence.

To determine the charge density and the potential self-
consistently we treated the highest p, s, and d orbitals as
band levels, but the stability of the structure was un-
changed if we used only s and d orbitals as bands. All
other states were treated as core levels because they form
essentially flat bands. The core levels were calculated by
a fully relativistic atomiclike calculation in each iteration.
The band states were calculated self-consistently in the
semi-relativistic approximation'? (the spin-orbit coupling
is neglected) initially on an equally spaced mesh of 20k
points in the irreducible zone for the fcc, and 14k points
for the bce structure. However, to achieve satisfactory
convergence it was necessary to use 89-k point sampling
for the fcc and 55k-point for the bee structures. The er-
rors in the total energy which could arise by using small-
er k-point sampling were 1-8 mRy for bcc and 0.2-3
mRy for the fcc structure.

A convergence in the energy levels of 0.5 mRy assured
a convergence in the total energy of less than 0.05 mRy.
In all our calculations the exchange potential was treated
in the exchange and correlation formalism of Hedin and
Lundgqvist,'® which is accurate for ground-state proper-
ties. To find the equilibrium lattice constants we calcu-
lated the total energy at various lattice constants, and
determined the minimum by fitting the results with a par-
abolic or cubic least-squares fit, with rms errors less than
0.2 mRy, as proposed by Birch.!*

III. COMPARISON WITH EXPERIMENT

AND OTHER CALCULATIONS
Comparing our results with experiment'® we find a
nearly perfect agreement especially for the 4d metals
where magnetic behavior is absent.'®!” As is usually the
case in the local-density approximation (LDA), our pre-
dicted lattice constants are slightly less than the experi-
mental values and the bulk moduli are overestimated.
For the 3d and 4d elements where we can make direct
comparison with experiment we find that the calculated
lattice constants are 2-5 % smaller and that the bulk
moduli are 10-15 % larger than experiment. For the 5d
elements our calculated values are in much better agree-
ment with experiment. The percentage errors are within
1% and 6% for the equilibrium volume and bulk
modulus, respectively. For the alkaline-earth metals we
find the largest discrepancies with experiment similar to
the findings of other calculations.” This is probably due to
the fact that these metals undergo a semimetallic phase
transition under pressure,lg which makes non-muffin-tin
corrections become important. Such corrections may
also improve the results for the more open bcc struc-
ture.!!

Our results are presented in Tables I-III. We note
from these tables that along each d row of the periodic
table the unit cell volume (or the lattice constant) de-
creases with the atomic number Z until the eighth
column (Fe, Ru, Os) and then increases toward the end of
the row. Conversely, the bulk modulus B, reaches a
maximum at the eighth column where the lattice con-
stant is at a minimum. These results of the variation in
a, and B, with Z reflect the fact that the filling of the d

TABLE I. Bulk moduli (By), equilibrium total energy (E, ), volume per atom (V,), and the total
energy difference (AE ) between bce and fec for 3d metals.

V, (au’) B, (Mbar)
System E,, (Ry) AE (mRy) theor. expt. theor. expt.
fcc Ca —1357.5271 248.36 293.5 0.156 0.152
bee Ca —1357.5245 2.6 250.25 0.202
fcc Sc —1524.9902 150.26 0.541
bee Sc —1524.9863 39 153.08 0.597
fcc Ti —1703.9688 108.04 1.260
bee Ti —1703.9670 1.8 107.54 1.257
fcc V —1894.7593 87.92 2.081
bcec V —1894.7870 —27.7 84.63 93.7 2.230 1.619
fcc Cr —2097.6747 75.83 2.651
bece Cr —2097.7043 —29.6 74.06 81.0 3.056 1.903
fcc Mn —2313.0172 68.87 3.351
bcec Mn —2313.0088 8.4 69.16 3.219
fcc Fe —2541.0881 65.55 3.387
bee Fe —2541.0596 28.5 67.13 79.5 3.114 1.683
fec Co —2782.2037 65.73 2.487
bee Co —2782.1804 23.3 65.93 3.539
fcc Ni —3036.6908 68.24 73.9 2.736 1.863
bee Ni —3036.6830 7.8 68.77 2.340
fcc Cu —3304.8630 74.29 79.7 1.424 1.309
bee Cu —3304.8574 5.6 76.07 3.121
fcc Zn —3586.7807 99.90 0.919
bce Zn —3586.7716 9.1 94.33 0.789
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TABLE II. Bulk moduli (By), equilibrium total energy (E,, ), volume per atom (¥}), and the total
energy difference (AE) between bece and fcc for 4d metals.

Vy (a.u?) B, (Mbar)
System E.. (Ry) AE (mRy) theor. expt. theor. expt.
fcc Sr —6352.1717 317.72 380.2 0.158 0.116
bee Sr —6352.1697 2.0 320.19 0.126
fcc Y —6763.6492 197.54 0.526
bcec Y —6763.6428 6.4 201.95 0.476
fcc Zr —7190.3942 146.47 1.047
bee Zr —7190.3931 1.1 144.04 1.013
fcc Nb —7632.6227 120.81 1.798
bce Nb —7632.6503 —27.6 116.94 121.4 1.948 1.702
fcc Mo —8090.5781 104.42 2.564
bcc Mo —8090.6084 —30.3 102.89 105.2 2.881 2.725
fcc Tc —8564.4862 94.50 2.996
bee Tc —8564.4698 16.4 95.40 3.188
fcc Ru —9054.5830 90.18 3.548
bce Ru —9054.5384 44.6 92.70 3.290
fcc Rh —9561.1185 90.85 92.9 3.116 2.705
beec Rh —9561.0855 33.0 93.41 2.785
fcc Pd —10084.3720 97.21 99.5 2.011 1.808
bee Pd —10084.3624 9.6 98.00 1.936
fcc Ag —10624.6357 110.85 115.1 1.131 1.007
bee Ag —10624.6261 9.6 112.03 1.268
fcc Cd —11181.7601 138.75 0.568
bee Cd —11181.7526 7.5 141.36 0.562

TABLE III. Bulk moduli (B,), equilibrium total energy (E ), volume per atom (¥,), and the total
energy difference (AE) between bcce and fcc for 5d metals.

Vo (a.u.?) B, (Mbar)
System E,. Ry) AE (mRy) theor. expt. theor. expt.
fcc Ba —16265.8802 376.6 0.071
bce Ba —16265.8818 —1.6 3735 426.7 0.111 0.103
fcc La —16982.1384 2334 0.312
bce La —16982.1332 5.2 240.4 0.307
fcc Hf —30177.1439 1439 1.434
bce Hf —30177.1435 0.4 1433 1.247
fcc Ta —31233.3125 123.2 2.482
bee Ta —31233.3382 —25.7 120.6 121.0 2.008 2.001
fcc W —32312.9492 109.9 2.794
bcc W —32312.9878 —38.6 107.1 107.0 3.256 3.232
fcc Re —33416.3614 100.1 3.533
bce Re —33416.3427 18.7 100.5 3.743
fcc Os —34543.8631 94.7 4.419
bee Os —34543.8039 59.2 98.2 3.783
fec Ir —35695.7968 96.9 95.5 3.763 3.550
bee Ir —35695.7460 50.8 99.3 3.481
fcc Pt —36872.5535 102.6 101.9 3.335 2.783
bee Pt —36872.5385 17.7 103.9 2.721
fcc Au —38074.5208 113.7 114.5 1.689 1.732
bcec Au —38074.5122 8.6 116.4 1.763
fcc Hg —39301.8945 149.3 0.805
bcc Hg —39301.8903 4.2 159.1 0.374
fec TI1 —40554.9373 184.4 0.766
bee Tl —40554.9311 6.2 189.4 0.339
fcc Pb —41833.9446 219.0 204.7 0.503 0.430
bee Pb —41833.9420 2.6 210.6 0.477
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band increases the strength of the d electron binding,
which reaches its maximum at the middle of the d series.
For the stable structures, a comparison with the results of
Moruzzi, Janak, and Williams’ shows that the equilibri-
um volume and the bulk modulus are in good agreement.
Small differences exist, however, which bring the calcula-
tions of Moruzzi, Janak, and Williams’ to a slightly
better agreement with experiment. The latter calcula-
tions were done also in the muffin-tin approximation by
the Korringa-Kohn-Rostoker (KKR) method, but includ-
ed no relativistic effects. Since the APW and KKR
methods are considered equivalent and since we have
checked the differences in k-point samplings between
Moruzzi, Janak, and Williams’ and our calculations, it is
clear that the main source of discrepancies is the fact that
our calculations include relativistic effects. The worsen-
ing of the agreement with experiment when relativistic
corrections are included is an unexpected result that has
also been found in the calculations of Elsiasser et al.,!
who attribute it to a cancellation of errors.

The structural energy difference AE=E,(fcc)
—E . (bcc) also shown in Tables I-III has, with the ex-
ception of Fe, the correct sign predicting the stable struc-
ture between fcc and bec, in agreement with experiment.
We are not going to deal with the hcp structure in this
paper. Fe was treated here with a paramagnetic calcula-
tion, but even the spin-polarized calculation does not pro-
duce the correct ground-state energy in the LDA.2° Our
equilibrium volumes and bulk moduli for bee Sc, Ti, Mn,
Co, and Ni are again in accord with the values found by
Moruzzi and Marcus.'®

The most complete study to date of the stability of the
crystal structures across the periodic table was given by
Skriver® using the LMTO method. Skriver based his ap-
proach on the findings of Pettifor and Andersen’s force
theorem, which lead to a cancellation of the double-
counting term in the total energy and eliminates the core
levels to a second-order approximation in the charge den-
sity. He also argues that the electrostatic term is in the
range of 0.05-0.5 mRy and may be neglected. Therefore
AE involves only the sums of the valence one-electron en-
ergies. Using this methodology, Skriver calculated AE
from the expression

E E
AE= [ "ENy (EME— [ "E Ny (E)E

and correctly predicted the crystal structure of all transi-
tion metals except Au. However, Skriver’s results, as
well as those of Pettifor, are a factor of 3-5 larger than
the enthalpy differences obtained by Miedema and
Niessen?! analyzing experimental phase diagrams.

In this work we have not employed any of the cancella-
tion arguments of Pettifor and Skriver. We have sub-
tracted total energies of the fcc and bcc structures retain-
ing all terms in the total-energy expression. In all cases
including Au our results give the correct crystal struc-
ture. Since Skriver did not tabulate his results for AE, we
can only compare with a graph shown in his paper for the
4d elements. For those elements like Nb, Mo, Ru, and
Rh that have large AE the agreement is very good. For
elements with small AE the comparison is not easy, but it
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is clear that we agree on the sign of AE. A comparison
with Miedema and Niessen’s analysis shows that the
theory still overestimates the “experimental” results. In
the 5d series our results shown in Table III are also in
good agreement with those of Skriver, especially for those
elements in the middle of the series that have large AE
values. It should be noted, however, that we get the
correct structure, with AE =8.6 mRy even for Au, where
Skriver’s calculation failed. Our results for the 5d ele-
ments are also in agreement with the work of Davenport,
Watson, and Weinert,® who used the augmented-Slater-
type-orbital method. Again, a detailed comparison of the
AFE values is not available with the results of Davenport,
Watson, and Weinert, but from their graph of AE versus
element one observes the same trends.

In the process of the present study we have discovered
the following prescription to obtain essentially the same
results for AE. This is done by performing only the fcc
calculations self-consistently. Then for the bcc calcula-
tions we use the self-consistent fcc charge density to con-
struct a bee potential for a lattice constant corresponding
to equal fcc and bee volumes. This potential is used to
perform only one iteration with the APW program. The
resulting total energy agrees with that of the fully self-
consistent bee calculation to an accuracy of approximate-
ly 0.5 mRy. We applied this procedure to Al, V, and Co
with equal success. Our prescription appears to be simi-
lar to Skriver’s approach and is in the same spirit as the
Harris approximation.??

The relative stability of the elements described by the
quantity AE is of great importance in the construction of
phase diagrams. Miedema and Niessen’! as well as Kauf-
man and Bernstein?® have utilized experimental data to
obtain estimates of AE. These results are smaller than
the theoretical AE by factors as large as 3. The source of
this discrepancy is not understood at present. On the
theoretical side the muffin-tin approximation employed in
this work cannot account for the error. Calculations that
have removed this approximation, such as that of Jansen
and Freeman?* for W and of Singh and Papaconstanto-
poulos!! for Zn, show very small effect on AE.

IV. TRENDS IN THE BAND STRUCTURE

In Tables IV-VI we list characteristic energies for the
I, state, the bottom and top of the d bands, and the Fer-
mi energy E,. In our notation E_  denotes the bottom of
the d bands and corresponds to the state X, or L, for the
fcc metals and the state N, or H, for the bcc metals.
E,, denotes the top of the d bands and corresponds to the
states W and N; for fcc and bcc, respectively. It can be
seen from Tables IV-VI that the d-band width AE, in-
creases across each row for both fcc and bece structures,
up to a maximum in the (V,Nb,Ta) column and then de-
creases slowly as the d band fills up. Looking at a given
column in the Periodic Table we note that AE, increases
from the 3d to the 5d metals. Also from Tables IV-VI
we can form the difference E—E(I"}), which is a mea-
sure of the occupied valence bands. This quantity in-
creases across the different rows and reaches a maximum
in the (Co,Rh,Ir) column. It is worth noting that the oc-
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TABLE IV. Theoretical energies for the I'; state, the bottom (E,, ), the top (E, ), and the width
(AE,) of the d band, and the Fermi energy (E) for the 3d metals.

System Fl (Ry) Edb (Ry) Ed, (Ry) AEd (Ry) Ep (Ry)
fcc Ca 0.085 0.244 0.650 0.406 0.313
bee Ca 0.040 0.285 0.730 0.445 0.382
fcc Sc 0.094 0.347 0.812 0.465 0.488
bee Sc 0.128 0.383 0.882 0.499 0.554
fcc Ti 0.172 0.404 0.932 0.528 0.628
bee Ti 0.207 0.454 0.996 0.542 0.678
fcc V 0.232 0.451 1.207 0.576 0.751
bcec V 0.275 0.509 1.101 0.592 0.815
fcc Cr 0.209 0.440 0.989 0.549 0.770
bee Cr 0.261 0.505 1.076 0.571 0.878
fcc Mn 0.196 0.443 0.983 0.540 0.828
bcc Mn 0.236 0.503 1.076 0.549 0.903
fcc Fe 0.174 0.445 0.973 0.528 0.867
bee Fe 0.172 0.472 0.978 0.506 0.868
fcc Co 0.073 0.382 0.820 0.438 0.773
bee Co 0.116 0.439 0.900 0.461 0.825
fcc Ni 0.006 0.337 0.712 0.375 0.695
bee Ni 0.010 0.347 0.715 0.368 0.710
fcc Cu —0.071 0.268 0.568 0.300 0.664
bee Cu —0.057 0.269 0.566 0.297 0.670
fcc Zn —0.214 —0.040 0.125 0.125 0.636
bee Zn —0.176 0.006 0.151 0.145 0.684

cupied bandwidth is the largest for the 5d series where
the state I'; is pulled down more than in the 3d and 4d
rows due to a strong relativistic effect on the s-like T';
state. In Tables VII and VIII we show the position and
width of the occupied 3p and 4p bands for the fcc struc-
ture. In the bece structure these widths are of similar size.
These bands are deep in energy and very narrow. As we
move across the rows we note that the p bands lie deeper

in energy, starting, for example, with 1.65 Ry below Ep
for Ca and going to 6.0 Ry below E. for Zn. On the oth-
er hand, the p-band width increases from Ca (Sr) to
Cr(Mo) near the center of the series and then decreases
rapidly toward Zn (Cd). This behavior seems to correlate
with the variation of the lattice constant. For the 5d ele-
ments, we did not treat the 5p levels as bands but as core
levels. This was done in order to handle these levels fully

TABLE V. Theoretical energies for the I'; state, the bottom (E,, ), the top (E, ), and the width
(AE,) of the d band, and the Fermi energy (E) for the 4d metals.

System T, (Ry) E; (Ry) E; (Ry) AE, (Ry) Er (Ry)
fce Sr 0.012 0.210 0.704 0.494 0.295
bee Sr 0.033 0.235 0.767 0.532 0.330
fec Y 0.144 0.326 1.010 0.684 0.506
bec Y 0.092 0.296 0.899 0.603 0.469
fcc Zr 0.187 0.340 1.072 0.732 0.608
bee Zr 0.188 0.369 1.083 0.714 0.625
fcc Nb 0.267 0.371 1.185 0.814 0.740
bec Nb 0.285 0.408 1.242 0.834 0.795
fcc Mo 0.191 0.305 1.015 0.710 0.684
bee Mo 0.264 0.374 1.167 0.793 0.835
fee Te 0.194 0.293 1.005 0.712 0.751
bee Te 0.214 0.330 1.054 0.724 0.808
fcc Ru 0.191 0.276 0.973 0.697 0.795
bec Ru 0.185 0.299 0.974 0.675 0.789
fcc Rh 0.083 0.198 0.759 0.561 0.681
bee Rh 0.103 0.234 0.798 0.564 0.679
fcc Pd 0.012 0.135 0.589 0.454 0.565
bee Pd 0.028 0.162 0.610 0.447 0.561
fcc Ag —0.088 0.010 0.306 0.296 0.490
bec Ag —0.060 0.048 0.370 0.322 0.550
fcc Cd —0.202 —0.245 —0.113 0.132 0.502
bee Cd —0.193 —0.255 —0.132 0.123 0.474
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TABLE VI. Theoretical energies for the I'; state, the bottom (E,, ), the top (E; ), and the width
(AE,) of the d band, and the Fermi energy (Ey) for the 5d metals.

System ', (Ry) Eg; (Ry) E; (Ry) AE,; (Ry) E; (Ry)
fcc Ba 0.074 0.202 0.686 0.484 0.282
bce Ba 0.089 0.223 0.740 0.517 0.296
fcc La 0.210 0.273 0.961 0.688 0.448
bce La 0.208 0.291 0.983 0.692 0.449
fcc Hf 0.063 0.331 1.143 0.813 0.659
bce Hf 0.081 0.351 1.202 0.851 0.639
fcc Ta 0.081 0.330 1.193 0.863 0.690
bec Ta 0.118 0.376 1.288 0913 0.749
fcc W 0.068 0.307 1.163 0.857 0.735
bce W 0.108 0.355 1.256 0.901 0.843
fcc Re 0.059 0.281 1.136 0.854 0.800
bee Re 0.088 0.323 1.208 0.881 0.889
fcc Os 0.020 0.239 1.043 0.804 0.813
bce Os 0.043 0.277 1.089 0.812 0.854
fcc Ir —0.050 0.1712 0.865 0.693 0.754
bee Ir —0.030 0.202 0.904 0.701 0.742
fcc Pt —0.115 0.106 0.687 0.581 0.646
bee Pt —0.088 0.134 0.734 0.600 0.643
fcc Au —0.196 0.002 0.435 0.423 0.533
bce Au —0.175 0.025 0.460 0.435 0.550
fcc Hg —0.302 —0.199 0.002 0.202 0416
bee Hg —0.294 —0.208 —0.030 0.179 0.376
fcc Tl —0.395 —0.504 —0.423 0.081 0.345
bee Tl —0.358 —0.493 —0.419 0.074 0.440

TABLE VII. The bottom (E,), the top (E,), and the bandwidth (dE) of the 3p band for the fcc 3d
metals in the equilibrium lattice constant (a,).

Element a, (a.u.) E, Ry) E, (Ry) dE (Ry)
Ca 10.02 —1.338 —1.322 0.016
Sc 8.42 —1.544 —1.501 0.043
Ti 7.57 —1.782 —1.717 0.065
\'% 7.04 —2.044 —1.967 0.077
Cr 6.73 —2.362 —2.287 0.075
Mn 6.51 —2.698 —2.630 0.068
Fe 6.39 —3.069 —3.014 0.055
Co 6.40 —3.489 —3.451 0.037
Ni 6.49 —3.950 —3.928 0.022
Cu 6.68 —4.471 —4.461 0.010
Zn 7.28 —5.316 —5.314 0.002

TABLE VIII. The bottom (E, ), the top (E,), and the bandwidth (dE) of the 4p band for the fcc 4d
metals in the equilibrium lattice constant (a,).

Element a, (a.u.) E, (Ry) E, (Ry) dE (Ry)
Sr 10.860 —1.049 —1.024 0.025
Y 9.235 —1.210 —1.150 0.050
Zr 8.385 —1.409 —1.322 0.087
Nb 7.825 —1.620 —1.515 0.105
Mo 7.480 —1.870 —1.764 0.106
Tc 7.235 —2.136 —2.035 0.101
Ru 7.110 —2.424 —2.340 0.084
Rh 7.150 —2.755 —2.698 0.057
Pd 7.305 —3.115 —3.082 0.033
Ag 7.615 —3.559 —3.545 0.014

Cd 8.240 —4.222 —4.219 0.003
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FIG. 1. Density of states at the Fermi level as a function of
valence electrons for the fcc metals.

relativistically including the spin-orbit interaction.

In Figs. 1 and 2 we present the density of states, N(Ep)
at E, as a function of valence electrons Z. In the fcc
structure (Fig. 1) N(Eg) is fairly constant across each
row but abruptly increases to a maximum for Z =10,
which corresponds to the (Ni,Pd,Pt) column. It is
significant to note that Ni and Pd have the highest
N(Ey) from all the fcc metals, consistent with the oc-
currence of magnetism in Ni and often speculated mag-
netic instability in Pd. In the bece structure (Fig. 2) we
observe a wider variation of N(Eg), with a pronounced
minimum at Z =6 (Cr,Mo,W) and a rapid increase for
larger Z reaching a maximum at Z =9 (Co,Rh,Ir). Iridi-
um, which appears to have a very large N(E) in the bcc
structure, is stable in the fcc structure, as our total-
energy calculations confirm. However, it may be that Ir
is a good candidate for synthesis in the bcc structure and
for either superconductivity or magnetism. Finally, we
point out the also very large N(Er) of bcc La, which is
consistent with the findings of Lu, Singh, and
Krakauer.?
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FIG. 2. Density of states at the Fermi level as a function of
valence electrons for the bcc metals.

V. SUMMARY

We presented a systematic study of the crystal struc-
ture stability between fcc and bee for all the 3d, 4d, and
5d metals including the alkaline-earth elements. Our re-
sults predict the correct crystal structure for all elements
except for Fe in agreement with previous works. Equilib-
rium lattice parameters and bulk moduli have the usual,
in the LDA, small discrepancies from experiment with
the 5d series giving the best agreement. We also present-
ed a compendium of characteristic bandwidths and Fermi
level values of density of states across the Periodic Table.
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