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A many-electron, many-photon theory has been applied to the computation of static « and dynamic
alw) linear polarizability of the H™ 2p?3P state. The calculation involves the nonperturbative mixing of
one bound (2172 3P), and one autoionizing (2s2p 3p°) state with 13 continua. State-specific, compact, and
accurate square-integrable wave functions have been employed. The magnitude of the polarizability is

huge: a=64000 a.u.

PACS number(s): 35.10.Di, 32.60.+1i

I. INTRODUCTION

Some of the interesting properties of atoms and mole-
cules whose reliable ab initio computation offers a good
challenge to theory, are the static and dynamic linear and
nonlinear polarizabilities. For polyelectronic systems,
the available quantitative information on the magnitude
of these quantities refers to the ground state only, or, for
the static, linear polarizability «, in a few cases [1,2], to
low-n Rydberg states. Regarding the static , their mag-
nitude for neutral or ionic species are of the order of one
or two digits in atomic units. Those of the negative ions
(where available) are much larger, reaching in the cases of
H™ and Li~ magnitudes such as [3,4] 206 and [5] 750
a.u., respectively. In fact, the Li~ linear polarizability
appears to be the largest known yet for a ground state [6].
Of course, as the perturbation theory solutions of the hy-
drogenic excited states suggest, large magnitudes are ex-
pected for singly excited states, as for example with the
Rydberg states of the alkalis [1,2].

What is the magnitude of static and dynamic polariza-
bilities for the class of states that is valence doubly excit-
ed? In particular, those of negative ions have large mean
radii [7] and therefore one might expect their polarizabil-
ity to be very large. In any case, this problem of electron-
ic structure theory and calculation has remained open.
In this paper, we present such results, taking the 2p? 3P
doubly excited state (DES) of the prototype negative ion
H  as the test case. This state is the second member [8,9]
of the discrete spectrum of H™ —the first one being the
ground state 1s21S.

II. THEORETICAL APPROACH

The calculation of polarizabilities is an old subject. A
large number of theoretical methods and results has been
published, but most of them refer to the ground state (for
a recent list of references see Ref. [5]).

Work from this institute on such properties has em-
phasized the importance of formulating the theory
around a state- and property-specific computation of the
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unperturbed and perturbed correlated wave functions,
whether ground or excited [4,5,10]. For example, rela-
tively small-size wave functions yielded accurate results
for the a of Be [10].

Recently [4,5], we presented a nonperturbative, all-
orders many-electron, many-photon theory MEMPT) for
the calculation of static as well as dynamic linear and
nonlinear polarizabilities. The formalism and its metho-
dology is presented elsewhere [5,11,12], so for reasons of
economy its presentation is omitted here. Its main
features are the following. The dynamic polarizabilities
a(w), y(w), etc. are obtained as averages over an optical
cycle by fitting to a polynomial in the average of the os-
cillating external field the total energy shift A(w), whose
calculation is carried out within the Floquet-theorem
framework of atom-field interactions. When the external
field is static, the Taylor series of A yields the well-known
[13] expansion defining static polarizabilities. Thus, for
an atom

= L2 L pa
A(static)= 2 aF 2 vF (1a)
and, according to the present theory,
S SRR 1 TR SRR I S
Alw)= 2!oz(co)zF 4!7/(w)8F . (1b)

The calculation of A and A(w) is carried out according to
the MEMPT [11,12]. Suffice it to say here that the
dressed, state-specific correlated wave functions include
the separately optimized contribution from the discrete
and the continuous spectrum.

III. APPLICATION TO H™~ 2p23P

A. Field-free case

The H™ 2p?3P state is in the H n =1 continuum and
just below the n =2 threshold. Drake [8] computed vari-
ationally an electron affinity (EA) of 0.0095 eV using a
trial wave function with 50 terms and an r;-dependent
basis. Aashamar [8] employed the variation-perturbation
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method to 20th perturbation order, including relativistic
corrections, using again Hylleraas bases and expansions
up to 204 terms. The EA thus obtained is 0.008 8 eV. A
state-specific Hartree-Fock (HF) plus variationally opti-
mized 41-term expansion yielded [9] EA==0.0093 eV. Re-
sults such as those of Ref. [9] and subsequent ones (e.g.,
see Ref. [7] and references therein) have demonstrated
that for DES, the numerical state-specific HF or
multiconfigurational Hartree-Fock (MCHF) wave func-
tion yields very good convergence, since it is forced to
have accurate long-range behavior while accounting for
dynamical screening much better than any fixed basis, in-
cluding the Hylleraas type. Thus, once the correct
zeroth-order correlation effects have been accounted for,
the computation of a related property is economical as
well as reliable. A case in point is the wave function of
the H™ 2p?3P. Just the four-term expansion obtained
from a numerical [14] MCHF calculation

W,(*P)=0.930(2p%)—0.342(3p?)
+0.132(3d?)+0.011(412) 2)

yields E,=—3.410 eV which corresponds to
EA =0.0085 eV. This compact pair wave function, con-
taining angular as well as radial correlation and account-
ing for the long-range behavior by satisfying the correct
boundary conditions [15], is used in this work as input for
the implementation of the MEMPT.

B. The field-dressed state

In the presence of the electric dipole external field, the
3P state becomes unbound by coupling via one or more
photons to the adjacent continuum, lsel, to the autoion-
izing state just below, 2s2p *P°, and, depending on the
frequency and on the field strength, to channels above the
n =2 threshold. For the present calculation, we em-
ployed a three-term numerical MCHF 2s2p 3P° square-
integrable ¥, [16],

Wo(3P°)=0.968(2s2p)—0.210(2p3d ) —0.138(3s3p) , (3)

with E;=—3.860 eV. This is just 0.007 eV above the
84-term, r;-dependent optimized basis calculation of
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TABLE 1. Linear static and frequency-dependent polariza-
bilities of the discrete, doubly excited state, H™ 2p23P, whose
electron affinity with respect to the H n =2 threshold is just
0.0096 eV (0.00035 a.u.). The frequency 0.0165 a.u. corre-
sponds approximately to the energy difference between the
2p?3P state and the H™ resonance 2s2p *P°. The ensuing cou-
pling causes a change of the sign of a(w).

o (a.u.) a(w) (a.u.) o (a.u.) alw) (a.u.)
0.0000 6.4Xx10* 0.0070 —1.0x10*
0.0007 18 0.0080 —0.92
0.0008 13 0.0090 —0.84
0.0009 11 0.0100 —0.80
0.0010 8.8 0.0105 —0.77
0.0020 —0.16 0.0120 —0.76
0.0030 —14 0.0135 —0.82
0.0040 —1.4 0.0150 —1.2
0.0050 —1.3 0.0165 1.6
0.0060 —1.1 0.0180 0.48
0.0195 0.12

Bhatia and Temkin [17] with the continuum-interaction
shift explicitly included.

As regards the open channels, for each one we em-
ployed a ten-term complex-coordinate Slater-type orbital
(STO) representation [S,11]. Given that the frequencies
considered ionize the P state with one photon, the fol-
lowing continua were included: 1lses3S, lsep P,
1sed D, 2ses 3S, 2sep 3pe, 2s€ed D, 2pes 3pe, 2pep 38, 3P,
*D, 2ped, *P°, 3D°, *F°. Thus, the overall calculation
[5,11,12] involved the simultaneous mixing of one
discrete DES (2p?3P), one autoionizing DES (2s2p 3P°),
and 13 continua.

The results of our calculations are presented in Table I.
A huge a is computed: 64 000 a.u. The values of the fre-
quency go up to the range of the (2p23P-2s2p 3P°) Bohr
frequency (around 0.0165 a.u.), where a change of sign is
observed. Such knowledge is of interest not only for test-
ing new theories and furthering our understanding of
electronic structure and properties of highly excited
states, but also for using it in studies of other problems,
such as collision phenomena.
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